Skip to main content
Top
Published in: Cancer and Metastasis Reviews 1-2/2012

Open Access 01-06-2012 | NON-THEMATIC REVIEW

Biological influence of Hakai in cancer: a 10-year review

Authors: Luis A. Aparicio, Manuel Valladares, Moisés Blanco, Guillermo Alonso, Angélica Figueroa

Published in: Cancer and Metastasis Reviews | Issue 1-2/2012

Login to get access

Abstract

In order to metastasize, cancer cells must first detach from the primary tumor, migrate, invade through tissues, and attach to a second site. Hakai was discovered as an E3 ubiquitin-ligase that mediates the posttranslational downregulation of E-cadherin, a major component of adherens junctions in epithelial cells that is characterized as a potent tumor suppressor and is modulated during various processes including epithelial–mesenchymal transition. Recent data have provided evidences for novel biological functional role of Hakai during tumor progression and other diseases. Here, we will review the knowledge that has been accumulated since Hakai discovery 10 years ago and its implication in human cancer disease. We will highlight the different signaling pathways leading to the influence on Hakai and suggest its potential usefulness as therapeutic target for cancer.
Literature
1.
go back to reference Thiery, J. P., & Sleeman, J. P. (2006). Complex networks orchestrate epithelial–mesenchymal transitions. Nature Reviews Molecular Cell Biology, 7(2), 131–142.PubMedCrossRef Thiery, J. P., & Sleeman, J. P. (2006). Complex networks orchestrate epithelial–mesenchymal transitions. Nature Reviews Molecular Cell Biology, 7(2), 131–142.PubMedCrossRef
3.
go back to reference Birchmeier, W., & Behrens, J. (1994). Cadherin expression in carcinomas: Role in the formation of cell junctions and the prevention of invasiveness. Biochimica et Biophysica Acta, 1198(1), 11–26.PubMed Birchmeier, W., & Behrens, J. (1994). Cadherin expression in carcinomas: Role in the formation of cell junctions and the prevention of invasiveness. Biochimica et Biophysica Acta, 1198(1), 11–26.PubMed
4.
go back to reference Christofori, G., & Semb, H. (1999). The role of the cell-adhesion molecule E-cadherin as a tumour-suppressor gene. Trends in Biochemical Sciences, 24(2), 73–6.PubMedCrossRef Christofori, G., & Semb, H. (1999). The role of the cell-adhesion molecule E-cadherin as a tumour-suppressor gene. Trends in Biochemical Sciences, 24(2), 73–6.PubMedCrossRef
5.
go back to reference Perl, A. K., Wilgenbus, P., Dahl, U., Semb, H., & Christofori, G. (1998). A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature, 392(6672), 190–193.PubMedCrossRef Perl, A. K., Wilgenbus, P., Dahl, U., Semb, H., & Christofori, G. (1998). A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature, 392(6672), 190–193.PubMedCrossRef
6.
go back to reference Vleminckx, K., Vakaet, L., Mareel, M., Fiers, W., & van Roy, F. (1991). Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell, 66(1), 107–119.PubMedCrossRef Vleminckx, K., Vakaet, L., Mareel, M., Fiers, W., & van Roy, F. (1991). Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell, 66(1), 107–119.PubMedCrossRef
7.
go back to reference Berx, G., & Van Roy, F. (2009). Involvement of members of the cadherin superfamily in cancer (pp. 1–27). Cold Spring Harbor: Cold Spring Harb Perspect Biol. Berx, G., & Van Roy, F. (2009). Involvement of members of the cadherin superfamily in cancer (pp. 1–27). Cold Spring Harbor: Cold Spring Harb Perspect Biol.
8.
go back to reference van Roy, F., & Berx, G. (2008). The cell–cell adhesion molecule E-cadherin. Cellular and Molecular Life Sciences, 65(23), 3756–3788.PubMedCrossRef van Roy, F., & Berx, G. (2008). The cell–cell adhesion molecule E-cadherin. Cellular and Molecular Life Sciences, 65(23), 3756–3788.PubMedCrossRef
9.
go back to reference Fujita, Y., Krause, G., Scheffner, M., Zechner, D., Leddy, H., Behrens, J., et al. (2002). Hakai, a c-Cbl-like protein, ubiquitinates and induces endocytosis of the E-cadherin complex. Nature Cell Biology, 4(3), 222–231.PubMedCrossRef Fujita, Y., Krause, G., Scheffner, M., Zechner, D., Leddy, H., Behrens, J., et al. (2002). Hakai, a c-Cbl-like protein, ubiquitinates and induces endocytosis of the E-cadherin complex. Nature Cell Biology, 4(3), 222–231.PubMedCrossRef
10.
go back to reference Farquhar, M. G., & Palade, G. E. (1963). Junctional complexes in various epithelia. The Journal of Cell Biology, 17, 375–412.PubMedCrossRef Farquhar, M. G., & Palade, G. E. (1963). Junctional complexes in various epithelia. The Journal of Cell Biology, 17, 375–412.PubMedCrossRef
11.
go back to reference D'Souza-Schorey, C. (2005). Disassembling adherens junctions: Breaking up is hard to do. Trends in Cell Biology, 15(1), 19–26.PubMedCrossRef D'Souza-Schorey, C. (2005). Disassembling adherens junctions: Breaking up is hard to do. Trends in Cell Biology, 15(1), 19–26.PubMedCrossRef
12.
go back to reference Yoshida, C., & Takeichi, M. (1982). Teratocarcinoma cell adhesion: Identification of a cell-surface protein involved in calcium-dependent cell aggregation. Cell, 28(2), 217–224.PubMedCrossRef Yoshida, C., & Takeichi, M. (1982). Teratocarcinoma cell adhesion: Identification of a cell-surface protein involved in calcium-dependent cell aggregation. Cell, 28(2), 217–224.PubMedCrossRef
13.
go back to reference Yoshida-Noro, C., Suzuki, N., & Takeichi, M. (1984). Molecular nature of the calcium-dependent cell–cell adhesion system in mouse teratocarcinoma and embryonic cells studied with a monoclonal antibody. Developmental Biology, 101(1), 19–27.PubMedCrossRef Yoshida-Noro, C., Suzuki, N., & Takeichi, M. (1984). Molecular nature of the calcium-dependent cell–cell adhesion system in mouse teratocarcinoma and embryonic cells studied with a monoclonal antibody. Developmental Biology, 101(1), 19–27.PubMedCrossRef
14.
go back to reference Peyriéras, N., Hyafil, F., Louvard, D., Ploegh, H. L., & Jacob, F. (1983). Uvomorulin: A nonintegral membrane protein of early mouse embryo. Proceedings of the National Academy of Sciences of the United States of America, 80(20), 6274–6277.PubMedCrossRef Peyriéras, N., Hyafil, F., Louvard, D., Ploegh, H. L., & Jacob, F. (1983). Uvomorulin: A nonintegral membrane protein of early mouse embryo. Proceedings of the National Academy of Sciences of the United States of America, 80(20), 6274–6277.PubMedCrossRef
15.
go back to reference Gallin, W. J., Edelman, G. M., & Cunningham, B. A. (1983). Characterization of L-CAM, a major cell adhesion molecule from embryonic liver cells. Proceedings of the National Academy of Sciences of the United States of America, 80(4), 1038–1042.PubMedCrossRef Gallin, W. J., Edelman, G. M., & Cunningham, B. A. (1983). Characterization of L-CAM, a major cell adhesion molecule from embryonic liver cells. Proceedings of the National Academy of Sciences of the United States of America, 80(4), 1038–1042.PubMedCrossRef
16.
go back to reference Volk, T., & Geiger, B. (1984). A 135-kd membrane protein of intercellular adherens junctions. EMBO Journal, 3(10), 2249–2260.PubMed Volk, T., & Geiger, B. (1984). A 135-kd membrane protein of intercellular adherens junctions. EMBO Journal, 3(10), 2249–2260.PubMed
17.
go back to reference Angst, B. D., Marcozzi, C., & Magee, A. I. (2001). The cadherin superfamily. Journal of Cell Science, 114(Pt 4), 625–626.PubMed Angst, B. D., Marcozzi, C., & Magee, A. I. (2001). The cadherin superfamily. Journal of Cell Science, 114(Pt 4), 625–626.PubMed
18.
go back to reference Nakanishi, H., & Takai, Y. (2004). Roles of nectins in cell adhesion, migration and polarization. Biological Chemistry, 385(10), 885–892.PubMedCrossRef Nakanishi, H., & Takai, Y. (2004). Roles of nectins in cell adhesion, migration and polarization. Biological Chemistry, 385(10), 885–892.PubMedCrossRef
19.
go back to reference Takeichi, M. (1988). The cadherins: Cell–cell adhesion molecules controlling animal morphogenesis. Development, 102(4), 639–655.PubMed Takeichi, M. (1988). The cadherins: Cell–cell adhesion molecules controlling animal morphogenesis. Development, 102(4), 639–655.PubMed
20.
go back to reference Overduin, M., Harvey, T. S., Bagby, S., Tong, K. I., Yau, P., Takeichi, M., et al. (1995). Solution structure of the epithelial cadherin domain responsible for selective cell adhesion. Science, 267(5196), 386–389.PubMedCrossRef Overduin, M., Harvey, T. S., Bagby, S., Tong, K. I., Yau, P., Takeichi, M., et al. (1995). Solution structure of the epithelial cadherin domain responsible for selective cell adhesion. Science, 267(5196), 386–389.PubMedCrossRef
21.
go back to reference Nishimura, T., & Takeichi, M. (2009). Remodeling of the adherens junctions during morphogenesis. Current Topics in Developmental Biology, 89, 33–54.PubMedCrossRef Nishimura, T., & Takeichi, M. (2009). Remodeling of the adherens junctions during morphogenesis. Current Topics in Developmental Biology, 89, 33–54.PubMedCrossRef
22.
go back to reference Pokutta, S., & Weis, W. I. (2007). Structure and mechanism of cadherins and catenins in cell–cell contacts. Annual Review of Cell and Developmental Biology, 23, 237–261.PubMedCrossRef Pokutta, S., & Weis, W. I. (2007). Structure and mechanism of cadherins and catenins in cell–cell contacts. Annual Review of Cell and Developmental Biology, 23, 237–261.PubMedCrossRef
23.
go back to reference Perez-Moreno, M., & Fuchs, E. (2006). Catenins: Keeping cells from getting their signals crossed. Developmental Cell, 11(5), 601–612.PubMedCrossRef Perez-Moreno, M., & Fuchs, E. (2006). Catenins: Keeping cells from getting their signals crossed. Developmental Cell, 11(5), 601–612.PubMedCrossRef
24.
go back to reference Drees, F., Pokutta, S., Yamada, S., Nelson, W. J., & Weis, W. I. (2005). Alpha-catenin is a molecular switch that binds E-cadherin–beta-catenin and regulates actin-filament assembly. Cell, 123(5), 903–915.PubMedCrossRef Drees, F., Pokutta, S., Yamada, S., Nelson, W. J., & Weis, W. I. (2005). Alpha-catenin is a molecular switch that binds E-cadherin–beta-catenin and regulates actin-filament assembly. Cell, 123(5), 903–915.PubMedCrossRef
25.
go back to reference Yamada, S., Pokutta, S., Drees, F., Weis, W. I., & Nelson, W. J. (2005). Deconstructing the cadherin–catenin–actin complex. Cell, 123(5), 889–901.PubMedCrossRef Yamada, S., Pokutta, S., Drees, F., Weis, W. I., & Nelson, W. J. (2005). Deconstructing the cadherin–catenin–actin complex. Cell, 123(5), 889–901.PubMedCrossRef
26.
go back to reference Behrens, J., Vakaet, L., Friis, R., Winterhager, E., Van Roy, F., Mareel, M. M., et al. (1993). Loss of epithelial differentiation and gain of invasiveness correlates with tyrosine phosphorylation of the E-cadherin/beta-catenin complex in cells transformed with a temperature-sensitive v-SRC gene. The Journal of Cell Biology, 120(3), 757–766.PubMedCrossRef Behrens, J., Vakaet, L., Friis, R., Winterhager, E., Van Roy, F., Mareel, M. M., et al. (1993). Loss of epithelial differentiation and gain of invasiveness correlates with tyrosine phosphorylation of the E-cadherin/beta-catenin complex in cells transformed with a temperature-sensitive v-SRC gene. The Journal of Cell Biology, 120(3), 757–766.PubMedCrossRef
27.
go back to reference Stoker, M., & Gherardi, E. (1991). Regulation of cell movement: The motogenic cytokines. Biochimica et Biophysica Acta, 1072(1), 81–102.PubMed Stoker, M., & Gherardi, E. (1991). Regulation of cell movement: The motogenic cytokines. Biochimica et Biophysica Acta, 1072(1), 81–102.PubMed
28.
go back to reference Lipkowitz, S., & Weissman, A. M. (2011). RINGs of good and evil: RING finger ubiquitin ligases at the crossroads of tumour suppression and oncogenesis. Nature Reviews. Cancer, 11(9), 629–643.PubMedCrossRef Lipkowitz, S., & Weissman, A. M. (2011). RINGs of good and evil: RING finger ubiquitin ligases at the crossroads of tumour suppression and oncogenesis. Nature Reviews. Cancer, 11(9), 629–643.PubMedCrossRef
29.
go back to reference Frame, M. C., Fincham, V. J., Carragher, N. O., & Wyke, J. A. (2002). v-Src's hold over actin and cell adhesions. Nature Reviews Molecular Cell Biology, 3(4), 233–245.PubMedCrossRef Frame, M. C., Fincham, V. J., Carragher, N. O., & Wyke, J. A. (2002). v-Src's hold over actin and cell adhesions. Nature Reviews Molecular Cell Biology, 3(4), 233–245.PubMedCrossRef
30.
go back to reference Hicke, L., & Riezman, H. (1996). Ubiquitination of a yeast plasma membrane receptor signals its ligand-stimulated endocytosis. Cell, 84(2), 277–287.PubMedCrossRef Hicke, L., & Riezman, H. (1996). Ubiquitination of a yeast plasma membrane receptor signals its ligand-stimulated endocytosis. Cell, 84(2), 277–287.PubMedCrossRef
31.
go back to reference Le, T. L., Yap, A. S., & Stow, J. L. (1999). Recycling of E-cadherin: A potential mechanism for regulating cadherin dynamics. The Journal of Cell Biology, 146(1), 219–232.PubMedCrossRef Le, T. L., Yap, A. S., & Stow, J. L. (1999). Recycling of E-cadherin: A potential mechanism for regulating cadherin dynamics. The Journal of Cell Biology, 146(1), 219–232.PubMedCrossRef
32.
go back to reference Palacios, F., Price, L., Schweitzer, J., Collard, J. G., & D'Souza-Schorey, C. (2001). An essential role for ARF6-regulated membrane traffic in adherens junction turnover and epithelial cell migration. EMBO Journal, 20(17), 4973–4986.PubMedCrossRef Palacios, F., Price, L., Schweitzer, J., Collard, J. G., & D'Souza-Schorey, C. (2001). An essential role for ARF6-regulated membrane traffic in adherens junction turnover and epithelial cell migration. EMBO Journal, 20(17), 4973–4986.PubMedCrossRef
33.
go back to reference Palacios, F., Tushir, J., Fujita, Y., & D'Souza-Schorey, C. (2005). Lysosomal targeting of E-cadherin: A unique mechanism for the down-regulation of cell–cell adhesion during epithelial to mesenchymal transitions. Molecular and Cellular Biology, 25(1), 389–402.PubMedCrossRef Palacios, F., Tushir, J., Fujita, Y., & D'Souza-Schorey, C. (2005). Lysosomal targeting of E-cadherin: A unique mechanism for the down-regulation of cell–cell adhesion during epithelial to mesenchymal transitions. Molecular and Cellular Biology, 25(1), 389–402.PubMedCrossRef
34.
go back to reference Weidner, K. M., Behrens, J., Vandekerckhove, J., & Birchmeier, W. (1990). Scatter factor: Molecular characteristics and effect on the invasiveness of epithelial cells. J Cell Biol, 5, 2097–2108.CrossRef Weidner, K. M., Behrens, J., Vandekerckhove, J., & Birchmeier, W. (1990). Scatter factor: Molecular characteristics and effect on the invasiveness of epithelial cells. J Cell Biol, 5, 2097–2108.CrossRef
35.
go back to reference Takeichi, M. (1995). Morphogenetic roles of classic cadherins. Current Opinion in Cell Biology, 7(5), 619–627.PubMedCrossRef Takeichi, M. (1995). Morphogenetic roles of classic cadherins. Current Opinion in Cell Biology, 7(5), 619–627.PubMedCrossRef
36.
go back to reference Gumbiner, B. M. (2000). Regulation of cadherin adhesive activity. The Journal of Cell Biology, 148(3), 399–404.PubMedCrossRef Gumbiner, B. M. (2000). Regulation of cadherin adhesive activity. The Journal of Cell Biology, 148(3), 399–404.PubMedCrossRef
37.
go back to reference Ishiyama, N., Lee, S., Liu, S., Li, G., Smith, M., Reichardt, L., et al. (2010). Dynamic and static interactions between p120 catenin and E-cadherin regulate the stability of cell–cell adhesion. Cell, 141(1), 117–128.PubMedCrossRef Ishiyama, N., Lee, S., Liu, S., Li, G., Smith, M., Reichardt, L., et al. (2010). Dynamic and static interactions between p120 catenin and E-cadherin regulate the stability of cell–cell adhesion. Cell, 141(1), 117–128.PubMedCrossRef
38.
39.
go back to reference Potter, M. D., Barbero, S., & Cheresh, D. A. (2005). Tyrosine phosphorylation of VE-cadherin prevents binding of p120- and beta-catenin and maintains the cellular mesenchymal state. The Journal of Biological Chemistry, 280(36), 31906–31912.PubMedCrossRef Potter, M. D., Barbero, S., & Cheresh, D. A. (2005). Tyrosine phosphorylation of VE-cadherin prevents binding of p120- and beta-catenin and maintains the cellular mesenchymal state. The Journal of Biological Chemistry, 280(36), 31906–31912.PubMedCrossRef
40.
go back to reference Reynolds, A. B., & Roczniak-Ferguson, A. (2004). Emerging roles for p120-catenin in cell adhesion and cancer. Oncogene, 23(48), 7947–7956.PubMedCrossRef Reynolds, A. B., & Roczniak-Ferguson, A. (2004). Emerging roles for p120-catenin in cell adhesion and cancer. Oncogene, 23(48), 7947–7956.PubMedCrossRef
41.
go back to reference Chen, K. H., Tung, P. Y., Wu, J. C., Chen, Y., Chen, P. C., Huang, S. H., et al. (2008). An acidic extracellular pH induces Src kinase-dependent loss of beta-catenin from the adherens junction. Cancer Letters, 267(1), 37–48.PubMedCrossRef Chen, K. H., Tung, P. Y., Wu, J. C., Chen, Y., Chen, P. C., Huang, S. H., et al. (2008). An acidic extracellular pH induces Src kinase-dependent loss of beta-catenin from the adherens junction. Cancer Letters, 267(1), 37–48.PubMedCrossRef
42.
go back to reference Parks, S. K., Chiche, J., & Pouyssegur, J. (2011). pH control mechanisms of tumor survival and growth. Journal of Cellular Physiology, 226(2), 299–308.PubMedCrossRef Parks, S. K., Chiche, J., & Pouyssegur, J. (2011). pH control mechanisms of tumor survival and growth. Journal of Cellular Physiology, 226(2), 299–308.PubMedCrossRef
43.
go back to reference Neri, D., & Supuran, C. T. (2011). Interfering with pH regulation in tumours as a therapeutic strategy. Nature Reviews Drug Discovery, 10(10), 767–77.PubMedCrossRef Neri, D., & Supuran, C. T. (2011). Interfering with pH regulation in tumours as a therapeutic strategy. Nature Reviews Drug Discovery, 10(10), 767–77.PubMedCrossRef
44.
go back to reference Chen, Y., Chen, C., Tung, P., Huang, S., & Wang, S. (2009). An acidic extracellular pH disrupts adherens junctions in HepG2 cells by Src kinases-dependent modification of E-cadherin. Journal of Cellular Biochemistry, 108(4), 851–859.PubMedCrossRef Chen, Y., Chen, C., Tung, P., Huang, S., & Wang, S. (2009). An acidic extracellular pH disrupts adherens junctions in HepG2 cells by Src kinases-dependent modification of E-cadherin. Journal of Cellular Biochemistry, 108(4), 851–859.PubMedCrossRef
45.
go back to reference Kaido, M., Wada, H., Shindo, M., & Hayashi, S. (2009). Essential requirement for RING finger E3 ubiquitin ligase Hakai in early embryonic development of Drosophila. Genes to Cells, 14(9), 1067–1077.PubMedCrossRef Kaido, M., Wada, H., Shindo, M., & Hayashi, S. (2009). Essential requirement for RING finger E3 ubiquitin ligase Hakai in early embryonic development of Drosophila. Genes to Cells, 14(9), 1067–1077.PubMedCrossRef
46.
go back to reference Ardley, H. C., & Robinson, P. A. (2005). E3 ubiquitin ligases. Essays in Biochemistry, 41, 15–30.PubMedCrossRef Ardley, H. C., & Robinson, P. A. (2005). E3 ubiquitin ligases. Essays in Biochemistry, 41, 15–30.PubMedCrossRef
47.
go back to reference Jackson, P. K., Eldridge, A. G., Freed, E., Furstenthal, L., Hsu, J. Y., Kaiser, B. K., et al. (2000). The lore of the RINGs: Substrate recognition and catalysis by ubiquitin ligases. Trends in Cell Biology, 10(10), 429–439.PubMedCrossRef Jackson, P. K., Eldridge, A. G., Freed, E., Furstenthal, L., Hsu, J. Y., Kaiser, B. K., et al. (2000). The lore of the RINGs: Substrate recognition and catalysis by ubiquitin ligases. Trends in Cell Biology, 10(10), 429–439.PubMedCrossRef
48.
go back to reference Joazeiro, C. A., Wing, S. S., Huang, H., Leverson, J. D., Hunter, T., & Liu, Y. C. (1999). The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science, 286(5438), 309–312.PubMedCrossRef Joazeiro, C. A., Wing, S. S., Huang, H., Leverson, J. D., Hunter, T., & Liu, Y. C. (1999). The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science, 286(5438), 309–312.PubMedCrossRef
49.
go back to reference Levkowitz, G., Waterman, H., Ettenberg, S. A., Katz, M., Tsygankov, A. Y., Alroy, I., et al. (1999). Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c-Cbl/Sli-1. Molecular Cell, 4(6), 1029–1040.PubMedCrossRef Levkowitz, G., Waterman, H., Ettenberg, S. A., Katz, M., Tsygankov, A. Y., Alroy, I., et al. (1999). Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c-Cbl/Sli-1. Molecular Cell, 4(6), 1029–1040.PubMedCrossRef
50.
go back to reference Mukherjee, M., Chow, S. Y., Yusoff, P., Seetharaman, J., Ng, C., Sinniah, S., et al. (2012). Structure of a novel phosphotyrosine-binding domain in Hakai that targets E-cadherin. EMBO Journal. doi:emboj2011496. Mukherjee, M., Chow, S. Y., Yusoff, P., Seetharaman, J., Ng, C., Sinniah, S., et al. (2012). Structure of a novel phosphotyrosine-binding domain in Hakai that targets E-cadherin. EMBO Journal. doi:emboj2011496.
51.
go back to reference Liu, Y., Bai, G., Zhang, H., Su, D., Tao, D., Yang, Y., et al. (2010). Human RING finger protein ZNF645 is a novel testis-specific E3 ubiquitin ligase. Asian Journal of Andrology, 12(5), 658–66.PubMedCrossRef Liu, Y., Bai, G., Zhang, H., Su, D., Tao, D., Yang, Y., et al. (2010). Human RING finger protein ZNF645 is a novel testis-specific E3 ubiquitin ligase. Asian Journal of Andrology, 12(5), 658–66.PubMedCrossRef
52.
go back to reference Shen, Y., Hirsch, D. S., Sasiela, C. A., & Wu, W. J. (2008). Cdc42 regulates E-cadherin ubiquitination and degradation through an epidermal growth factor receptor to Src-mediated pathway. Journal of Biological Chemistry, 283(8), 5127–5137.PubMedCrossRef Shen, Y., Hirsch, D. S., Sasiela, C. A., & Wu, W. J. (2008). Cdc42 regulates E-cadherin ubiquitination and degradation through an epidermal growth factor receptor to Src-mediated pathway. Journal of Biological Chemistry, 283(8), 5127–5137.PubMedCrossRef
53.
go back to reference Ishizawar, R., & Parsons, S. J. (2004). c-Src and cooperating partners in human cancer. Cancer Cell, 6(3), 209–214.PubMedCrossRef Ishizawar, R., & Parsons, S. J. (2004). c-Src and cooperating partners in human cancer. Cancer Cell, 6(3), 209–214.PubMedCrossRef
54.
go back to reference Thiery, J. P. (2002). Epithelial-mesenchymal transitions in tumour progression. Nature Reviews Cancer, 2(6), 442–454.PubMedCrossRef Thiery, J. P. (2002). Epithelial-mesenchymal transitions in tumour progression. Nature Reviews Cancer, 2(6), 442–454.PubMedCrossRef
55.
go back to reference Braga, V. (2000). Epithelial cell shape: Cadherins and small GTPases. Experimental Cell Research, 261(1), 83–90.PubMedCrossRef Braga, V. (2000). Epithelial cell shape: Cadherins and small GTPases. Experimental Cell Research, 261(1), 83–90.PubMedCrossRef
56.
go back to reference Sahai, E., & Marshall, C. J. (2002). RHO-GTPases and cancer. Nature Reviews Cancer, 2(2), 133–142.PubMedCrossRef Sahai, E., & Marshall, C. J. (2002). RHO-GTPases and cancer. Nature Reviews Cancer, 2(2), 133–142.PubMedCrossRef
57.
go back to reference Bryant, D. M., & Stow, J. L. (2004). The ins and outs of E-cadherin trafficking. Trends in Cell Biology, 14(8), 427–434.PubMedCrossRef Bryant, D. M., & Stow, J. L. (2004). The ins and outs of E-cadherin trafficking. Trends in Cell Biology, 14(8), 427–434.PubMedCrossRef
58.
go back to reference Chang, B. Y., Conroy, K. B., Machleder, E. M., & Cartwright, C. A. (1998). RACK1, a receptor for activated C kinase and a homolog of the beta subunit of G proteins, inhibits activity of src tyrosine kinases and growth of NIH 3T3 cells. Molecular and Cellular Biology, 18(6), 3245–3256.PubMed Chang, B. Y., Conroy, K. B., Machleder, E. M., & Cartwright, C. A. (1998). RACK1, a receptor for activated C kinase and a homolog of the beta subunit of G proteins, inhibits activity of src tyrosine kinases and growth of NIH 3T3 cells. Molecular and Cellular Biology, 18(6), 3245–3256.PubMed
59.
go back to reference Chang, B. Y., Chiang, M., & Cartwright, C. A. (2001). The interaction of Src and RACK1 is enhanced by activation of protein kinase C and tyrosine phosphorylation of RACK1. Journal of Biological Chemistry, 276(23), 20346–20356.PubMedCrossRef Chang, B. Y., Chiang, M., & Cartwright, C. A. (2001). The interaction of Src and RACK1 is enhanced by activation of protein kinase C and tyrosine phosphorylation of RACK1. Journal of Biological Chemistry, 276(23), 20346–20356.PubMedCrossRef
60.
go back to reference Chang, B. Y., Harte, R. A., & Cartwright, C. A. (2002). RACK1: A novel substrate for the Src protein-tyrosine kinase. Oncogene, 21(50), 7619–7629.PubMedCrossRef Chang, B. Y., Harte, R. A., & Cartwright, C. A. (2002). RACK1: A novel substrate for the Src protein-tyrosine kinase. Oncogene, 21(50), 7619–7629.PubMedCrossRef
61.
go back to reference Mamidipudi, V., Zhang, J., Lee, K. C., & Cartwright, C. A. (2004). RACK1 regulates G1/S progression by suppressing Src kinase activity. Molecular and Cellular Biology, 24(15), 6788–6798.PubMedCrossRef Mamidipudi, V., Zhang, J., Lee, K. C., & Cartwright, C. A. (2004). RACK1 regulates G1/S progression by suppressing Src kinase activity. Molecular and Cellular Biology, 24(15), 6788–6798.PubMedCrossRef
62.
go back to reference Mamidipudi, V., & Cartwright, C. A. (2009). A novel pro-apoptotic function of RACK1: Suppression of Src activity in the intrinsic and Akt pathways. Oncogene, 28(50), 4421–4433.PubMedCrossRef Mamidipudi, V., & Cartwright, C. A. (2009). A novel pro-apoptotic function of RACK1: Suppression of Src activity in the intrinsic and Akt pathways. Oncogene, 28(50), 4421–4433.PubMedCrossRef
63.
go back to reference Mamidipudi, V., Dhillon, N. K., Parman, T., Miller, L. D., Lee, K. C., & Cartwright, C. A. (2007). RACK1 inhibits colonic cell growth by regulating Src activity at cell cycle checkpoints. Oncogene, 26(20), 2914–2924.PubMedCrossRef Mamidipudi, V., Dhillon, N. K., Parman, T., Miller, L. D., Lee, K. C., & Cartwright, C. A. (2007). RACK1 inhibits colonic cell growth by regulating Src activity at cell cycle checkpoints. Oncogene, 26(20), 2914–2924.PubMedCrossRef
64.
go back to reference Swaminathan, G., & Cartwright, C. A. (2011). Rack1 promotes epithelial cell–cell adhesion by regulating E-cadherin endocytosis. Oncogene, 31(3), 376–89.PubMedCrossRef Swaminathan, G., & Cartwright, C. A. (2011). Rack1 promotes epithelial cell–cell adhesion by regulating E-cadherin endocytosis. Oncogene, 31(3), 376–89.PubMedCrossRef
65.
go back to reference Xu, J., Lamouille, S., & Derynck, R. (2009). TGF-beta-induced epithelial to mesenchymal transition. Cell Research, 19(2), 156–172.PubMedCrossRef Xu, J., Lamouille, S., & Derynck, R. (2009). TGF-beta-induced epithelial to mesenchymal transition. Cell Research, 19(2), 156–172.PubMedCrossRef
66.
go back to reference Lehmann, K., Janda, E., Pierreux, C. E., Rytömaa, M., Schulze, A., McMahon, M., et al. (2000). Raf induces TGFbeta production while blocking its apoptotic but not invasive responses: A mechanism leading to increased malignancy in epithelial cells. Genes & Development, 14(20), 2610–2622.CrossRef Lehmann, K., Janda, E., Pierreux, C. E., Rytömaa, M., Schulze, A., McMahon, M., et al. (2000). Raf induces TGFbeta production while blocking its apoptotic but not invasive responses: A mechanism leading to increased malignancy in epithelial cells. Genes & Development, 14(20), 2610–2622.CrossRef
67.
go back to reference Janda, E., Lehmann, K., Killisch, I., Jechlinger, M., Herzig, M., Downward, J., et al. (2002). Ras and TGF[beta] cooperatively regulate epithelial cell plasticity and metastasis: Dissection of Ras signaling pathways. The Journal of Cell Biology, 156(2), 299–313.PubMedCrossRef Janda, E., Lehmann, K., Killisch, I., Jechlinger, M., Herzig, M., Downward, J., et al. (2002). Ras and TGF[beta] cooperatively regulate epithelial cell plasticity and metastasis: Dissection of Ras signaling pathways. The Journal of Cell Biology, 156(2), 299–313.PubMedCrossRef
68.
go back to reference Janda, E., Nevolo, M., Lehmann, K., Downward, J., Beug, H., & Grieco, M. (2006). Raf plus TGFbeta-dependent EMT is initiated by endocytosis and lysosomal degradation of E-cadherin. Oncogene, 54, 7117–7130.CrossRef Janda, E., Nevolo, M., Lehmann, K., Downward, J., Beug, H., & Grieco, M. (2006). Raf plus TGFbeta-dependent EMT is initiated by endocytosis and lysosomal degradation of E-cadherin. Oncogene, 54, 7117–7130.CrossRef
69.
go back to reference Dickson, B. J., & Gilestro, G. F. (2006). Regulation of commissural axon pathfinding by slit and its Robo receptors. Annual Review of Cell and Developmental Biology, 22, 651–675.PubMedCrossRef Dickson, B. J., & Gilestro, G. F. (2006). Regulation of commissural axon pathfinding by slit and its Robo receptors. Annual Review of Cell and Developmental Biology, 22, 651–675.PubMedCrossRef
70.
go back to reference Wu, J. Y., Feng, L., Park, H. T., Havlioglu, N., Wen, L., Tang, H., et al. (2001). The neuronal repellent Slit inhibits leukocyte chemotaxis induced by chemotactic factors. Nature, 410(6831), 948–952.PubMedCrossRef Wu, J. Y., Feng, L., Park, H. T., Havlioglu, N., Wen, L., Tang, H., et al. (2001). The neuronal repellent Slit inhibits leukocyte chemotaxis induced by chemotactic factors. Nature, 410(6831), 948–952.PubMedCrossRef
71.
go back to reference Wang, B., Xiao, Y., Ding, B. B., Zhang, N., Yuan, X., Gui, L., et al. (2003). Induction of tumor angiogenesis by Slit-Robo signaling and inhibition of cancer growth by blocking Robo activity. Cancer Cell, 4(1), 19–29.PubMedCrossRef Wang, B., Xiao, Y., Ding, B. B., Zhang, N., Yuan, X., Gui, L., et al. (2003). Induction of tumor angiogenesis by Slit-Robo signaling and inhibition of cancer growth by blocking Robo activity. Cancer Cell, 4(1), 19–29.PubMedCrossRef
72.
go back to reference Wang, L. J., Zhao, Y., Han, B., Ma, Y. G., Zhang, J., Yang, D. M., et al. (2008). Targeting Slit-Roundabout signaling inhibits tumor angiogenesis in chemical-induced squamous cell carcinogenesis. Cancer Science, 99(3), 510–517.PubMedCrossRef Wang, L. J., Zhao, Y., Han, B., Ma, Y. G., Zhang, J., Yang, D. M., et al. (2008). Targeting Slit-Roundabout signaling inhibits tumor angiogenesis in chemical-induced squamous cell carcinogenesis. Cancer Science, 99(3), 510–517.PubMedCrossRef
73.
go back to reference Mertsch, S., Schmitz, N., Jeibmann, A., Geng, J. G., Paulus, W., & Senner, V. (2008). Slit2 involvement in glioma cell migration is mediated by Robo1 receptor. Journal of Neuro-Oncology, 87(1), 1–7.PubMedCrossRef Mertsch, S., Schmitz, N., Jeibmann, A., Geng, J. G., Paulus, W., & Senner, V. (2008). Slit2 involvement in glioma cell migration is mediated by Robo1 receptor. Journal of Neuro-Oncology, 87(1), 1–7.PubMedCrossRef
74.
go back to reference Zhou, W. J., Geng, Z. H., Chi, S., Zhang, W., Niu, X. F., Lan, S. J., et al. (2011). Slit-Robo signaling induces malignant transformation through Hakai-mediated E-cadherin degradation during colorectal epithelial cell carcinogenesis. Cell Research, 21(4), 609–626.PubMedCrossRef Zhou, W. J., Geng, Z. H., Chi, S., Zhang, W., Niu, X. F., Lan, S. J., et al. (2011). Slit-Robo signaling induces malignant transformation through Hakai-mediated E-cadherin degradation during colorectal epithelial cell carcinogenesis. Cell Research, 21(4), 609–626.PubMedCrossRef
75.
go back to reference Shav-Tal, Y., & Zipori, D. (2002). PSF and p54(nrb)/NonO–multi-functional nuclear proteins. FEBS Letters, 531(2), 109–114.PubMedCrossRef Shav-Tal, Y., & Zipori, D. (2002). PSF and p54(nrb)/NonO–multi-functional nuclear proteins. FEBS Letters, 531(2), 109–114.PubMedCrossRef
76.
go back to reference Cobbold, L. C., Spriggs, K. A., Haines, S. J., Dobbyn, H. C., Hayes, C., de Moor, C. H., et al. (2008). Identification of internal ribosome entry segment (IRES)-trans-acting factors for the Myc family of IRESs. Molecular and Cellular Biology, 28(1), 40–49.PubMedCrossRef Cobbold, L. C., Spriggs, K. A., Haines, S. J., Dobbyn, H. C., Hayes, C., de Moor, C. H., et al. (2008). Identification of internal ribosome entry segment (IRES)-trans-acting factors for the Myc family of IRESs. Molecular and Cellular Biology, 28(1), 40–49.PubMedCrossRef
77.
go back to reference Kaneko, S., Rozenblatt-Rosen, O., Meyerson, M., & Manley, J. L. (2007). The multifunctional protein p54nrb/PSF recruits the exonuclease XRN2 to facilitate pre-mRNA 3' processing and transcription termination. Genes & Development, 21(14), 1779–1789.CrossRef Kaneko, S., Rozenblatt-Rosen, O., Meyerson, M., & Manley, J. L. (2007). The multifunctional protein p54nrb/PSF recruits the exonuclease XRN2 to facilitate pre-mRNA 3' processing and transcription termination. Genes & Development, 21(14), 1779–1789.CrossRef
78.
go back to reference Figueroa, A., Kotani, H., Toda, Y., Mazan-Mamczarz, K., Mueller, E., Otto, A., et al. (2009). Novel roles of hakai in cell proliferation and oncogenesis. Molecular Biology of the Cell, 20(15), 3533–3542.PubMedCrossRef Figueroa, A., Kotani, H., Toda, Y., Mazan-Mamczarz, K., Mueller, E., Otto, A., et al. (2009). Novel roles of hakai in cell proliferation and oncogenesis. Molecular Biology of the Cell, 20(15), 3533–3542.PubMedCrossRef
79.
go back to reference Figueroa, A., Fujita, Y., & Gorospe, M. (2009). Hacking RNA: Hakai promotes tumorigenesis by enhancing the RNA-binding function of PSF. Cell Cycle, 8(22), 3648–3651.PubMedCrossRef Figueroa, A., Fujita, Y., & Gorospe, M. (2009). Hacking RNA: Hakai promotes tumorigenesis by enhancing the RNA-binding function of PSF. Cell Cycle, 8(22), 3648–3651.PubMedCrossRef
80.
go back to reference Gong, E., Park, E., & Lee, K. (2010). Hakai acts as a coregulator of estrogen receptor alpha in breast cancer cells. Cancer Science, 101(9), 2019–2025.PubMedCrossRef Gong, E., Park, E., & Lee, K. (2010). Hakai acts as a coregulator of estrogen receptor alpha in breast cancer cells. Cancer Science, 101(9), 2019–2025.PubMedCrossRef
81.
go back to reference Fan, S., Ma, Y. X., Wang, C., Yuan, R. Q., Meng, Q., Wang, J. A., et al. (2001). Role of direct interaction in BRCA1 inhibition of estrogen receptor activity. Oncogene, 20(1), 77–87.PubMedCrossRef Fan, S., Ma, Y. X., Wang, C., Yuan, R. Q., Meng, Q., Wang, J. A., et al. (2001). Role of direct interaction in BRCA1 inhibition of estrogen receptor activity. Oncogene, 20(1), 77–87.PubMedCrossRef
82.
go back to reference Johnsen, S. A., Güngör, C., Prenzel, T., Riethdorf, S., Riethdorf, L., Taniguchi-Ishigaki, N., et al. (2009). Regulation of estrogen-dependent transcription by the LIM cofactors CLIM and RLIM in breast cancer. Cancer Research, 69(1), 128–136.PubMedCrossRef Johnsen, S. A., Güngör, C., Prenzel, T., Riethdorf, S., Riethdorf, L., Taniguchi-Ishigaki, N., et al. (2009). Regulation of estrogen-dependent transcription by the LIM cofactors CLIM and RLIM in breast cancer. Cancer Research, 69(1), 128–136.PubMedCrossRef
83.
go back to reference Zilfou, J. T., Hoffman, W. H., Sank, M., George, D. L., & Murphy, M. (2001). The corepressor mSin3a interacts with the proline-rich domain of p53 and protects p53 from proteasome-mediated degradation. Molecular and Cellular Biology, 21(12), 3974–3985.PubMedCrossRef Zilfou, J. T., Hoffman, W. H., Sank, M., George, D. L., & Murphy, M. (2001). The corepressor mSin3a interacts with the proline-rich domain of p53 and protects p53 from proteasome-mediated degradation. Molecular and Cellular Biology, 21(12), 3974–3985.PubMedCrossRef
84.
go back to reference Chen, G., & Courey, A. J. (2000). Groucho/TLE family proteins and transcriptional repression. Gene, 249(1–2), 1–16.PubMedCrossRef Chen, G., & Courey, A. J. (2000). Groucho/TLE family proteins and transcriptional repression. Gene, 249(1–2), 1–16.PubMedCrossRef
85.
go back to reference Iyemere, V. P., Davies, N. H., & Brownlee, G. G. (1998). The activation function 2 domain of hepatic nuclear factor 4 is regulated by a short C-terminal proline-rich repressor domain. Nucleic Acids Research, 26(9), 2098–2104.PubMedCrossRef Iyemere, V. P., Davies, N. H., & Brownlee, G. G. (1998). The activation function 2 domain of hepatic nuclear factor 4 is regulated by a short C-terminal proline-rich repressor domain. Nucleic Acids Research, 26(9), 2098–2104.PubMedCrossRef
86.
go back to reference Deshaies, R. J., & Joazeiro, C. A. (2009). RING domain E3 ubiquitin ligases. Annual Review of Biochemistry, 78, 399–434.PubMedCrossRef Deshaies, R. J., & Joazeiro, C. A. (2009). RING domain E3 ubiquitin ligases. Annual Review of Biochemistry, 78, 399–434.PubMedCrossRef
87.
go back to reference Rodríguez-Rigueiro, T., Valladares-Ayerbes, M., Haz-Conde, M., Blanco, M., Aparicio, G., Fernández-Puente, P., et al. (2011). A novel procedure for protein extraction from formalin-fixed paraffin-embedded tissues. Proteomics, 11(12), 2555–2559.PubMedCrossRef Rodríguez-Rigueiro, T., Valladares-Ayerbes, M., Haz-Conde, M., Blanco, M., Aparicio, G., Fernández-Puente, P., et al. (2011). A novel procedure for protein extraction from formalin-fixed paraffin-embedded tissues. Proteomics, 11(12), 2555–2559.PubMedCrossRef
88.
go back to reference Hogan, C., Dupré-Crochet, S., Norman, M., Kajita, M., Zimmermann, C., Pelling, A. E., et al. (2009). Characterization of the interface between normal and transformed epithelial cells. Nature Cell Biology, 11(4), 460–467.PubMedCrossRef Hogan, C., Dupré-Crochet, S., Norman, M., Kajita, M., Zimmermann, C., Pelling, A. E., et al. (2009). Characterization of the interface between normal and transformed epithelial cells. Nature Cell Biology, 11(4), 460–467.PubMedCrossRef
89.
go back to reference Rodríguez-Rigueiro, T., Valladares-Ayerbes, M., Haz-Conde, M., Aparicio, L. A., & Figueroa, A. (2011). Hakai reduces cell–substratum adhesion and increases epithelial cell invasion. BMC Cancer, 11, 474. doi:1471-2407-11-474.PubMedCrossRef Rodríguez-Rigueiro, T., Valladares-Ayerbes, M., Haz-Conde, M., Aparicio, L. A., & Figueroa, A. (2011). Hakai reduces cell–substratum adhesion and increases epithelial cell invasion. BMC Cancer, 11, 474. doi:1471-2407-11-474.PubMedCrossRef
90.
go back to reference Singh, R. P., Raina, K., Deep, G., Chan, D., & Agarwal, R. (2009). Silibinin suppresses growth of human prostate carcinoma PC-3 orthotopic xenograft via activation of extracellular signal-regulated kinase 1/2 and inhibition of signal transducers and activators of transcription signaling. Clinical Cancer Research, 15(2), 613–621.PubMedCrossRef Singh, R. P., Raina, K., Deep, G., Chan, D., & Agarwal, R. (2009). Silibinin suppresses growth of human prostate carcinoma PC-3 orthotopic xenograft via activation of extracellular signal-regulated kinase 1/2 and inhibition of signal transducers and activators of transcription signaling. Clinical Cancer Research, 15(2), 613–621.PubMedCrossRef
91.
go back to reference Raina, K., Rajamanickam, S., Singh, R. P., Deep, G., Chittezhath, M., & Agarwal, R. (2008). Stage-specific inhibitory effects and associated mechanisms of silibinin on tumor progression and metastasis in transgenic adenocarcinoma of the mouse prostate model. Cancer Research, 68(16), 6822–6830.PubMedCrossRef Raina, K., Rajamanickam, S., Singh, R. P., Deep, G., Chittezhath, M., & Agarwal, R. (2008). Stage-specific inhibitory effects and associated mechanisms of silibinin on tumor progression and metastasis in transgenic adenocarcinoma of the mouse prostate model. Cancer Research, 68(16), 6822–6830.PubMedCrossRef
92.
go back to reference Singh, R. P., Raina, K., Sharma, G., & Agarwal, R. (2008). Silibinin inhibits established prostate tumor growth, progression, invasion, and metastasis and suppresses tumor angiogenesis and epithelial-mesenchymal transition in transgenic adenocarcinoma of the mouse prostate model mice. Clinical Cancer Research, 14(23), 7773–7780.PubMedCrossRef Singh, R. P., Raina, K., Sharma, G., & Agarwal, R. (2008). Silibinin inhibits established prostate tumor growth, progression, invasion, and metastasis and suppresses tumor angiogenesis and epithelial-mesenchymal transition in transgenic adenocarcinoma of the mouse prostate model mice. Clinical Cancer Research, 14(23), 7773–7780.PubMedCrossRef
93.
go back to reference Deep, G., Gangar, S., Agarwal, C., & Agarwal, R. (2011). Role of E-cadherin in anti-migratory and anti-invasive efficacy of silibinin in prostate cancer cells. Cancer Prevention Research (Philadelphia, Pa.), 4(8), 1222–1232.CrossRef Deep, G., Gangar, S., Agarwal, C., & Agarwal, R. (2011). Role of E-cadherin in anti-migratory and anti-invasive efficacy of silibinin in prostate cancer cells. Cancer Prevention Research (Philadelphia, Pa.), 4(8), 1222–1232.CrossRef
94.
go back to reference Flaig, T. W., Gustafson, D. L., Su, L. J., Zirrolli, J. A., Crighton, F., Harrison, G. S., et al. (2007). A phase I and pharmacokinetic study of silybin-phytosome in prostate cancer patients. Investigational New Drugs, 25(2), 139–146.PubMedCrossRef Flaig, T. W., Gustafson, D. L., Su, L. J., Zirrolli, J. A., Crighton, F., Harrison, G. S., et al. (2007). A phase I and pharmacokinetic study of silybin-phytosome in prostate cancer patients. Investigational New Drugs, 25(2), 139–146.PubMedCrossRef
95.
go back to reference Heo, H. S., Kim, J. H., Lee, Y. J., Kim, S. H., Cho, Y. S., & Kim, C. G. (2005). Microarray profiling of genes differentially expressed during erythroid differentiation of murine erythroleukemia cells. Molecules and Cells, 20(1), 57–68.PubMed Heo, H. S., Kim, J. H., Lee, Y. J., Kim, S. H., Cho, Y. S., & Kim, C. G. (2005). Microarray profiling of genes differentially expressed during erythroid differentiation of murine erythroleukemia cells. Molecules and Cells, 20(1), 57–68.PubMed
96.
go back to reference Oshida, K., Maeda, A., Kitsukawa, M., Suga, S., Iwano, S., Miyoshi, T., et al. (2011). Novel gene markers of immunosuppressive chemicals in mouse lymph node assay. Toxicology Letters, 205(1), 79–85.PubMedCrossRef Oshida, K., Maeda, A., Kitsukawa, M., Suga, S., Iwano, S., Miyoshi, T., et al. (2011). Novel gene markers of immunosuppressive chemicals in mouse lymph node assay. Toxicology Letters, 205(1), 79–85.PubMedCrossRef
97.
go back to reference Krishnan, M., Ng, A., Sukumaran, B., Gilfoy, F., Uchil, P., Sultana, H., et al. (2008). RNA interference screen for human genes associated with West Nile virus infection. Nature, 455(7210), 242–245.PubMedCrossRef Krishnan, M., Ng, A., Sukumaran, B., Gilfoy, F., Uchil, P., Sultana, H., et al. (2008). RNA interference screen for human genes associated with West Nile virus infection. Nature, 455(7210), 242–245.PubMedCrossRef
98.
go back to reference Brinton, M. A. (2002). The molecular biology of West Nile Virus: A new invader of the western hemisphere. Annual Review of Microbiology, 56, 371–402.PubMedCrossRef Brinton, M. A. (2002). The molecular biology of West Nile Virus: A new invader of the western hemisphere. Annual Review of Microbiology, 56, 371–402.PubMedCrossRef
99.
go back to reference Fernandez-Garcia, M. D., Meertens, L., Bonazzi, M., Cossart, P., Arenzana-Seisdedos, F., & Amara, A. (2011). Appraising the roles of CBLL1 and the ubiquitin/proteasome system for flavivirus entry and replication. Journal of Virology, 85(6), 2980–2989.PubMedCrossRef Fernandez-Garcia, M. D., Meertens, L., Bonazzi, M., Cossart, P., Arenzana-Seisdedos, F., & Amara, A. (2011). Appraising the roles of CBLL1 and the ubiquitin/proteasome system for flavivirus entry and replication. Journal of Virology, 85(6), 2980–2989.PubMedCrossRef
100.
go back to reference Lecuit, M. (2005). Understanding how Listeria monocytogenes targets and crosses host barriers. Clinical Microbiology and Infection, 11(6), 430–436.PubMedCrossRef Lecuit, M. (2005). Understanding how Listeria monocytogenes targets and crosses host barriers. Clinical Microbiology and Infection, 11(6), 430–436.PubMedCrossRef
101.
go back to reference Mengaud, J., Ohayon, H., Gounon, P., Mege, R. M., & Cossart, P. (1996). E-cadherin is the receptor for internalin, a surface protein required for entry of L. monocytogenes into epithelial cells. Cell, 84(6), 923–932.PubMedCrossRef Mengaud, J., Ohayon, H., Gounon, P., Mege, R. M., & Cossart, P. (1996). E-cadherin is the receptor for internalin, a surface protein required for entry of L. monocytogenes into epithelial cells. Cell, 84(6), 923–932.PubMedCrossRef
102.
go back to reference Shen, Y., Naujokas, M., Park, M., & Ireton, K. (2000). InIB-dependent internalization of Listeria is mediated by the Met receptor tyrosine kinase. Cell, 103(3), 501–510.PubMedCrossRef Shen, Y., Naujokas, M., Park, M., & Ireton, K. (2000). InIB-dependent internalization of Listeria is mediated by the Met receptor tyrosine kinase. Cell, 103(3), 501–510.PubMedCrossRef
103.
go back to reference Bonazzi, M., Veiga, E., Pizarro-Cerdá, J., & Cossart, P. (2008). Successive post-translational modifications of E-cadherin are required for InlA-mediated internalization of Listeria monocytogenes. Cellular Microbiology, 10(11), 2208–2222.PubMedCrossRef Bonazzi, M., Veiga, E., Pizarro-Cerdá, J., & Cossart, P. (2008). Successive post-translational modifications of E-cadherin are required for InlA-mediated internalization of Listeria monocytogenes. Cellular Microbiology, 10(11), 2208–2222.PubMedCrossRef
Metadata
Title
Biological influence of Hakai in cancer: a 10-year review
Authors
Luis A. Aparicio
Manuel Valladares
Moisés Blanco
Guillermo Alonso
Angélica Figueroa
Publication date
01-06-2012
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 1-2/2012
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-012-9348-x

Other articles of this Issue 1-2/2012

Cancer and Metastasis Reviews 1-2/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine