Skip to main content
Top
Published in: Cancer and Metastasis Reviews 1/2011

01-03-2011

Tumor microenvironment is multifaceted

Authors: Catherine Sautès-Fridman, Julien Cherfils-Vicini, Diane Damotte, Sylvain Fisson, Wolf Hervé Fridman, Isabelle Cremer, Marie-Caroline Dieu-Nosjean

Published in: Cancer and Metastasis Reviews | Issue 1/2011

Login to get access

Abstract

Cancer initiation, progression, and invasion occur in a complex and dynamic microenvironment which depends on the hosts and sites where tumors develop. Tumors arising in mucosal tissues may progress in an inflammatory context linked to local viral and/or bacterial infections. At the opposite, tumors developing in immunoprivileged sites are protected from microorganisms and grow in an immunosuppressive environment. In the present review, we summarize and present our recent data on the influence of infectious context and immune cell infiltration organization in human Non-Small Cell Lung Cancers (NSCLC) progression. We show that stimulation of tumor cells by TLR for viral ssRNA, such as TLR7/8, or bacteria, such as TLR4, promotes cell survival and induces chemoresistance. On the opposite, stimulation by TLR3, receptor for double-stranded viral RNA, decreases tumor cell viability and induces chemosensitivity in some lung tumor cell lines. Since fresh lung tumor cells exhibit a gene expression profile characteristic of TLR-stimulated lung tumor cell lines, we suspect that viral and bacterial influence may not only act on the host immune system but also directly on tumor growth and sensitivity to chemotherapy. The stroma of NSCLC contains tertiary lymphoid structures (or Tumor-induced Bronchus-Associated Lymphoid Tissues (Ti-BALT)) with mature DC, follicular DC, and T and B cells. Two subsets of immature DC, Langerhans cells (LC) and interstitial DC (intDC), were detected in the tumor nests and the stroma, respectively. Here, we show that the densities of the three DC subsets, mature DC, LC, and intDC, are highly predictive of disease-specific survival in a series of 74 early-stage NSCLC patients. We hypothesize that the mature DC may derive from local activation and migration of the immature DC—and especially LC which contact the tumor cells—to the tertiary lymphoid structures, after sampling and processing of the tumor antigens. In view of the prominent role of DC in the immune response, we suggest that the microenvironment of early-stage NSCLC may allow the in situ activation of the adaptive response. Finally, we find that the eyes or brain of mice with growing B cell lymphoma are infiltrated with T cells and that the cytokines produced ex vivo by the tumoral tissues have an impaired Th1 cytokine profile. Our work illustrates that the host and external tumor microenvironments are multifaceted and strongly influence tumor progression and anti-tumor immune responses.
Literature
1.
2.
go back to reference Ohshima, H., Tatemichi, M., & Sawa, T. (2003). Chemical basis of inflammation-induced carcinogenesis. Archives of Biochemistry and Biophysics, 417, 3–11.PubMedCrossRef Ohshima, H., Tatemichi, M., & Sawa, T. (2003). Chemical basis of inflammation-induced carcinogenesis. Archives of Biochemistry and Biophysics, 417, 3–11.PubMedCrossRef
3.
go back to reference Karin, M., & Greten, F. R. (2005). NF-kappaB: linking inflammation and immunity to cancer development and progression. Nature Reviews Immunology, 5, 749–759.PubMedCrossRef Karin, M., & Greten, F. R. (2005). NF-kappaB: linking inflammation and immunity to cancer development and progression. Nature Reviews Immunology, 5, 749–759.PubMedCrossRef
4.
go back to reference Lin, W.-W., & Karin, M. (2007). A cytokine-mediated link between innate immunity, inflammation, and cancer. Journal of Clinical Investigation, 117, 1175–1183.PubMedCrossRef Lin, W.-W., & Karin, M. (2007). A cytokine-mediated link between innate immunity, inflammation, and cancer. Journal of Clinical Investigation, 117, 1175–1183.PubMedCrossRef
5.
go back to reference Balkwill, F., & Mantovani, A. (2001). Inflammation and cancer: back to Virchow? Lancet, 357, 539–545.PubMedCrossRef Balkwill, F., & Mantovani, A. (2001). Inflammation and cancer: back to Virchow? Lancet, 357, 539–545.PubMedCrossRef
7.
go back to reference Tartour, E., Latour, S., Mathiot, C., Thiounn, N., Mosseri, V., Joyeux, I., et al. (1995). Variable expression of CD3-zeta chain in tumor-infiltrating lymphocytes (TIL) derived from renal-cell carcinoma: relationship with TIL phenotype and function. International Journal of Cancer, 63, 205–212.CrossRef Tartour, E., Latour, S., Mathiot, C., Thiounn, N., Mosseri, V., Joyeux, I., et al. (1995). Variable expression of CD3-zeta chain in tumor-infiltrating lymphocytes (TIL) derived from renal-cell carcinoma: relationship with TIL phenotype and function. International Journal of Cancer, 63, 205–212.CrossRef
8.
go back to reference Frydecka, I., Kaczmarek, P., Boćko, D., Kosmaczewska, A., Morilla, R., & Catovsky, D. (1999). Expression of signal-transducing zeta chain in peripheral blood T cells and natural killer cells in patients with Hodgkin’s disease in different phases of the disease. Leukaemia & Lymphoma, 35, 545–554.CrossRef Frydecka, I., Kaczmarek, P., Boćko, D., Kosmaczewska, A., Morilla, R., & Catovsky, D. (1999). Expression of signal-transducing zeta chain in peripheral blood T cells and natural killer cells in patients with Hodgkin’s disease in different phases of the disease. Leukaemia & Lymphoma, 35, 545–554.CrossRef
9.
go back to reference Bronstein-Sitton, N., Cohen-Daniel, L., Vaknin, I., Ezernitchi, A. V., Leshem, B., Halabi, A., et al. (2003). Sustained exposure to bacterial antigen induces interferon-gamma-dependent T cell receptor zeta down-regulation and impaired T cell function. Nature Immunology, 4, 957–964.PubMedCrossRef Bronstein-Sitton, N., Cohen-Daniel, L., Vaknin, I., Ezernitchi, A. V., Leshem, B., Halabi, A., et al. (2003). Sustained exposure to bacterial antigen induces interferon-gamma-dependent T cell receptor zeta down-regulation and impaired T cell function. Nature Immunology, 4, 957–964.PubMedCrossRef
10.
go back to reference Cherfils-Vicini, J., Platonova, S., Gillard, M., Laurans, L., Validire, P., Caliandro, R., et al. (2010). Triggering of TLR7 and TLR8 expressed by human lung cancer cells induces cell survival and chemoresistance. The Journal of Clinical Investigation, 120(4), 1285–1297.PubMedCrossRef Cherfils-Vicini, J., Platonova, S., Gillard, M., Laurans, L., Validire, P., Caliandro, R., et al. (2010). Triggering of TLR7 and TLR8 expressed by human lung cancer cells induces cell survival and chemoresistance. The Journal of Clinical Investigation, 120(4), 1285–1297.PubMedCrossRef
11.
go back to reference Dunn, G. P., Koebel, C. M., & Schreiber, R. D. (2006). Interferons, immunity and cancer immunoediting. Nature Reviews Immunology, 6, 836–848.PubMedCrossRef Dunn, G. P., Koebel, C. M., & Schreiber, R. D. (2006). Interferons, immunity and cancer immunoediting. Nature Reviews Immunology, 6, 836–848.PubMedCrossRef
12.
go back to reference BURNET, M. (1957). Cancer: a biological approach. III. Viruses associated with neoplastic conditions. IV. Practical applications. British Medical Journal, 1, 841–847.PubMedCrossRef BURNET, M. (1957). Cancer: a biological approach. III. Viruses associated with neoplastic conditions. IV. Practical applications. British Medical Journal, 1, 841–847.PubMedCrossRef
13.
go back to reference Galon, J., Costes, A., Sanchez-Cabo, F., Kirilovsky, A., Mlecnik, B., Lagorce-Pagès, C., et al. (2006). Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science, 313, 1960–1964.PubMedCrossRef Galon, J., Costes, A., Sanchez-Cabo, F., Kirilovsky, A., Mlecnik, B., Lagorce-Pagès, C., et al. (2006). Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science, 313, 1960–1964.PubMedCrossRef
14.
go back to reference Pagès, F., Berger, A., Camus, M., Sanchez-Cabo, F., Costes, A., Molidor, R., et al. (2005). Effector memory T cells, early metastasis, and survival in colorectal cancer. The New England Journal of Medicine, 353, 2654–2666.PubMedCrossRef Pagès, F., Berger, A., Camus, M., Sanchez-Cabo, F., Costes, A., Molidor, R., et al. (2005). Effector memory T cells, early metastasis, and survival in colorectal cancer. The New England Journal of Medicine, 353, 2654–2666.PubMedCrossRef
15.
go back to reference Dieu-Nosjean, M.-C., Antoine, M., Danel, C., Heudes, D., Wislez, M., Poulot, V., et al. (2008). Long-term survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures. Journal of Clinical Oncology, 26, 4410–4417.PubMedCrossRef Dieu-Nosjean, M.-C., Antoine, M., Danel, C., Heudes, D., Wislez, M., Poulot, V., et al. (2008). Long-term survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures. Journal of Clinical Oncology, 26, 4410–4417.PubMedCrossRef
16.
go back to reference Fridman, W. H., Galon, J., Dieu-Nosjean, M.-C., Cremer, I., Fisson, S., Damotte, D., Pagès, F., Tartour, E., Sautès-Fridman, C. (2010). Immune infiltration in human cancer: prognostic significance and disease control. Current topics in Microbiology and Immunology Fridman, W. H., Galon, J., Dieu-Nosjean, M.-C., Cremer, I., Fisson, S., Damotte, D., Pagès, F., Tartour, E., Sautès-Fridman, C. (2010). Immune infiltration in human cancer: prognostic significance and disease control. Current topics in Microbiology and Immunology
17.
go back to reference Banchereau, J., & Steinman, R. M. (1998). Dendritic cells and the control of immunity. Nature, 392, 245–252.PubMedCrossRef Banchereau, J., & Steinman, R. M. (1998). Dendritic cells and the control of immunity. Nature, 392, 245–252.PubMedCrossRef
18.
go back to reference Klechevsky, E., Morita, R., Liu, M., Cao, Y., Coquery, S., Thompson-Snipes, L., et al. (2008). Functional specializations of human epidermal Langerhans cells and CD14+ dermal dendritic cells. Immunity, 29, 497–510.PubMedCrossRef Klechevsky, E., Morita, R., Liu, M., Cao, Y., Coquery, S., Thompson-Snipes, L., et al. (2008). Functional specializations of human epidermal Langerhans cells and CD14+ dermal dendritic cells. Immunity, 29, 497–510.PubMedCrossRef
19.
go back to reference Ménétrier-Caux, C., Bain, C., Favrot, M. C., Duc, A., & Blay, J. Y. (1999). Renal cell carcinoma induces interleukin 10 and prostaglandin E2 production by monocytes. British Journal of Cancer, 79, 119–130.PubMedCrossRef Ménétrier-Caux, C., Bain, C., Favrot, M. C., Duc, A., & Blay, J. Y. (1999). Renal cell carcinoma induces interleukin 10 and prostaglandin E2 production by monocytes. British Journal of Cancer, 79, 119–130.PubMedCrossRef
20.
go back to reference Almand, B., Resser, J. R., Lindman, B., Nadaf, S., Clark, J. I., Kwon, E. D., et al. (2000). Clinical significance of defective dendritic cell differentiation in cancer. Clinical Cancer Research, 6, 1755–1766.PubMed Almand, B., Resser, J. R., Lindman, B., Nadaf, S., Clark, J. I., Kwon, E. D., et al. (2000). Clinical significance of defective dendritic cell differentiation in cancer. Clinical Cancer Research, 6, 1755–1766.PubMed
21.
go back to reference Coventry, B. J., Lee, P.-L., Gibbs, D., & Hart, D. N. J. (2002). Dendritic cell density and activation status in human breast cancer—CD1a, CMRF-44, CMRF-56 and CD-83 expression. British Journal of Cancer, 86, 546–551.PubMedCrossRef Coventry, B. J., Lee, P.-L., Gibbs, D., & Hart, D. N. J. (2002). Dendritic cell density and activation status in human breast cancer—CD1a, CMRF-44, CMRF-56 and CD-83 expression. British Journal of Cancer, 86, 546–551.PubMedCrossRef
22.
go back to reference Gabrilovich, D. I., Chen, H. L., Girgis, K. R., Cunningham, H. T., Meny, G. M., Nadaf, S., et al. (1996). Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Natural Medicines, 2, 1096–1103.CrossRef Gabrilovich, D. I., Chen, H. L., Girgis, K. R., Cunningham, H. T., Meny, G. M., Nadaf, S., et al. (1996). Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Natural Medicines, 2, 1096–1103.CrossRef
23.
go back to reference Movassagh, M., Spatz, A., Davoust, J., Lebecque, S., Romero, P., Pittet, M., et al. (2004). Selective accumulation of mature DC-Lamp + dendritic cells in tumor sites is associated with efficient T-cell-mediated antitumor response and control of metastatic dissemination in melanoma. Cancer Research, 64, 2192–2198.PubMedCrossRef Movassagh, M., Spatz, A., Davoust, J., Lebecque, S., Romero, P., Pittet, M., et al. (2004). Selective accumulation of mature DC-Lamp + dendritic cells in tumor sites is associated with efficient T-cell-mediated antitumor response and control of metastatic dissemination in melanoma. Cancer Research, 64, 2192–2198.PubMedCrossRef
24.
go back to reference Vermi, W., Bonecchi, R., Facchetti, F., Bianchi, D., Sozzani, S., Festa, S., et al. (2003). Recruitment of immature plasmacytoid dendritic cells (plasmacytoid monocytes) and myeloid dendritic cells in primary cutaneous melanomas. The Journal of Pathology, 200, 255–268.PubMedCrossRef Vermi, W., Bonecchi, R., Facchetti, F., Bianchi, D., Sozzani, S., Festa, S., et al. (2003). Recruitment of immature plasmacytoid dendritic cells (plasmacytoid monocytes) and myeloid dendritic cells in primary cutaneous melanomas. The Journal of Pathology, 200, 255–268.PubMedCrossRef
25.
go back to reference Bell, D., Chomarat, P., Broyles, D., Netto, G., Harb, G. M., Lebecque, S., et al. (1999). In breast carcinoma tissue, immature dendritic cells reside within the tumor, whereas mature dendritic cells are located in peritumoral areas. The Journal of Experimental Medicine, 190, 1417–1426.PubMedCrossRef Bell, D., Chomarat, P., Broyles, D., Netto, G., Harb, G. M., Lebecque, S., et al. (1999). In breast carcinoma tissue, immature dendritic cells reside within the tumor, whereas mature dendritic cells are located in peritumoral areas. The Journal of Experimental Medicine, 190, 1417–1426.PubMedCrossRef
26.
go back to reference Furihata, M., Ono, Y., Ichikawa, K., Tomita, S., Fujimori, T., & Kubota, K. (2005). Prognostic significance of CD83 positive, mature dendritic cells in the gallbladder carcinoma. Oncology Reports, 14, 353–356.PubMed Furihata, M., Ono, Y., Ichikawa, K., Tomita, S., Fujimori, T., & Kubota, K. (2005). Prognostic significance of CD83 positive, mature dendritic cells in the gallbladder carcinoma. Oncology Reports, 14, 353–356.PubMed
27.
go back to reference Schwaab, T., Weiss, J. E., Schned, A. R., & Barth, R. J., Jr. (2001). Dendritic cell infiltration in colon cancer. Journal of Immunotherapy, 24, 130–137.CrossRef Schwaab, T., Weiss, J. E., Schned, A. R., & Barth, R. J., Jr. (2001). Dendritic cell infiltration in colon cancer. Journal of Immunotherapy, 24, 130–137.CrossRef
28.
go back to reference Eisenthal, A., Polyvkin, N., Bramante-Schreiber, L., Misonznik, F., Hassner, A., & Lifschitz-Mercer, B. (2001). Expression of dendritic cells in ovarian tumors correlates with clinical outcome in patients with ovarian cancer. Human Pathology, 32, 803–807.PubMedCrossRef Eisenthal, A., Polyvkin, N., Bramante-Schreiber, L., Misonznik, F., Hassner, A., & Lifschitz-Mercer, B. (2001). Expression of dendritic cells in ovarian tumors correlates with clinical outcome in patients with ovarian cancer. Human Pathology, 32, 803–807.PubMedCrossRef
29.
go back to reference Reichert, T. E., Scheuer, C., Day, R., Wagner, W., & Whiteside, T. L. (2001). The number of intratumoral dendritic cells and zeta-chain expression in T cells as prognostic and survival biomarkers in patients with oral carcinoma. Cancer, 91, 2136–2147.PubMedCrossRef Reichert, T. E., Scheuer, C., Day, R., Wagner, W., & Whiteside, T. L. (2001). The number of intratumoral dendritic cells and zeta-chain expression in T cells as prognostic and survival biomarkers in patients with oral carcinoma. Cancer, 91, 2136–2147.PubMedCrossRef
30.
go back to reference Treilleux, I., Blay, J.-Y., Bendriss-Vermare, N., Ray-Coquard, I., Bachelot, T., Guastalla, J.-P., et al. (2004). Dendritic cell infiltration and prognosis of early stage breast cancer. Clinical Cancer Research, 10, 7466–7474.PubMedCrossRef Treilleux, I., Blay, J.-Y., Bendriss-Vermare, N., Ray-Coquard, I., Bachelot, T., Guastalla, J.-P., et al. (2004). Dendritic cell infiltration and prognosis of early stage breast cancer. Clinical Cancer Research, 10, 7466–7474.PubMedCrossRef
31.
go back to reference Vallabhapurapu, S., & Karin, M. (2009). Regulation and function of NF-kappaB transcription factors in the immune system. Annual Review of Immunology, 27, 693–733.PubMedCrossRef Vallabhapurapu, S., & Karin, M. (2009). Regulation and function of NF-kappaB transcription factors in the immune system. Annual Review of Immunology, 27, 693–733.PubMedCrossRef
32.
go back to reference Li, X., Jiang, S., & Tapping, R. (2010). Toll-like receptor signaling in cell proliferation and survival. Cytokine, 49, 40422. Li, X., Jiang, S., & Tapping, R. (2010). Toll-like receptor signaling in cell proliferation and survival. Cytokine, 49, 40422.
33.
go back to reference Rakoff-Nahoum, S., & Medzhitov, R. (2007). Regulation of spontaneous intestinal tumorigenesis through the adaptor protein MyD88. Science, 317, 124–127.PubMedCrossRef Rakoff-Nahoum, S., & Medzhitov, R. (2007). Regulation of spontaneous intestinal tumorigenesis through the adaptor protein MyD88. Science, 317, 124–127.PubMedCrossRef
34.
go back to reference Xiao, H., Gulen, M. F., Qin, J., Yao, J., Bulek, K., Kish, D., et al. (2007). The toll–interleukin-1 receptor member SIGIRR regulates colonic epithelial homeostasis, inflammation, and tumorigenesis. Immunity, 26, 461–475.PubMedCrossRef Xiao, H., Gulen, M. F., Qin, J., Yao, J., Bulek, K., Kish, D., et al. (2007). The toll–interleukin-1 receptor member SIGIRR regulates colonic epithelial homeostasis, inflammation, and tumorigenesis. Immunity, 26, 461–475.PubMedCrossRef
35.
go back to reference Huang, B., Zhao, J., Unkeless, J. C., Feng, Z. H., & Xiong, H. (2008). TLR signaling by tumor and immune cells: a double-edged sword. Oncogene, 27, 218–224.PubMedCrossRef Huang, B., Zhao, J., Unkeless, J. C., Feng, Z. H., & Xiong, H. (2008). TLR signaling by tumor and immune cells: a double-edged sword. Oncogene, 27, 218–224.PubMedCrossRef
36.
go back to reference Ikebe, M., Kitaura, Y., Nakamura, M., Tanaka, H., Yamasaki, A., Nagai, S., et al. (2009). Lipopolysaccharide (LPS) increases the invasive ability of pancreatic cancer cells through the TLR4/MyD88 signaling pathway. Journal of Surgical Oncology, 100(8), 725–731.PubMedCrossRef Ikebe, M., Kitaura, Y., Nakamura, M., Tanaka, H., Yamasaki, A., Nagai, S., et al. (2009). Lipopolysaccharide (LPS) increases the invasive ability of pancreatic cancer cells through the TLR4/MyD88 signaling pathway. Journal of Surgical Oncology, 100(8), 725–731.PubMedCrossRef
37.
go back to reference Killeen, S. D., Wang, J. H., Andrews, E. J., & Redmond, H. P. (2006). Exploitation of the Toll-like receptor system in cancer: a doubled-edged sword? British Journal of Cancer, 95, 247–252.PubMedCrossRef Killeen, S. D., Wang, J. H., Andrews, E. J., & Redmond, H. P. (2006). Exploitation of the Toll-like receptor system in cancer: a doubled-edged sword? British Journal of Cancer, 95, 247–252.PubMedCrossRef
38.
go back to reference Kelly, M. G., Alvero, A. B., Chen, R., Silasi, D.-A., Abrahams, V. M., Chan, S., et al. (2006). TLR-4 signaling promotes tumor growth and paclitaxel chemoresistance in ovarian cancer. Cancer Research, 66, 3859–3868.PubMedCrossRef Kelly, M. G., Alvero, A. B., Chen, R., Silasi, D.-A., Abrahams, V. M., Chan, S., et al. (2006). TLR-4 signaling promotes tumor growth and paclitaxel chemoresistance in ovarian cancer. Cancer Research, 66, 3859–3868.PubMedCrossRef
39.
go back to reference Szajnik, M., Szczepanski, M., Czystowska, M., Elishaev, E., Mandapathil, M., Nowak-Markwitz, E., et al. (2009). TLR4 signaling induced by lipopolysaccharide or paclitaxel regulates tumor survival and chemoresistance in ovarian cancer. Oncogene, 28, 4353–4363.PubMedCrossRef Szajnik, M., Szczepanski, M., Czystowska, M., Elishaev, E., Mandapathil, M., Nowak-Markwitz, E., et al. (2009). TLR4 signaling induced by lipopolysaccharide or paclitaxel regulates tumor survival and chemoresistance in ovarian cancer. Oncogene, 28, 4353–4363.PubMedCrossRef
40.
go back to reference He, W., Liu, Q., Wang, L., Chen, W., Li, N., & Cao, X. (2007). TLR4 signaling promotes immune escape of human lung cancer cells by inducing immunosuppressive cytokines and apoptosis resistance. Molecular Immunology, 44, 2850–2859.CrossRef He, W., Liu, Q., Wang, L., Chen, W., Li, N., & Cao, X. (2007). TLR4 signaling promotes immune escape of human lung cancer cells by inducing immunosuppressive cytokines and apoptosis resistance. Molecular Immunology, 44, 2850–2859.CrossRef
41.
go back to reference Huang, B., Zhao, J., Li, H., He, K.-L., Chen, Y., Chen, S.-H., et al. (2005). Toll-like receptors on tumor cells facilitate evasion of immune surveillance. Cancer Research, 65, 5009–5014.PubMedCrossRef Huang, B., Zhao, J., Li, H., He, K.-L., Chen, Y., Chen, S.-H., et al. (2005). Toll-like receptors on tumor cells facilitate evasion of immune surveillance. Cancer Research, 65, 5009–5014.PubMedCrossRef
42.
go back to reference Jahrsdorfer, B., Mühlenhoff, L., Blackwell, S. E., Wagner, M., Poeck, H., Hartmann, E., et al. (2005). B-cell lymphomas differ in their responsiveness to CpG oligodeoxynucleotides. Clinical Cancer Research, 11, 1490–1499.PubMedCrossRef Jahrsdorfer, B., Mühlenhoff, L., Blackwell, S. E., Wagner, M., Poeck, H., Hartmann, E., et al. (2005). B-cell lymphomas differ in their responsiveness to CpG oligodeoxynucleotides. Clinical Cancer Research, 11, 1490–1499.PubMedCrossRef
43.
go back to reference Salaun, B., Coste, I., Rissoan, M.-C., Lebecque, S. J., & Renno, T. (2006). TLR3 can directly trigger apoptosis in human cancer cells. Journal of Immunology, 176, 4894–4901. Salaun, B., Coste, I., Rissoan, M.-C., Lebecque, S. J., & Renno, T. (2006). TLR3 can directly trigger apoptosis in human cancer cells. Journal of Immunology, 176, 4894–4901.
44.
go back to reference Salaun, B., Lebecque, S., Matikainen, S., Rimoldi, D., & Romero, P. (2007). Toll-like receptor 3 expressed by melanoma cells as a target for therapy? Clinical Cancer Research, 13, 4565–4574.PubMedCrossRef Salaun, B., Lebecque, S., Matikainen, S., Rimoldi, D., & Romero, P. (2007). Toll-like receptor 3 expressed by melanoma cells as a target for therapy? Clinical Cancer Research, 13, 4565–4574.PubMedCrossRef
45.
go back to reference Salaun, B., Romero, P., & Lebecque, S. (2007). Toll-like receptors’ two-edged sword: when immunity meets apoptosis. European Journal of Immunology, 37, 3311–3318.PubMedCrossRef Salaun, B., Romero, P., & Lebecque, S. (2007). Toll-like receptors’ two-edged sword: when immunity meets apoptosis. European Journal of Immunology, 37, 3311–3318.PubMedCrossRef
46.
go back to reference Chen, K., Huang, J., Gong, W., Iribarren, P., Dunlop, N. M., & Wang, J. M. (2007). Toll-like receptors in inflammation, infection and cancer. International Immunopharmacology, 7, 1271–1285.PubMedCrossRef Chen, K., Huang, J., Gong, W., Iribarren, P., Dunlop, N. M., & Wang, J. M. (2007). Toll-like receptors in inflammation, infection and cancer. International Immunopharmacology, 7, 1271–1285.PubMedCrossRef
47.
go back to reference Krieg, A. M. (2007). Development of TLR9 agonists for cancer therapy. Journal of Clinical Investigation, 117, 1184–1194.PubMedCrossRef Krieg, A. M. (2007). Development of TLR9 agonists for cancer therapy. Journal of Clinical Investigation, 117, 1184–1194.PubMedCrossRef
48.
go back to reference Kumar, H., Kawai, T., & Akira, S. (2009). Pathogen recognition in the innate immune response. The Biochemical Journal, 420, 1–16.PubMedCrossRef Kumar, H., Kawai, T., & Akira, S. (2009). Pathogen recognition in the innate immune response. The Biochemical Journal, 420, 1–16.PubMedCrossRef
49.
go back to reference Tsan, M.-F. (2006). Toll-like receptors, inflammation and cancer. Seminars in Cancer Biology, 16, 32–37.PubMedCrossRef Tsan, M.-F. (2006). Toll-like receptors, inflammation and cancer. Seminars in Cancer Biology, 16, 32–37.PubMedCrossRef
50.
go back to reference Kanzler, H., Barrat, F. J., Hessel, E. M., & Coffman, R. L. (2007). Therapeutic targeting of innate immunity with toll-like receptor agonists and antagonists. Natural Medicines, 13, 552–559.CrossRef Kanzler, H., Barrat, F. J., Hessel, E. M., & Coffman, R. L. (2007). Therapeutic targeting of innate immunity with toll-like receptor agonists and antagonists. Natural Medicines, 13, 552–559.CrossRef
51.
go back to reference Rakoff-Nahoum, S., & Medzhitov, R. (2009). Toll-like receptors and cancer. Nature Reviews Cancer, 9, 57–63.PubMedCrossRef Rakoff-Nahoum, S., & Medzhitov, R. (2009). Toll-like receptors and cancer. Nature Reviews Cancer, 9, 57–63.PubMedCrossRef
52.
go back to reference Schön, M. P., & Schön, M. (2008). TLR7 and TLR8 as targets in cancer therapy. Oncogene, 27, 190–199.PubMedCrossRef Schön, M. P., & Schön, M. (2008). TLR7 and TLR8 as targets in cancer therapy. Oncogene, 27, 190–199.PubMedCrossRef
53.
go back to reference Littman, A. J., Jackson, L. A., & Vaughan, T. L. (2005). Chlamydia pneumoniae and lung cancer: epidemiologic evidence. Cancer Epidemiol Biomarkers and Prevention, 14, 773–778.CrossRef Littman, A. J., Jackson, L. A., & Vaughan, T. L. (2005). Chlamydia pneumoniae and lung cancer: epidemiologic evidence. Cancer Epidemiol Biomarkers and Prevention, 14, 773–778.CrossRef
54.
go back to reference Littman, A. J., Thornquist, M. D., White, E., Jackson, L. A., Goodman, G. E., & Vaughan, T. L. (2004). Prior lung disease and risk of lung cancer in a large prospective study. Cancer Causes & Control, 15, 819–827.CrossRef Littman, A. J., Thornquist, M. D., White, E., Jackson, L. A., Goodman, G. E., & Vaughan, T. L. (2004). Prior lung disease and risk of lung cancer in a large prospective study. Cancer Causes & Control, 15, 819–827.CrossRef
55.
go back to reference Littman, A. J., White, E., Jackson, L. A., Thornquist, M. D., Gaydos, C. A., Goodman, G. E., et al. (2004). Chlamydia pneumoniae infection and risk of lung cancer. Cancer Epidemiol Biomarkers and Prevention, 13, 1624–1630. Littman, A. J., White, E., Jackson, L. A., Thornquist, M. D., Gaydos, C. A., Goodman, G. E., et al. (2004). Chlamydia pneumoniae infection and risk of lung cancer. Cancer Epidemiol Biomarkers and Prevention, 13, 1624–1630.
56.
go back to reference Philip, M., Rowley, D. A., & Schreiber, H. (2004). Inflammation as a tumor promoter in cancer induction. Seminars in Cancer Biology, 14, 433–439.PubMedCrossRef Philip, M., Rowley, D. A., & Schreiber, H. (2004). Inflammation as a tumor promoter in cancer induction. Seminars in Cancer Biology, 14, 433–439.PubMedCrossRef
57.
go back to reference Qin, J., Yao, J., Cui, G., Xiao, H., Kim, T. W., Fraczek, J., et al. (2006). TLR8-mediated NF-kappaB and JNK activation are TAK1-independent and MEKK3-dependent. The Journal of Biological Chemistry, 281, 21013–21021.PubMedCrossRef Qin, J., Yao, J., Cui, G., Xiao, H., Kim, T. W., Fraczek, J., et al. (2006). TLR8-mediated NF-kappaB and JNK activation are TAK1-independent and MEKK3-dependent. The Journal of Biological Chemistry, 281, 21013–21021.PubMedCrossRef
58.
go back to reference Huang, B., Zhao, J., Shen, S., Li, H., He, K.-L., Shen, G.-X., et al. (2007). Listeria monocytogenes promotes tumor growth via tumor cell toll-like receptor 2 signaling. Cancer Research, 67, 4346–4352.PubMedCrossRef Huang, B., Zhao, J., Shen, S., Li, H., He, K.-L., Shen, G.-X., et al. (2007). Listeria monocytogenes promotes tumor growth via tumor cell toll-like receptor 2 signaling. Cancer Research, 67, 4346–4352.PubMedCrossRef
59.
go back to reference Luo, J.-L., Maeda, S., Hsu, L.-C., Yagita, H., & Karin, M. (2004). Inhibition of NF-kappaB in cancer cells converts inflammation- induced tumor growth mediated by TNFalpha to TRAIL-mediated tumor regression. Cancer Cell, 6, 297–305.PubMedCrossRef Luo, J.-L., Maeda, S., Hsu, L.-C., Yagita, H., & Karin, M. (2004). Inhibition of NF-kappaB in cancer cells converts inflammation- induced tumor growth mediated by TNFalpha to TRAIL-mediated tumor regression. Cancer Cell, 6, 297–305.PubMedCrossRef
60.
go back to reference Sfondrini, L., Rossini, A., Besusso, D., Merlo, A., Tagliabue, E., Mènard, S., et al. (2006). Antitumor activity of the TLR-5 ligand flagellin in mouse models of cancer. Journal of Immunology, 176, 6624–6630. Sfondrini, L., Rossini, A., Besusso, D., Merlo, A., Tagliabue, E., Mènard, S., et al. (2006). Antitumor activity of the TLR-5 ligand flagellin in mouse models of cancer. Journal of Immunology, 176, 6624–6630.
61.
go back to reference Earl, T., Nicoud, I., Pierce, J., Wright, J., Majoras, N., Rubin, J., et al. (2009). Silencing of TLR4 Decreases Liver Tumor Burden in a Murine Model of Colorectal Metastasis and Hepatic Steatosis. Annals of Surgical Oncology, 16, 1043–1050.PubMedCrossRef Earl, T., Nicoud, I., Pierce, J., Wright, J., Majoras, N., Rubin, J., et al. (2009). Silencing of TLR4 Decreases Liver Tumor Burden in a Murine Model of Colorectal Metastasis and Hepatic Steatosis. Annals of Surgical Oncology, 16, 1043–1050.PubMedCrossRef
62.
go back to reference Tesniere, A., Schlemmer, F., Boige, V., Kepp, O., Martins, I., Ghiringhelli, F., et al. (2010). Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene, 29, 482–491.PubMedCrossRef Tesniere, A., Schlemmer, F., Boige, V., Kepp, O., Martins, I., Ghiringhelli, F., et al. (2010). Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene, 29, 482–491.PubMedCrossRef
63.
go back to reference Chiron, D., Pellat-Deceunynck, C., Amiot, M., Bataille, R., & Jego, G. (2009). TLR3 ligand induces NF-{kappa}B activation and various fates of multiple myeloma cells depending on IFN-{alpha} production. Journal of Immunology, 182, 4471–4478.CrossRef Chiron, D., Pellat-Deceunynck, C., Amiot, M., Bataille, R., & Jego, G. (2009). TLR3 ligand induces NF-{kappa}B activation and various fates of multiple myeloma cells depending on IFN-{alpha} production. Journal of Immunology, 182, 4471–4478.CrossRef
64.
go back to reference Wang, Q., Nagarkar, D., Bowman, E., Schneider, D., Gosangi, B., Lei, J., et al. (2009). Role of double-stranded RNA pattern recognition receptors in rhinovirus-induced airway epithelial cell responses. Journal of Immunology, 183, 6989–6997.CrossRef Wang, Q., Nagarkar, D., Bowman, E., Schneider, D., Gosangi, B., Lei, J., et al. (2009). Role of double-stranded RNA pattern recognition receptors in rhinovirus-induced airway epithelial cell responses. Journal of Immunology, 183, 6989–6997.CrossRef
65.
go back to reference Peng, S., Geng, J., Sun, R., Tian, Z., & Wei, H. (2008). Polyinosinic-polycytidylic acid liposome induces human hepatoma cells apoptosis which correlates to the up-regulation of RIG-I like receptors. Cancer Science, 100, 529–536.PubMedCrossRef Peng, S., Geng, J., Sun, R., Tian, Z., & Wei, H. (2008). Polyinosinic-polycytidylic acid liposome induces human hepatoma cells apoptosis which correlates to the up-regulation of RIG-I like receptors. Cancer Science, 100, 529–536.PubMedCrossRef
66.
go back to reference Nakajima, T., Kodama, T., Tsumuraya, M., Shimosato, Y., & Kameya, T. (1985). S-100 protein-positive Langerhans cells in various human lung cancers, especially in peripheral adenocarcinomas. Virchows Archiv. A, Pathological Anatomy and Histopathology, 407, 177–189.PubMedCrossRef Nakajima, T., Kodama, T., Tsumuraya, M., Shimosato, Y., & Kameya, T. (1985). S-100 protein-positive Langerhans cells in various human lung cancers, especially in peripheral adenocarcinomas. Virchows Archiv. A, Pathological Anatomy and Histopathology, 407, 177–189.PubMedCrossRef
67.
go back to reference Demedts, I. K., Brusselle, G. G., Vermaelen, K. Y., & Pauwels, R. A. (2005). Identification and characterization of human pulmonary dendritic cells. American Journal of Respiratory Cell and Molecular Biology, 32, 177–184.PubMedCrossRef Demedts, I. K., Brusselle, G. G., Vermaelen, K. Y., & Pauwels, R. A. (2005). Identification and characterization of human pulmonary dendritic cells. American Journal of Respiratory Cell and Molecular Biology, 32, 177–184.PubMedCrossRef
68.
go back to reference Tazi, A., Bouchonnet, F., Grandsaigne, M., Boumsell, L., Hance, A. J., & Soler, P. (1993). Evidence that granulocyte macrophage-colony-stimulating factor regulates the distribution and differentiated state of dendritic cells/Langerhans cells in human lung and lung cancers. The Journal of Clinical Investigation, 91, 566–576.PubMedCrossRef Tazi, A., Bouchonnet, F., Grandsaigne, M., Boumsell, L., Hance, A. J., & Soler, P. (1993). Evidence that granulocyte macrophage-colony-stimulating factor regulates the distribution and differentiated state of dendritic cells/Langerhans cells in human lung and lung cancers. The Journal of Clinical Investigation, 91, 566–576.PubMedCrossRef
69.
go back to reference Asselin-Paturel, C., Pardoux, C., Gay, F., & Chouaib, S. (1998). Failure of TGF beta1 and IL-12 to regulate human FasL and mTNF alloreactive cytotoxic T-cell pathways. Tissue Antigens, 51, 242–249.PubMedCrossRef Asselin-Paturel, C., Pardoux, C., Gay, F., & Chouaib, S. (1998). Failure of TGF beta1 and IL-12 to regulate human FasL and mTNF alloreactive cytotoxic T-cell pathways. Tissue Antigens, 51, 242–249.PubMedCrossRef
70.
go back to reference Arenberg, D. A., Keane, M. P., DiGiovine, B., Kunkel, S. L., Strom, S. R., Burdick, M. D., et al. (2000). Macrophage infiltration in human non-small-cell lung cancer: the role of CC chemokines. Cancer Immunology, Immunotherapy, 49, 63–70.PubMedCrossRef Arenberg, D. A., Keane, M. P., DiGiovine, B., Kunkel, S. L., Strom, S. R., Burdick, M. D., et al. (2000). Macrophage infiltration in human non-small-cell lung cancer: the role of CC chemokines. Cancer Immunology, Immunotherapy, 49, 63–70.PubMedCrossRef
71.
go back to reference Põld, M., Zhu, L. X., Sharma, S., Burdick, M. D., Lin, Y., Lee, P. P. N., et al. (2004). Cyclooxygenase-2-dependent expression of angiogenic CXC chemokines ENA-78/CXC Ligand (CXCL) 5 and interleukin-8/CXCL8 in human non-small cell lung cancer. Cancer Research, 64, 1853–1860.PubMedCrossRef Põld, M., Zhu, L. X., Sharma, S., Burdick, M. D., Lin, Y., Lee, P. P. N., et al. (2004). Cyclooxygenase-2-dependent expression of angiogenic CXC chemokines ENA-78/CXC Ligand (CXCL) 5 and interleukin-8/CXCL8 in human non-small cell lung cancer. Cancer Research, 64, 1853–1860.PubMedCrossRef
72.
go back to reference Cao, T., Ueno, H., Glaser, C., Fay, J. W., Palucka, A. K., & Banchereau, J. (2007). Both Langerhans cells and interstitial DC cross-present melanoma antigens and efficiently activate antigen-specific CTL. European Journal of Immunology, 37, 2657–2667.PubMedCrossRef Cao, T., Ueno, H., Glaser, C., Fay, J. W., Palucka, A. K., & Banchereau, J. (2007). Both Langerhans cells and interstitial DC cross-present melanoma antigens and efficiently activate antigen-specific CTL. European Journal of Immunology, 37, 2657–2667.PubMedCrossRef
73.
go back to reference Marchal-Sommé, J., Uzunhan, Y., Marchand-Adam, S., Valeyre, D., Soumelis, V., Crestani, B., et al. (2006). Cutting edge: nonproliferating mature immune cells form a novel type of organized lymphoid structure in idiopathic pulmonary fibrosis. Journal of Immunology, 176, 5735–5739. Marchal-Sommé, J., Uzunhan, Y., Marchand-Adam, S., Valeyre, D., Soumelis, V., Crestani, B., et al. (2006). Cutting edge: nonproliferating mature immune cells form a novel type of organized lymphoid structure in idiopathic pulmonary fibrosis. Journal of Immunology, 176, 5735–5739.
74.
go back to reference Wakabayashi, O., Yamazaki, K., Oizumi, S., Hommura, F., Kinoshita, I., Ogura, S., et al. (2003). CD4+ T cells in cancer stroma, not CD8+ T cells in cancer cell nests, are associated with favorable prognosis in human non-small cell lung cancers. Cancer Science, 94, 1003–1009.PubMedCrossRef Wakabayashi, O., Yamazaki, K., Oizumi, S., Hommura, F., Kinoshita, I., Ogura, S., et al. (2003). CD4+ T cells in cancer stroma, not CD8+ T cells in cancer cell nests, are associated with favorable prognosis in human non-small cell lung cancers. Cancer Science, 94, 1003–1009.PubMedCrossRef
75.
go back to reference Tartour, E., Gey, A., Sastre-Garau, X., Lombard Surin, I., Mosseri, V., & Fridman, W. H. (1998). Prognostic value of intratumoral interferon gamma messenger RNA expression in invasive cervical carcinomas. Journal of the National Cancer Institute, 90, 287–294.PubMedCrossRef Tartour, E., Gey, A., Sastre-Garau, X., Lombard Surin, I., Mosseri, V., & Fridman, W. H. (1998). Prognostic value of intratumoral interferon gamma messenger RNA expression in invasive cervical carcinomas. Journal of the National Cancer Institute, 90, 287–294.PubMedCrossRef
76.
go back to reference Yu, P., Lee, Y., Liu, W., Chin, R. K., Wang, J., Wang, Y., et al. (2004). Priming of naive T cells inside tumors leads to eradication of established tumors. Nature Immunology, 5, 141–149.PubMedCrossRef Yu, P., Lee, Y., Liu, W., Chin, R. K., Wang, J., Wang, Y., et al. (2004). Priming of naive T cells inside tumors leads to eradication of established tumors. Nature Immunology, 5, 141–149.PubMedCrossRef
77.
go back to reference Kirk, C. J., Hartigan-O’Connor, D., Nickoloff, B. J., Chamberlain, J. S., Giedlin, M., Aukerman, L., et al. (2001). T cell-dependent antitumor immunity mediated by secondary lymphoid tissue chemokine: augmentation of dendritic cell-based immunotherapy. Cancer Research, 61, 2062–2070.PubMed Kirk, C. J., Hartigan-O’Connor, D., Nickoloff, B. J., Chamberlain, J. S., Giedlin, M., Aukerman, L., et al. (2001). T cell-dependent antitumor immunity mediated by secondary lymphoid tissue chemokine: augmentation of dendritic cell-based immunotherapy. Cancer Research, 61, 2062–2070.PubMed
78.
go back to reference Moyron-Quiroz, J. E., Rangel-Moreno, J., Kusser, K., Hartson, L., Sprague, F., Goodrich, S., et al. (2004). Role of inducible bronchus associated lymphoid tissue (iBALT) in respiratory immunity. Natural Medicines, 10, 927–934.CrossRef Moyron-Quiroz, J. E., Rangel-Moreno, J., Kusser, K., Hartson, L., Sprague, F., Goodrich, S., et al. (2004). Role of inducible bronchus associated lymphoid tissue (iBALT) in respiratory immunity. Natural Medicines, 10, 927–934.CrossRef
79.
go back to reference Tesar, B. M., Chalasani, G., Smith-Diggs, L., Baddoura, F. K., Lakkis, F. G., & Goldstein, D. R. (2004). Direct antigen presentation by a xenograft induces immunity independently of secondary lymphoid organs. Journal of Immunology, 173, 4377–4386. Tesar, B. M., Chalasani, G., Smith-Diggs, L., Baddoura, F. K., Lakkis, F. G., & Goldstein, D. R. (2004). Direct antigen presentation by a xenograft induces immunity independently of secondary lymphoid organs. Journal of Immunology, 173, 4377–4386.
80.
go back to reference Moyron-Quiroz, J. E., Rangel-Moreno, J., Hartson, L., Kusser, K., Tighe, M. P., Klonowski, K. D., et al. (2006). Persistence and responsiveness of immunologic memory in the absence of secondary lymphoid organs. Immunity, 25, 643–654.PubMedCrossRef Moyron-Quiroz, J. E., Rangel-Moreno, J., Hartson, L., Kusser, K., Tighe, M. P., Klonowski, K. D., et al. (2006). Persistence and responsiveness of immunologic memory in the absence of secondary lymphoid organs. Immunity, 25, 643–654.PubMedCrossRef
81.
go back to reference Drayton, D. L., Liao, S., Mounzer, R. H., & Ruddle, N. H. (2006). Lymphoid organ development: from ontogeny to neogenesis. Nature Immunology, 7, 344–353.PubMedCrossRef Drayton, D. L., Liao, S., Mounzer, R. H., & Ruddle, N. H. (2006). Lymphoid organ development: from ontogeny to neogenesis. Nature Immunology, 7, 344–353.PubMedCrossRef
82.
go back to reference Rangel-Moreno, J., Carragher, D., & Randall, T. D. (2007). Role of lymphotoxin and homeostatic chemokines in the development and function of local lymphoid tissues in the respiratory tract. Inmunologia (Barcelona, Spain: 1987), 26, 13–28. Rangel-Moreno, J., Carragher, D., & Randall, T. D. (2007). Role of lymphotoxin and homeostatic chemokines in the development and function of local lymphoid tissues in the respiratory tract. Inmunologia (Barcelona, Spain: 1987), 26, 13–28.
83.
go back to reference GeurtsvanKessel, C. H., Willart, M. A. M., Bergen, I. M., van Rijt, L. S., Muskens, F., Elewaut, D., et al. (2009). Dendritic cells are crucial for maintenance of tertiary lymphoid structures in the lung of influenza virus-infected mice. The Journal of Experimental Medicine, 206, 2339–2349.PubMedCrossRef GeurtsvanKessel, C. H., Willart, M. A. M., Bergen, I. M., van Rijt, L. S., Muskens, F., Elewaut, D., et al. (2009). Dendritic cells are crucial for maintenance of tertiary lymphoid structures in the lung of influenza virus-infected mice. The Journal of Experimental Medicine, 206, 2339–2349.PubMedCrossRef
84.
go back to reference Halle, S., Dujardin, H. C., Bakocevic, N., Fleige, H., Danzer, H., Willenzon, S., et al. (2009). Induced bronchus-associated lymphoid tissue serves as a general priming site for T cells and is maintained by dendritic cells. The Journal of Experimental Medicine, 206, 2593–2601.PubMedCrossRef Halle, S., Dujardin, H. C., Bakocevic, N., Fleige, H., Danzer, H., Willenzon, S., et al. (2009). Induced bronchus-associated lymphoid tissue serves as a general priming site for T cells and is maintained by dendritic cells. The Journal of Experimental Medicine, 206, 2593–2601.PubMedCrossRef
85.
go back to reference Cassoux, N., Merle-Beral, H., Leblond, V., Bodaghi, B., Miléa, D., Gerber, S., et al. (2000). Ocular and central nervous system lymphoma: clinical features and diagnosis. Ocular Immunology and Inflammation, 8, 243–250.PubMedCrossRef Cassoux, N., Merle-Beral, H., Leblond, V., Bodaghi, B., Miléa, D., Gerber, S., et al. (2000). Ocular and central nervous system lymphoma: clinical features and diagnosis. Ocular Immunology and Inflammation, 8, 243–250.PubMedCrossRef
86.
go back to reference Coupland, S. E., & Heimann, H. (2004). Primary intraocular lymphoma. Der Ophthalmologe, 101, 87–98.PubMedCrossRef Coupland, S. E., & Heimann, H. (2004). Primary intraocular lymphoma. Der Ophthalmologe, 101, 87–98.PubMedCrossRef
87.
go back to reference Pantanelli, S. M., Li, Z., Fariss, R., Mahesh, S. P., Liu, B., & Nussenblatt, R. B. (2009). Differentiation of malignant B-lymphoma cells from normal and activated T-cell populations by their intrinsic autofluorescence. Cancer Research, 69, 4911–4917.PubMedCrossRef Pantanelli, S. M., Li, Z., Fariss, R., Mahesh, S. P., Liu, B., & Nussenblatt, R. B. (2009). Differentiation of malignant B-lymphoma cells from normal and activated T-cell populations by their intrinsic autofluorescence. Cancer Research, 69, 4911–4917.PubMedCrossRef
88.
go back to reference Touitou, V., Daussy, C., Bodaghi, B., Camelo, S., de Kozak, Y., Lehoang, P., et al. (2007). Impaired th1/tc1 cytokine production of tumor-infiltrating lymphocytes in a model of primary intraocular B-cell lymphoma. Investigative Ophthalmology & Visual Science, 48, 3223–3229.CrossRef Touitou, V., Daussy, C., Bodaghi, B., Camelo, S., de Kozak, Y., Lehoang, P., et al. (2007). Impaired th1/tc1 cytokine production of tumor-infiltrating lymphocytes in a model of primary intraocular B-cell lymphoma. Investigative Ophthalmology & Visual Science, 48, 3223–3229.CrossRef
89.
go back to reference Akpek, E. K., Ahmed, I., Hochberg, F. H., Soheilian, M., Dryja, T. P., Jakobiec, F. A., et al. (1999). Intraocular-central nervous system lymphoma: clinical features, diagnosis, and outcomes. Ophthalmology, 106, 1805–1810.PubMedCrossRef Akpek, E. K., Ahmed, I., Hochberg, F. H., Soheilian, M., Dryja, T. P., Jakobiec, F. A., et al. (1999). Intraocular-central nervous system lymphoma: clinical features, diagnosis, and outcomes. Ophthalmology, 106, 1805–1810.PubMedCrossRef
90.
go back to reference Akpek, E. K., Maca, S. M., Christen, W. G., & Foster, C. S. (1999). Elevated vitreous interleukin-10 level is not diagnostic of intraocular-central nervous system lymphoma. Ophthalmology, 106, 2291–2295.PubMedCrossRef Akpek, E. K., Maca, S. M., Christen, W. G., & Foster, C. S. (1999). Elevated vitreous interleukin-10 level is not diagnostic of intraocular-central nervous system lymphoma. Ophthalmology, 106, 2291–2295.PubMedCrossRef
91.
go back to reference Char, D. H., Ljung, B. M., Deschênes, J., & Miller, T. R. (1988). Intraocular lymphoma: immunological and cytological analysis. The British Journal of Ophthalmology, 72, 905–911.PubMedCrossRef Char, D. H., Ljung, B. M., Deschênes, J., & Miller, T. R. (1988). Intraocular lymphoma: immunological and cytological analysis. The British Journal of Ophthalmology, 72, 905–911.PubMedCrossRef
92.
go back to reference Char, D. H., Ljung, B. M., Miller, T., & Phillips, T. (1988). Primary intraocular lymphoma (ocular reticulum cell sarcoma) diagnosis and management. Ophthalmology, 95, 625–630.PubMed Char, D. H., Ljung, B. M., Miller, T., & Phillips, T. (1988). Primary intraocular lymphoma (ocular reticulum cell sarcoma) diagnosis and management. Ophthalmology, 95, 625–630.PubMed
93.
go back to reference Corriveau, C., Easterbrook, M., & Payne, D. (1986). Lymphoma simulating uveitis (masquerade syndrome). Canadian Journal of Ophthalmology, 21, 144–149.PubMed Corriveau, C., Easterbrook, M., & Payne, D. (1986). Lymphoma simulating uveitis (masquerade syndrome). Canadian Journal of Ophthalmology, 21, 144–149.PubMed
94.
go back to reference Coupland, S. E., & Damato, B. (2008). Understanding intraocular lymphomas. Clin Experiment Ophthalmol, 36, 564–578.PubMedCrossRef Coupland, S. E., & Damato, B. (2008). Understanding intraocular lymphomas. Clin Experiment Ophthalmol, 36, 564–578.PubMedCrossRef
95.
go back to reference Pagès, F., Galon, J., Dieu-Nosjean, M.-C., Tartour, E., Sautès-Fridman, C., & Fridman, W.-H. (2010). Immune infiltration in human tumors: a prognostic factor that should not be ignored. Oncogene, 29, 1093–1102.PubMedCrossRef Pagès, F., Galon, J., Dieu-Nosjean, M.-C., Tartour, E., Sautès-Fridman, C., & Fridman, W.-H. (2010). Immune infiltration in human tumors: a prognostic factor that should not be ignored. Oncogene, 29, 1093–1102.PubMedCrossRef
Metadata
Title
Tumor microenvironment is multifaceted
Authors
Catherine Sautès-Fridman
Julien Cherfils-Vicini
Diane Damotte
Sylvain Fisson
Wolf Hervé Fridman
Isabelle Cremer
Marie-Caroline Dieu-Nosjean
Publication date
01-03-2011
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 1/2011
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-011-9279-y

Other articles of this Issue 1/2011

Cancer and Metastasis Reviews 1/2011 Go to the issue

EditorialNotes

Preface

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine