Skip to main content
Top
Published in: Cancer and Metastasis Reviews 4/2010

01-12-2010 | NON-THEMATIC REVIEW

CXCL12 / CXCR4 / CXCR7 chemokine axis and cancer progression

Authors: Xueqing Sun, Guangcun Cheng, Mingang Hao, Jianghua Zheng, Xiaoming Zhou, Jian Zhang, Russell S. Taichman, Kenneth J. Pienta, Jianhua Wang

Published in: Cancer and Metastasis Reviews | Issue 4/2010

Login to get access

Abstract

Chemokines, small pro-inflammatory chemoattractant cytokines that bind to specific G-protein-coupled seven-span transmembrane receptors, are major regulators of cell trafficking and adhesion. The chemokine CXCL12 (also called stromal-derived factor-1) is an important α-chemokine that binds primarily to its cognate receptor CXCR4 and thus regulates the trafficking of normal and malignant cells. For many years, it was believed that CXCR4 was the only receptor for CXCL12. Yet, recent work has demonstrated that CXCL12 also binds to another seven-transmembrane span receptor called CXCR7. Our group and others have established critical roles for CXCR4 and CXCR7 on mediating tumor metastasis in several types of cancers, in addition to their contributions as biomarkers of tumor behavior as well as potential therapeutic targets. Here, we review the current concepts regarding the role of CXCL12 / CXCR4 / CXCR7 axis activation, which regulates the pattern of tumor growth and metastatic spread to organs expressing high levels of CXCL12 to develop secondary tumors. We also summarize recent therapeutic approaches to target these receptors and/or their ligands.
Literature
1.
go back to reference Vindrieux, D., Escobar, P., & Lazennec, G. (2009). Emerging roles of chemokines in prostate cancer. Endocrine-Related Cancer, 16(3), 663–673.PubMedCrossRef Vindrieux, D., Escobar, P., & Lazennec, G. (2009). Emerging roles of chemokines in prostate cancer. Endocrine-Related Cancer, 16(3), 663–673.PubMedCrossRef
2.
go back to reference Ransohoff, R. M. (2009). Chemokines and chemokine receptors: Standing at the crossroads of immunobiology and neurobiology. Immunity, 31(5), 711–721.PubMedCrossRef Ransohoff, R. M. (2009). Chemokines and chemokine receptors: Standing at the crossroads of immunobiology and neurobiology. Immunity, 31(5), 711–721.PubMedCrossRef
3.
go back to reference Bieche, I., Chavey, C., Andrieu, C., Busson, M., Vacher, S., Le Corre, L., et al. (2007). Cxc chemokines located in the 4q21 region are up-regulated in breast cancer. Endocrine-Related Cancer, 14(4), 1039–1052.PubMedCrossRef Bieche, I., Chavey, C., Andrieu, C., Busson, M., Vacher, S., Le Corre, L., et al. (2007). Cxc chemokines located in the 4q21 region are up-regulated in breast cancer. Endocrine-Related Cancer, 14(4), 1039–1052.PubMedCrossRef
4.
go back to reference New, D. C., & Wong, Y. H. (2003). Cc chemokine receptor-coupled signalling pathways. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai), 35(9), 779–788. New, D. C., & Wong, Y. H. (2003). Cc chemokine receptor-coupled signalling pathways. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai), 35(9), 779–788.
5.
go back to reference Rot, A., & von Andrian, U. H. (2004). Chemokines in innate and adaptive host defense: Basic chemokinese grammar for immune cells. Annual Review of Immunology, 22, 891–928.PubMedCrossRef Rot, A., & von Andrian, U. H. (2004). Chemokines in innate and adaptive host defense: Basic chemokinese grammar for immune cells. Annual Review of Immunology, 22, 891–928.PubMedCrossRef
6.
go back to reference Lazennec, G., & Richmond, A. (2010). Chemokines and chemokine receptors: New insights into cancer-related inflammation. Trends Mol Med, 16(3), 133–144.PubMedCrossRef Lazennec, G., & Richmond, A. (2010). Chemokines and chemokine receptors: New insights into cancer-related inflammation. Trends Mol Med, 16(3), 133–144.PubMedCrossRef
7.
go back to reference Keeley, E. C., Mehrad, B., & Strieter, R. M. (2010). Cxc chemokines in cancer angiogenesis and metastases. Adv Cancer Res, 106, 91–111.PubMedCrossRef Keeley, E. C., Mehrad, B., & Strieter, R. M. (2010). Cxc chemokines in cancer angiogenesis and metastases. Adv Cancer Res, 106, 91–111.PubMedCrossRef
8.
go back to reference Kruizinga, R. C., Bestebroer, J., Berghuis, P., de Haas, C. J., Links, T. P., de Vries, E. G., et al. (2009). Role of chemokines and their receptors in cancer. Current Pharmaceutical Design, 15(29), 3396–3416.PubMedCrossRef Kruizinga, R. C., Bestebroer, J., Berghuis, P., de Haas, C. J., Links, T. P., de Vries, E. G., et al. (2009). Role of chemokines and their receptors in cancer. Current Pharmaceutical Design, 15(29), 3396–3416.PubMedCrossRef
9.
go back to reference Allinen, M., Beroukhim, R., Cai, L., Brennan, C., Lahti-Domenici, J., Huang, H., et al. (2004). Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell, 6(1), 17–32.PubMedCrossRef Allinen, M., Beroukhim, R., Cai, L., Brennan, C., Lahti-Domenici, J., Huang, H., et al. (2004). Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell, 6(1), 17–32.PubMedCrossRef
10.
go back to reference Hartmann, T. N., Burger, M., & Burger, J. A. (2004). The role of adhesion molecules and chemokine receptor cxcr4 (cd184) in small cell lung cancer. Journal of Biological Regulators and Homeostatic Agents, 18(2), 126–130.PubMed Hartmann, T. N., Burger, M., & Burger, J. A. (2004). The role of adhesion molecules and chemokine receptor cxcr4 (cd184) in small cell lung cancer. Journal of Biological Regulators and Homeostatic Agents, 18(2), 126–130.PubMed
11.
go back to reference Secchiero, P., Celeghini, C., Cutroneo, G., Di Baldassarre, A., Rana, R., & Zauli, G. (2000). Differential effects of stromal derived factor-1 alpha (sdf-1 alpha) on early and late stages of human megakaryocytic development. The Anatomical Record, 260(2), 141–147.PubMedCrossRef Secchiero, P., Celeghini, C., Cutroneo, G., Di Baldassarre, A., Rana, R., & Zauli, G. (2000). Differential effects of stromal derived factor-1 alpha (sdf-1 alpha) on early and late stages of human megakaryocytic development. The Anatomical Record, 260(2), 141–147.PubMedCrossRef
12.
go back to reference Wright, L. M., Maloney, W., Yu, X., Kindle, L., Collin-Osdoby, P., & Osdoby, P. (2005). Stromal cell-derived factor-1 binding to its chemokine receptor cxcr4 on precursor cells promotes the chemotactic recruitment, development and survival of human osteoclasts. Bone, 36(5), 840–853.PubMedCrossRef Wright, L. M., Maloney, W., Yu, X., Kindle, L., Collin-Osdoby, P., & Osdoby, P. (2005). Stromal cell-derived factor-1 binding to its chemokine receptor cxcr4 on precursor cells promotes the chemotactic recruitment, development and survival of human osteoclasts. Bone, 36(5), 840–853.PubMedCrossRef
13.
go back to reference Gillette, J. M., Larochelle, A., Dunbar, C. E., & Lippincott-Schwartz, J. (2009). Intercellular transfer to signalling endosomes regulates an ex vivo bone marrow niche. Nature Cell Biology, 11(3), 303–311.PubMedCrossRef Gillette, J. M., Larochelle, A., Dunbar, C. E., & Lippincott-Schwartz, J. (2009). Intercellular transfer to signalling endosomes regulates an ex vivo bone marrow niche. Nature Cell Biology, 11(3), 303–311.PubMedCrossRef
14.
go back to reference Hayakawa, J., Migita, M., Ueda, T., Fukazawa, R., Adachi, K., Ooue, Y., et al. (2009). Dextran sulfate and stromal cell derived factor-1 promote cxcr4 expression and improve bone marrow homing efficiency of infused hematopoietic stem cells. Journal of Nippon Medical School, 76(4), 198–208.PubMedCrossRef Hayakawa, J., Migita, M., Ueda, T., Fukazawa, R., Adachi, K., Ooue, Y., et al. (2009). Dextran sulfate and stromal cell derived factor-1 promote cxcr4 expression and improve bone marrow homing efficiency of infused hematopoietic stem cells. Journal of Nippon Medical School, 76(4), 198–208.PubMedCrossRef
15.
go back to reference Kyriakou, C., Rabin, N., Pizzey, A., Nathwani, A., & Yong, K. (2008). Factors that influence short-term homing of human bone marrow-derived mesenchymal stem cells in a xenogeneic animal model. Haematologica, 93(10), 1457–1465.PubMedCrossRef Kyriakou, C., Rabin, N., Pizzey, A., Nathwani, A., & Yong, K. (2008). Factors that influence short-term homing of human bone marrow-derived mesenchymal stem cells in a xenogeneic animal model. Haematologica, 93(10), 1457–1465.PubMedCrossRef
16.
go back to reference Tashiro, K., Tada, H., Heilker, R., Shirozu, M., Nakano, T., & Honjo, T. (1993). Signal sequence trap: A cloning strategy for secreted proteins and type i membrane proteins. Science, 261(5121), 600–603.PubMedCrossRef Tashiro, K., Tada, H., Heilker, R., Shirozu, M., Nakano, T., & Honjo, T. (1993). Signal sequence trap: A cloning strategy for secreted proteins and type i membrane proteins. Science, 261(5121), 600–603.PubMedCrossRef
17.
go back to reference Dettin, M., Pasquato, A., Scarinci, C., Zanchetta, M., De Rossi, A., & Di Bello, C. (2004). Anti-hiv activity and conformational studies of peptides derived from the c-terminal sequence of sdf-1. Journal of Medicinal Chemistry, 47(12), 3058–3064.PubMedCrossRef Dettin, M., Pasquato, A., Scarinci, C., Zanchetta, M., De Rossi, A., & Di Bello, C. (2004). Anti-hiv activity and conformational studies of peptides derived from the c-terminal sequence of sdf-1. Journal of Medicinal Chemistry, 47(12), 3058–3064.PubMedCrossRef
18.
go back to reference Janowski, M. (2009). Functional diversity of sdf-1 splicing variants. Cell Adhesion & Migration, 3(3), 243–249.CrossRef Janowski, M. (2009). Functional diversity of sdf-1 splicing variants. Cell Adhesion & Migration, 3(3), 243–249.CrossRef
19.
go back to reference Kucia, M., Wojakowski, W., Reca, R., Machalinski, B., Gozdzik, J., Majka, M., et al. (2006). The migration of bone marrow-derived non-hematopoietic tissue-committed stem cells is regulated in an sdf-1-, hgf-, and life-dependent manner. Archivum Immunologiae et Therapiae Experimentalis (Warsz), 54(2), 121–135.CrossRef Kucia, M., Wojakowski, W., Reca, R., Machalinski, B., Gozdzik, J., Majka, M., et al. (2006). The migration of bone marrow-derived non-hematopoietic tissue-committed stem cells is regulated in an sdf-1-, hgf-, and life-dependent manner. Archivum Immunologiae et Therapiae Experimentalis (Warsz), 54(2), 121–135.CrossRef
20.
go back to reference Yu, L., Cecil, J., Peng, S. B., Schrementi, J., Kovacevic, S., Paul, D., et al. (2006). Identification and expression of novel isoforms of human stromal cell-derived factor 1. Gene, 374, 174–179.PubMedCrossRef Yu, L., Cecil, J., Peng, S. B., Schrementi, J., Kovacevic, S., Paul, D., et al. (2006). Identification and expression of novel isoforms of human stromal cell-derived factor 1. Gene, 374, 174–179.PubMedCrossRef
21.
go back to reference Neiva, K., Sun, Y. X., & Taichman, R. S. (2005). The role of osteoblasts in regulating hematopoietic stem cell activity and tumor metastasis. Brazilian Journal of Medical and Biological Research, 38(10), 1449–1454.PubMedCrossRef Neiva, K., Sun, Y. X., & Taichman, R. S. (2005). The role of osteoblasts in regulating hematopoietic stem cell activity and tumor metastasis. Brazilian Journal of Medical and Biological Research, 38(10), 1449–1454.PubMedCrossRef
22.
go back to reference Jung, Y., Wang, J., Schneider, A., Sun, Y. X., Koh-Paige, A. J., Osman, N. I., et al. (2006). Regulation of sdf-1 (cxcl12) production by osteoblasts; a possible mechanism for stem cell homing. Bone, 38(4), 497–508.PubMedCrossRef Jung, Y., Wang, J., Schneider, A., Sun, Y. X., Koh-Paige, A. J., Osman, N. I., et al. (2006). Regulation of sdf-1 (cxcl12) production by osteoblasts; a possible mechanism for stem cell homing. Bone, 38(4), 497–508.PubMedCrossRef
23.
go back to reference Taichman, R. S., Cooper, C., Keller, E. T., Pienta, K. J., Taichman, N. S., & McCauley, L. K. (2002). Use of the stromal cell-derived factor-1/cxcr4 pathway in prostate cancer metastasis to bone. Cancer Research, 62(6), 1832–1837.PubMed Taichman, R. S., Cooper, C., Keller, E. T., Pienta, K. J., Taichman, N. S., & McCauley, L. K. (2002). Use of the stromal cell-derived factor-1/cxcr4 pathway in prostate cancer metastasis to bone. Cancer Research, 62(6), 1832–1837.PubMed
24.
go back to reference Peled, A., Petit, I., Kollet, O., Magid, M., Ponomaryov, T., Byk, T., et al. (1999). Dependence of human stem cell engraftment and repopulation of nod/scid mice on cxcr4. Science, 283(5403), 845–848.PubMedCrossRef Peled, A., Petit, I., Kollet, O., Magid, M., Ponomaryov, T., Byk, T., et al. (1999). Dependence of human stem cell engraftment and repopulation of nod/scid mice on cxcr4. Science, 283(5403), 845–848.PubMedCrossRef
25.
go back to reference Ponomaryov, T., Peled, A., Petit, I., Taichman, R. S., Habler, L., Sandbank, J., et al. (2000). Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem cell function. Journal of Clinical Investigation, 106(11), 1331–1339.PubMedCrossRef Ponomaryov, T., Peled, A., Petit, I., Taichman, R. S., Habler, L., Sandbank, J., et al. (2000). Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem cell function. Journal of Clinical Investigation, 106(11), 1331–1339.PubMedCrossRef
26.
go back to reference Petit, I., Szyper-Kravitz, M., Nagler, A., Lahav, M., Peled, A., Habler, L., et al. (2002). G-csf induces stem cell mobilization by decreasing bone marrow sdf-1 and up-regulating cxcr4. Nature Immunology, 3(7), 687–694.PubMedCrossRef Petit, I., Szyper-Kravitz, M., Nagler, A., Lahav, M., Peled, A., Habler, L., et al. (2002). G-csf induces stem cell mobilization by decreasing bone marrow sdf-1 and up-regulating cxcr4. Nature Immunology, 3(7), 687–694.PubMedCrossRef
27.
go back to reference Ceradini, D. J., Kulkarni, A. R., Callaghan, M. J., Tepper, O. M., Bastidas, N., Kleinman, M. E., et al. (2004). Progenitor cell trafficking is regulated by hypoxic gradients through hif-1 induction of sdf-1. Natural Medicines, 10(8), 858–864.CrossRef Ceradini, D. J., Kulkarni, A. R., Callaghan, M. J., Tepper, O. M., Bastidas, N., Kleinman, M. E., et al. (2004). Progenitor cell trafficking is regulated by hypoxic gradients through hif-1 induction of sdf-1. Natural Medicines, 10(8), 858–864.CrossRef
28.
go back to reference Caruz, A., Samsom, M., Alonso, J. M., Alcami, J., Baleux, F., Virelizier, J. L., et al. (1998). Genomic organization and promoter characterization of human cxcr4 gene. FEBS Letters, 426(2), 271–278.PubMedCrossRef Caruz, A., Samsom, M., Alonso, J. M., Alcami, J., Baleux, F., Virelizier, J. L., et al. (1998). Genomic organization and promoter characterization of human cxcr4 gene. FEBS Letters, 426(2), 271–278.PubMedCrossRef
29.
go back to reference Gupta, S. K., & Pillarisetti, K. (1999). Cutting edge: Cxcr4-lo: Molecular cloning and functional expression of a novel human cxcr4 splice variant. Journal of Immunology, 163(5), 2368–2372. Gupta, S. K., & Pillarisetti, K. (1999). Cutting edge: Cxcr4-lo: Molecular cloning and functional expression of a novel human cxcr4 splice variant. Journal of Immunology, 163(5), 2368–2372.
30.
go back to reference Wegner, S. A., Ehrenberg, P. K., Chang, G., Dayhoff, D. E., Sleeker, A. L., & Michael, N. L. (1998). Genomic organization and functional characterization of the chemokine receptor cxcr4, a major entry co-receptor for human immunodeficiency virus type 1. The Journal of Biological Chemistry, 273(8), 4754–4760.PubMedCrossRef Wegner, S. A., Ehrenberg, P. K., Chang, G., Dayhoff, D. E., Sleeker, A. L., & Michael, N. L. (1998). Genomic organization and functional characterization of the chemokine receptor cxcr4, a major entry co-receptor for human immunodeficiency virus type 1. The Journal of Biological Chemistry, 273(8), 4754–4760.PubMedCrossRef
31.
go back to reference Zou, Y. R., Kottmann, A. H., Kuroda, M., Taniuchi, I., & Littman, D. R. (1998). Function of the chemokine receptor cxcr4 in haematopoiesis and in cerebellar development. Nature, 393(6685), 595–599.PubMedCrossRef Zou, Y. R., Kottmann, A. H., Kuroda, M., Taniuchi, I., & Littman, D. R. (1998). Function of the chemokine receptor cxcr4 in haematopoiesis and in cerebellar development. Nature, 393(6685), 595–599.PubMedCrossRef
32.
go back to reference Feil, C., & Augustin, H. G. (1998). Endothelial cells differentially express functional cxc-chemokine receptor-4 (cxcr-4/fusin) under the control of autocrine activity and exogenous cytokines. Biochemical and Biophysical Research Communications, 247(1), 38–45.PubMedCrossRef Feil, C., & Augustin, H. G. (1998). Endothelial cells differentially express functional cxc-chemokine receptor-4 (cxcr-4/fusin) under the control of autocrine activity and exogenous cytokines. Biochemical and Biophysical Research Communications, 247(1), 38–45.PubMedCrossRef
33.
go back to reference Lazarini, F., Casanova, P., Tham, T. N., De Clercq, E., Arenzana-Seisdedos, F., Baleux, F., et al. (2000). Differential signalling of the chemokine receptor cxcr4 by stromal cell-derived factor 1 and the hiv glycoprotein in rat neurons and astrocytes. The European Journal of Neuroscience, 12(1), 117–125.PubMedCrossRef Lazarini, F., Casanova, P., Tham, T. N., De Clercq, E., Arenzana-Seisdedos, F., Baleux, F., et al. (2000). Differential signalling of the chemokine receptor cxcr4 by stromal cell-derived factor 1 and the hiv glycoprotein in rat neurons and astrocytes. The European Journal of Neuroscience, 12(1), 117–125.PubMedCrossRef
34.
go back to reference Aiuti, A., Tavian, M., Cipponi, A., Ficara, F., Zappone, E., Hoxie, J., et al. (1999). Expression of cxcr4, the receptor for stromal cell-derived factor-1 on fetal and adult human lympho-hematopoietic progenitors. European Journal of Immunology, 29(6), 1823–1831.PubMedCrossRef Aiuti, A., Tavian, M., Cipponi, A., Ficara, F., Zappone, E., Hoxie, J., et al. (1999). Expression of cxcr4, the receptor for stromal cell-derived factor-1 on fetal and adult human lympho-hematopoietic progenitors. European Journal of Immunology, 29(6), 1823–1831.PubMedCrossRef
35.
go back to reference Aiuti, A., Webb, I. J., Bleul, C., Springer, T., & Gutierrez-Ramos, J. C. (1997). The chemokine sdf-1 is a chemoattractant for human cd34+ hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of cd34+ progenitors to peripheral blood. The Journal of Experimental Medicine, 185(1), 111–120.PubMedCrossRef Aiuti, A., Webb, I. J., Bleul, C., Springer, T., & Gutierrez-Ramos, J. C. (1997). The chemokine sdf-1 is a chemoattractant for human cd34+ hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of cd34+ progenitors to peripheral blood. The Journal of Experimental Medicine, 185(1), 111–120.PubMedCrossRef
36.
go back to reference Doitsidou, M., Reichman-Fried, M., Stebler, J., Koprunner, M., Dorries, J., Meyer, D., et al. (2002). Guidance of primordial germ cell migration by the chemokine sdf-1. Cell, 111(5), 647–659.PubMedCrossRef Doitsidou, M., Reichman-Fried, M., Stebler, J., Koprunner, M., Dorries, J., Meyer, D., et al. (2002). Guidance of primordial germ cell migration by the chemokine sdf-1. Cell, 111(5), 647–659.PubMedCrossRef
37.
go back to reference Nagasawa, T., Hirota, S., Tachibana, K., Takakura, N., Nishikawa, S., Kitamura, Y., et al. (1996). Defects of b-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the cxc chemokine pbsf/sdf-1. Nature, 382(6592), 635–638.PubMedCrossRef Nagasawa, T., Hirota, S., Tachibana, K., Takakura, N., Nishikawa, S., Kitamura, Y., et al. (1996). Defects of b-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the cxc chemokine pbsf/sdf-1. Nature, 382(6592), 635–638.PubMedCrossRef
38.
go back to reference Lee, R. L., Westendorf, J., & Gold, M. R. (2007). Differential role of reactive oxygen species in the activation of mitogen-activated protein kinases and akt by key receptors on b-lymphocytes: Cd40, the b cell antigen receptor, and cxcr4. Journal of Cell Communication and Signaling, 1(1), 33–43.PubMedCrossRef Lee, R. L., Westendorf, J., & Gold, M. R. (2007). Differential role of reactive oxygen species in the activation of mitogen-activated protein kinases and akt by key receptors on b-lymphocytes: Cd40, the b cell antigen receptor, and cxcr4. Journal of Cell Communication and Signaling, 1(1), 33–43.PubMedCrossRef
39.
go back to reference Lu, D. Y., Tang, C. H., Yeh, W. L., Wong, K. L., Lin, C. P., Chen, Y. H., et al. (2009). Sdf-1alpha up-regulates interleukin-6 through cxcr4, pi3k/akt, erk, and nf-kappab-dependent pathway in microglia. European Journal of Pharmacology, 613(1–3), 146–154.PubMedCrossRef Lu, D. Y., Tang, C. H., Yeh, W. L., Wong, K. L., Lin, C. P., Chen, Y. H., et al. (2009). Sdf-1alpha up-regulates interleukin-6 through cxcr4, pi3k/akt, erk, and nf-kappab-dependent pathway in microglia. European Journal of Pharmacology, 613(1–3), 146–154.PubMedCrossRef
40.
go back to reference Princen, K., Hatse, S., Vermeire, K., De Clercq, E., & Schols, D. (2003). Evaluation of sdf-1/cxcr4-induced ca2+ signaling by fluorometric imaging plate reader (flipr) and flow cytometry. Cytometry. Part A, 51(1), 35–45.CrossRef Princen, K., Hatse, S., Vermeire, K., De Clercq, E., & Schols, D. (2003). Evaluation of sdf-1/cxcr4-induced ca2+ signaling by fluorometric imaging plate reader (flipr) and flow cytometry. Cytometry. Part A, 51(1), 35–45.CrossRef
41.
go back to reference Roland, J., Murphy, B. J., Ahr, B., Robert-Hebmann, V., Delauzun, V., Nye, K. E., et al. (2003). Role of the intracellular domains of cxcr4 in sdf-1-mediated signaling. Blood, 101(2), 399–406.PubMedCrossRef Roland, J., Murphy, B. J., Ahr, B., Robert-Hebmann, V., Delauzun, V., Nye, K. E., et al. (2003). Role of the intracellular domains of cxcr4 in sdf-1-mediated signaling. Blood, 101(2), 399–406.PubMedCrossRef
42.
43.
go back to reference Muller, A., Homey, B., Soto, H., Ge, N., Catron, D., Buchanan, M. E., et al. (2001). Involvement of chemokine receptors in breast cancer metastasis. Nature, 410(6824), 50–56.PubMedCrossRef Muller, A., Homey, B., Soto, H., Ge, N., Catron, D., Buchanan, M. E., et al. (2001). Involvement of chemokine receptors in breast cancer metastasis. Nature, 410(6824), 50–56.PubMedCrossRef
44.
go back to reference Scotton, C. J., Wilson, J. L., Milliken, D., Stamp, G., & Balkwill, F. R. (2001). Epithelial cancer cell migration: A role for chemokine receptors? Cancer Research, 61(13), 4961–4965.PubMed Scotton, C. J., Wilson, J. L., Milliken, D., Stamp, G., & Balkwill, F. R. (2001). Epithelial cancer cell migration: A role for chemokine receptors? Cancer Research, 61(13), 4961–4965.PubMed
45.
go back to reference Zagzag, D., Lukyanov, Y., Lan, L., Ali, M. A., Esencay, M., Mendez, O., et al. (2006). Hypoxia-inducible factor 1 and vegf upregulate cxcr4 in glioblastoma: Implications for angiogenesis and glioma cell invasion. Laboratory Investigation, 86(12), 1221–1232.PubMedCrossRef Zagzag, D., Lukyanov, Y., Lan, L., Ali, M. A., Esencay, M., Mendez, O., et al. (2006). Hypoxia-inducible factor 1 and vegf upregulate cxcr4 in glioblastoma: Implications for angiogenesis and glioma cell invasion. Laboratory Investigation, 86(12), 1221–1232.PubMedCrossRef
46.
go back to reference Burns, J. M., Summers, B. C., Wang, Y., Melikian, A., Berahovich, R., Miao, Z., et al. (2006). A novel chemokine receptor for sdf-1 and i-tac involved in cell survival, cell adhesion, and tumor development. The Journal of Experimental Medicine, 203(9), 2201–2213.PubMedCrossRef Burns, J. M., Summers, B. C., Wang, Y., Melikian, A., Berahovich, R., Miao, Z., et al. (2006). A novel chemokine receptor for sdf-1 and i-tac involved in cell survival, cell adhesion, and tumor development. The Journal of Experimental Medicine, 203(9), 2201–2213.PubMedCrossRef
47.
go back to reference Balabanian, K., Lagane, B., Infantino, S., Chow, K. Y., Harriague, J., Moepps, B., et al. (2005). The chemokine sdf-1/cxcl12 binds to and signals through the orphan receptor rdc1 in t lymphocytes. The Journal of Biological Chemistry, 280(42), 35760–35766.PubMedCrossRef Balabanian, K., Lagane, B., Infantino, S., Chow, K. Y., Harriague, J., Moepps, B., et al. (2005). The chemokine sdf-1/cxcl12 binds to and signals through the orphan receptor rdc1 in t lymphocytes. The Journal of Biological Chemistry, 280(42), 35760–35766.PubMedCrossRef
48.
go back to reference Libert, F., Parmentier, M., Lefort, A., Dumont, J. E., & Vassart, G. (1990). Complete nucleotide sequence of a putative G protein coupled receptor: Rdc1. Nucleic Acids Research, 18(7), 1917.PubMedCrossRef Libert, F., Parmentier, M., Lefort, A., Dumont, J. E., & Vassart, G. (1990). Complete nucleotide sequence of a putative G protein coupled receptor: Rdc1. Nucleic Acids Research, 18(7), 1917.PubMedCrossRef
49.
go back to reference Jones, S. W., Brockbank, S. M., Mobbs, M. L., Le Good, N. J., Soma-Haddrick, S., Heuze, A. J., et al. (2006). The orphan G-protein coupled receptor rdc1: Evidence for a role in chondrocyte hypertrophy and articular cartilage matrix turnover. Osteoarthritis and Cartilage, 14(6), 597–608.PubMedCrossRef Jones, S. W., Brockbank, S. M., Mobbs, M. L., Le Good, N. J., Soma-Haddrick, S., Heuze, A. J., et al. (2006). The orphan G-protein coupled receptor rdc1: Evidence for a role in chondrocyte hypertrophy and articular cartilage matrix turnover. Osteoarthritis and Cartilage, 14(6), 597–608.PubMedCrossRef
50.
go back to reference Raggo, C., Ruhl, R., McAllister, S., Koon, H., Dezube, B. J., Fruh, K., et al. (2005). Novel cellular genes essential for transformation of endothelial cells by kaposi's sarcoma-associated herpesvirus. Cancer Research, 65(12), 5084–5095.PubMedCrossRef Raggo, C., Ruhl, R., McAllister, S., Koon, H., Dezube, B. J., Fruh, K., et al. (2005). Novel cellular genes essential for transformation of endothelial cells by kaposi's sarcoma-associated herpesvirus. Cancer Research, 65(12), 5084–5095.PubMedCrossRef
51.
go back to reference Martinez, A., Kapas, S., Miller, M. J., Ward, Y., & Cuttitta, F. (2000). Coexpression of receptors for adrenomedullin, calcitonin gene-related peptide, and amylin in pancreatic beta-cells. Endocrinology, 141(1), 406–411.PubMedCrossRef Martinez, A., Kapas, S., Miller, M. J., Ward, Y., & Cuttitta, F. (2000). Coexpression of receptors for adrenomedullin, calcitonin gene-related peptide, and amylin in pancreatic beta-cells. Endocrinology, 141(1), 406–411.PubMedCrossRef
52.
go back to reference Tripathi, V., Verma, R., Dinda, A., Malhotra, N., Kaur, J., & Luthra, K. (2009). Differential expression of rdc1/cxcr7 in the human placenta. Journal of Clinical Immunology, 29(3), 379–386.PubMedCrossRef Tripathi, V., Verma, R., Dinda, A., Malhotra, N., Kaur, J., & Luthra, K. (2009). Differential expression of rdc1/cxcr7 in the human placenta. Journal of Clinical Immunology, 29(3), 379–386.PubMedCrossRef
53.
go back to reference Miao, Z., Luker, K. E., Summers, B. C., Berahovich, R., Bhojani, M. S., Rehemtulla, A., et al. (2007). Cxcr7 (rdc1) promotes breast and lung tumor growth in vivo and is expressed on tumor-associated vasculature. Proceedings of the National Academy of Sciences of the United States of America, 104(40), 15735–15740.PubMedCrossRef Miao, Z., Luker, K. E., Summers, B. C., Berahovich, R., Bhojani, M. S., Rehemtulla, A., et al. (2007). Cxcr7 (rdc1) promotes breast and lung tumor growth in vivo and is expressed on tumor-associated vasculature. Proceedings of the National Academy of Sciences of the United States of America, 104(40), 15735–15740.PubMedCrossRef
54.
go back to reference Wang, J., Shiozawa, Y., Wang, Y., Jung, Y., Pienta, K. J., Mehra, R., et al. (2008). The role of cxcr7/rdc1 as a chemokine receptor for cxcl12/sdf-1 in prostate cancer. The Journal of Biological Chemistry, 283(7), 4283–4294.PubMedCrossRef Wang, J., Shiozawa, Y., Wang, Y., Jung, Y., Pienta, K. J., Mehra, R., et al. (2008). The role of cxcr7/rdc1 as a chemokine receptor for cxcl12/sdf-1 in prostate cancer. The Journal of Biological Chemistry, 283(7), 4283–4294.PubMedCrossRef
55.
go back to reference Begley, L. A., MacDonald, J. W., Day, M. L., & Macoska, J. A. (2007). Cxcl12 activates a robust transcriptional response in human prostate epithelial cells. The Journal of Biological Chemistry, 282(37), 26767–26774.PubMedCrossRef Begley, L. A., MacDonald, J. W., Day, M. L., & Macoska, J. A. (2007). Cxcl12 activates a robust transcriptional response in human prostate epithelial cells. The Journal of Biological Chemistry, 282(37), 26767–26774.PubMedCrossRef
56.
go back to reference Rajagopal, S., Kim, J., Ahn, S., Craig, S., Lam, C. M., Gerard, N. P., et al. (2010). Beta-arrestin- but not G protein-mediated signaling by the “Decoy” Receptor cxcr7. Proc Natl Acad Sci U S A, 107(2), 628–632.PubMedCrossRef Rajagopal, S., Kim, J., Ahn, S., Craig, S., Lam, C. M., Gerard, N. P., et al. (2010). Beta-arrestin- but not G protein-mediated signaling by the “Decoy” Receptor cxcr7. Proc Natl Acad Sci U S A, 107(2), 628–632.PubMedCrossRef
57.
go back to reference Boldajipour, B., Mahabaleshwar, H., Kardash, E., Reichman-Fried, M., Blaser, H., Minina, S., et al. (2008). Control of chemokine-guided cell migration by ligand sequestration. Cell, 132(3), 463–473.PubMedCrossRef Boldajipour, B., Mahabaleshwar, H., Kardash, E., Reichman-Fried, M., Blaser, H., Minina, S., et al. (2008). Control of chemokine-guided cell migration by ligand sequestration. Cell, 132(3), 463–473.PubMedCrossRef
58.
go back to reference Dambly-Chaudiere, C., Cubedo, N., & Ghysen, A. (2007). Control of cell migration in the development of the posterior lateral line: Antagonistic interactions between the chemokine receptors cxcr4 and cxcr7/rdc1. BMC Developmental Biology, 7, 23.PubMedCrossRef Dambly-Chaudiere, C., Cubedo, N., & Ghysen, A. (2007). Control of cell migration in the development of the posterior lateral line: Antagonistic interactions between the chemokine receptors cxcr4 and cxcr7/rdc1. BMC Developmental Biology, 7, 23.PubMedCrossRef
59.
go back to reference Levoye, A., Balabanian, K., Baleux, F., Bachelerie, F., & Lagane, B. (2009). Cxcr7 heterodimerizes with cxcr4 and regulates cxcl12-mediated G protein signaling. Blood, 113(24), 6085–6093.PubMedCrossRef Levoye, A., Balabanian, K., Baleux, F., Bachelerie, F., & Lagane, B. (2009). Cxcr7 heterodimerizes with cxcr4 and regulates cxcl12-mediated G protein signaling. Blood, 113(24), 6085–6093.PubMedCrossRef
60.
go back to reference Sierro, F., Biben, C., Martinez-Munoz, L., Mellado, M., Ransohoff, R. M., Li, M., et al. (2007). Disrupted cardiac development but normal hematopoiesis in mice deficient in the second cxcl12/sdf-1 receptor, cxcr7. Proceedings of the National Academy of Sciences of the United States of America, 104(37), 14759–14764.PubMedCrossRef Sierro, F., Biben, C., Martinez-Munoz, L., Mellado, M., Ransohoff, R. M., Li, M., et al. (2007). Disrupted cardiac development but normal hematopoiesis in mice deficient in the second cxcl12/sdf-1 receptor, cxcr7. Proceedings of the National Academy of Sciences of the United States of America, 104(37), 14759–14764.PubMedCrossRef
61.
go back to reference Hartmann, T. N., Grabovsky, V., Pasvolsky, R., Shulman, Z., Buss, E. C., Spiegel, A., et al. (2008). A crosstalk between intracellular cxcr7 and cxcr4 involved in rapid cxcl12-triggered integrin activation but not in chemokine-triggered motility of human t lymphocytes and cd34+ cells. Journal of Leukocyte Biology, 84(4), 1130–1140.PubMedCrossRef Hartmann, T. N., Grabovsky, V., Pasvolsky, R., Shulman, Z., Buss, E. C., Spiegel, A., et al. (2008). A crosstalk between intracellular cxcr7 and cxcr4 involved in rapid cxcl12-triggered integrin activation but not in chemokine-triggered motility of human t lymphocytes and cd34+ cells. Journal of Leukocyte Biology, 84(4), 1130–1140.PubMedCrossRef
62.
go back to reference Kalatskaya, I., Berchiche, Y. A., Gravel, S., Limberg, B. J., Rosenbaum, J. S., & Heveker, N. (2009). Amd3100 is a cxcr7 ligand with allosteric agonist properties. Molecular Pharmacology, 75(5), 1240–1247.PubMedCrossRef Kalatskaya, I., Berchiche, Y. A., Gravel, S., Limberg, B. J., Rosenbaum, J. S., & Heveker, N. (2009). Amd3100 is a cxcr7 ligand with allosteric agonist properties. Molecular Pharmacology, 75(5), 1240–1247.PubMedCrossRef
63.
go back to reference Luker, K. E., Gupta, M., Steele, J. M., Foerster, B. R., & Luker, G. D. (2009). Imaging ligand-dependent activation of cxcr7. Neoplasia, 11(10), 1022–1035.PubMed Luker, K. E., Gupta, M., Steele, J. M., Foerster, B. R., & Luker, G. D. (2009). Imaging ligand-dependent activation of cxcr7. Neoplasia, 11(10), 1022–1035.PubMed
64.
go back to reference Fernandis, A. Z., Cherla, R. P., Chernock, R. D., & Ganju, R. K. (2002). Cxcr4/ccr5 down-modulation and chemotaxis are regulated by the proteasome pathway. The Journal of Biological Chemistry, 277(20), 18111–18117.PubMedCrossRef Fernandis, A. Z., Cherla, R. P., Chernock, R. D., & Ganju, R. K. (2002). Cxcr4/ccr5 down-modulation and chemotaxis are regulated by the proteasome pathway. The Journal of Biological Chemistry, 277(20), 18111–18117.PubMedCrossRef
65.
go back to reference Sun, Y. X., Schneider, A., Jung, Y., Wang, J., Dai, J., Cook, K., et al. (2005). Skeletal localization and neutralization of the sdf-1(cxcl12)/cxcr4 axis blocks prostate cancer metastasis and growth in osseous sites in vivo. Journal of Bone and Mineral Research, 20(2), 318–329.PubMedCrossRef Sun, Y. X., Schneider, A., Jung, Y., Wang, J., Dai, J., Cook, K., et al. (2005). Skeletal localization and neutralization of the sdf-1(cxcl12)/cxcr4 axis blocks prostate cancer metastasis and growth in osseous sites in vivo. Journal of Bone and Mineral Research, 20(2), 318–329.PubMedCrossRef
66.
go back to reference Engl, T., Relja, B., Marian, D., Blumenberg, C., Muller, I., Beecken, W. D., et al. (2006). Cxcr4 chemokine receptor mediates prostate tumor cell adhesion through alpha5 and beta3 integrins. Neoplasia, 8(4), 290–301.PubMedCrossRef Engl, T., Relja, B., Marian, D., Blumenberg, C., Muller, I., Beecken, W. D., et al. (2006). Cxcr4 chemokine receptor mediates prostate tumor cell adhesion through alpha5 and beta3 integrins. Neoplasia, 8(4), 290–301.PubMedCrossRef
67.
go back to reference Kukreja, P., Abdel-Mageed, A. B., Mondal, D., Liu, K., & Agrawal, K. C. (2005). Up-regulation of cxcr4 expression in pc-3 cells by stromal-derived factor-1alpha (cxcl12) increases endothelial adhesion and transendothelial migration: Role of mek/erk signaling pathway-dependent nf-kappab activation. Cancer Research, 65(21), 9891–9898.PubMedCrossRef Kukreja, P., Abdel-Mageed, A. B., Mondal, D., Liu, K., & Agrawal, K. C. (2005). Up-regulation of cxcr4 expression in pc-3 cells by stromal-derived factor-1alpha (cxcl12) increases endothelial adhesion and transendothelial migration: Role of mek/erk signaling pathway-dependent nf-kappab activation. Cancer Research, 65(21), 9891–9898.PubMedCrossRef
68.
go back to reference Sun, Y. X., Wang, J., Shelburne, C. E., Lopatin, D. E., Chinnaiyan, A. M., Rubin, M. A., et al. (2003). Expression of cxcr4 and cxcl12 (sdf-1) in human prostate cancers (pca) in vivo. Journal of Cellular Biochemistry, 89(3), 462–473.PubMedCrossRef Sun, Y. X., Wang, J., Shelburne, C. E., Lopatin, D. E., Chinnaiyan, A. M., Rubin, M. A., et al. (2003). Expression of cxcr4 and cxcl12 (sdf-1) in human prostate cancers (pca) in vivo. Journal of Cellular Biochemistry, 89(3), 462–473.PubMedCrossRef
69.
go back to reference Darash-Yahana, M., Pikarsky, E., Abramovitch, R., Zeira, E., Pal, B., Karplus, R., et al. (2004). Role of high expression levels of cxcr4 in tumor growth, vascularization, and metastasis. The FASEB Journal, 18(11), 1240–1242.PubMed Darash-Yahana, M., Pikarsky, E., Abramovitch, R., Zeira, E., Pal, B., Karplus, R., et al. (2004). Role of high expression levels of cxcr4 in tumor growth, vascularization, and metastasis. The FASEB Journal, 18(11), 1240–1242.PubMed
70.
go back to reference Wang, J., Sun, Y., Song, W., Nor, J. E., Wang, C. Y., & Taichman, R. S. (2005). Diverse signaling pathways through the sdf-1/cxcr4 chemokine axis in prostate cancer cell lines leads to altered patterns of cytokine secretion and angiogenesis. Cellular Signalling, 17(12), 1578–1592.PubMedCrossRef Wang, J., Sun, Y., Song, W., Nor, J. E., Wang, C. Y., & Taichman, R. S. (2005). Diverse signaling pathways through the sdf-1/cxcr4 chemokine axis in prostate cancer cell lines leads to altered patterns of cytokine secretion and angiogenesis. Cellular Signalling, 17(12), 1578–1592.PubMedCrossRef
71.
go back to reference Wang, J., Dai, J., Jung, Y., Wei, C. L., Wang, Y., Havens, A. M., et al. (2007). A glycolytic mechanism regulating an angiogenic switch in prostate cancer. Cancer Research, 67(1), 149–159.PubMedCrossRef Wang, J., Dai, J., Jung, Y., Wei, C. L., Wang, Y., Havens, A. M., et al. (2007). A glycolytic mechanism regulating an angiogenic switch in prostate cancer. Cancer Research, 67(1), 149–159.PubMedCrossRef
72.
go back to reference Zhao, H., & Peehl, D. M. (2009). Tumor-promoting phenotype of cd90hi prostate cancer-associated fibroblasts. The Prostate, 69(9), 991–1000.PubMedCrossRef Zhao, H., & Peehl, D. M. (2009). Tumor-promoting phenotype of cd90hi prostate cancer-associated fibroblasts. The Prostate, 69(9), 991–1000.PubMedCrossRef
73.
go back to reference Ratajczak, M. Z., Reca, R., Wysoczynski, M., Yan, J., & Ratajczak, J. (2006). Modulation of the sdf-1-cxcr4 axis by the third complement component (c3)—Implications for trafficking of cxcr4+ stem cells. Experimental Hematology, 34(8), 986–995.PubMedCrossRef Ratajczak, M. Z., Reca, R., Wysoczynski, M., Yan, J., & Ratajczak, J. (2006). Modulation of the sdf-1-cxcr4 axis by the third complement component (c3)—Implications for trafficking of cxcr4+ stem cells. Experimental Hematology, 34(8), 986–995.PubMedCrossRef
74.
go back to reference Hermann, P. C., Huber, S. L., Herrler, T., Aicher, A., Ellwart, J. W., Guba, M., et al. (2007). Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell, 1(3), 313–323.PubMedCrossRef Hermann, P. C., Huber, S. L., Herrler, T., Aicher, A., Ellwart, J. W., Guba, M., et al. (2007). Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell, 1(3), 313–323.PubMedCrossRef
75.
go back to reference Mazzinghi, B., Ronconi, E., Lazzeri, E., Sagrinati, C., Ballerini, L., Angelotti, M. L., et al. (2008). Essential but differential role for cxcr4 and cxcr7 in the therapeutic homing of human renal progenitor cells. The Journal of Experimental Medicine, 205(2), 479–490.PubMedCrossRef Mazzinghi, B., Ronconi, E., Lazzeri, E., Sagrinati, C., Ballerini, L., Angelotti, M. L., et al. (2008). Essential but differential role for cxcr4 and cxcr7 in the therapeutic homing of human renal progenitor cells. The Journal of Experimental Medicine, 205(2), 479–490.PubMedCrossRef
76.
go back to reference Kang, Y., Siegel, P. M., Shu, W., Drobnjak, M., Kakonen, S. M., Cordon-Cardo, C., et al. (2003). A multigenic program mediating breast cancer metastasis to bone. Cancer Cell, 3(6), 537–549.PubMedCrossRef Kang, Y., Siegel, P. M., Shu, W., Drobnjak, M., Kakonen, S. M., Cordon-Cardo, C., et al. (2003). A multigenic program mediating breast cancer metastasis to bone. Cancer Cell, 3(6), 537–549.PubMedCrossRef
77.
go back to reference Liang, Z., Yoon, Y., Votaw, J., Goodman, M. M., Williams, L., & Shim, H. (2005). Silencing of cxcr4 blocks breast cancer metastasis. Cancer Research, 65(3), 967–971.PubMed Liang, Z., Yoon, Y., Votaw, J., Goodman, M. M., Williams, L., & Shim, H. (2005). Silencing of cxcr4 blocks breast cancer metastasis. Cancer Research, 65(3), 967–971.PubMed
78.
go back to reference Ueda, Y., Neel, N. F., Schutyser, E., Raman, D., & Richmond, A. (2006). Deletion of the cooh-terminal domain of cxc chemokine receptor 4 leads to the down-regulation of cell-to-cell contact, enhanced motility and proliferation in breast carcinoma cells. Cancer Research, 66(11), 5665–5675.PubMedCrossRef Ueda, Y., Neel, N. F., Schutyser, E., Raman, D., & Richmond, A. (2006). Deletion of the cooh-terminal domain of cxc chemokine receptor 4 leads to the down-regulation of cell-to-cell contact, enhanced motility and proliferation in breast carcinoma cells. Cancer Research, 66(11), 5665–5675.PubMedCrossRef
79.
go back to reference Holland, J. D., Kochetkova, M., Akekawatchai, C., Dottore, M., Lopez, A., & McColl, S. R. (2006). Differential functional activation of chemokine receptor cxcr4 is mediated by G proteins in breast cancer cells. Cancer Research, 66(8), 4117–4124.PubMedCrossRef Holland, J. D., Kochetkova, M., Akekawatchai, C., Dottore, M., Lopez, A., & McColl, S. R. (2006). Differential functional activation of chemokine receptor cxcr4 is mediated by G proteins in breast cancer cells. Cancer Research, 66(8), 4117–4124.PubMedCrossRef
80.
go back to reference Fulton, A. M. (2009). The chemokine receptors cxcr4 and cxcr3 in cancer. Current Oncology Reports, 11(2), 125–131.PubMedCrossRef Fulton, A. M. (2009). The chemokine receptors cxcr4 and cxcr3 in cancer. Current Oncology Reports, 11(2), 125–131.PubMedCrossRef
81.
go back to reference Akekawatchai, C., Holland, J. D., Kochetkova, M., Wallace, J. C., & McColl, S. R. (2005). Transactivation of cxcr4 by the insulin-like growth factor-1 receptor (igf-1r) in human mda-mb-231 breast cancer epithelial cells. The Journal of Biological Chemistry, 280(48), 39701–39708.PubMedCrossRef Akekawatchai, C., Holland, J. D., Kochetkova, M., Wallace, J. C., & McColl, S. R. (2005). Transactivation of cxcr4 by the insulin-like growth factor-1 receptor (igf-1r) in human mda-mb-231 breast cancer epithelial cells. The Journal of Biological Chemistry, 280(48), 39701–39708.PubMedCrossRef
82.
go back to reference Orimo, A., Gupta, P. B., Sgroi, D. C., Arenzana-Seisdedos, F., Delaunay, T., Naeem, R., et al. (2005). Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated sdf-1/cxcl12 secretion. Cell, 121(3), 335–348.PubMedCrossRef Orimo, A., Gupta, P. B., Sgroi, D. C., Arenzana-Seisdedos, F., Delaunay, T., Naeem, R., et al. (2005). Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated sdf-1/cxcl12 secretion. Cell, 121(3), 335–348.PubMedCrossRef
83.
go back to reference Razmkhah, M., Talei, A. R., Doroudchi, M., Khalili-Azad, T., & Ghaderi, A. (2005). Stromal cell-derived factor-1 (sdf-1) alleles and susceptibility to breast carcinoma. Cancer Letters, 225(2), 261–266.PubMedCrossRef Razmkhah, M., Talei, A. R., Doroudchi, M., Khalili-Azad, T., & Ghaderi, A. (2005). Stromal cell-derived factor-1 (sdf-1) alleles and susceptibility to breast carcinoma. Cancer Letters, 225(2), 261–266.PubMedCrossRef
84.
go back to reference Cabioglu, N., Summy, J., Miller, C., Parikh, N. U., Sahin, A. A., Tuzlali, S., et al. (2005). Cxcl-12/stromal cell-derived factor-1alpha transactivates her2-neu in breast cancer cells by a novel pathway involving src kinase activation. Cancer Research, 65(15), 6493–6497.PubMedCrossRef Cabioglu, N., Summy, J., Miller, C., Parikh, N. U., Sahin, A. A., Tuzlali, S., et al. (2005). Cxcl-12/stromal cell-derived factor-1alpha transactivates her2-neu in breast cancer cells by a novel pathway involving src kinase activation. Cancer Research, 65(15), 6493–6497.PubMedCrossRef
85.
go back to reference Salmaggi, A., Maderna, E., Calatozzolo, C., Gaviani, P., Canazza, A., Milanesi, I., et al. (2009). Cxcl12, cxcr4 and cxcr7 expression in brain metastases. Cancer Biology & Therapy, 8(17), 1608–1614.CrossRef Salmaggi, A., Maderna, E., Calatozzolo, C., Gaviani, P., Canazza, A., Milanesi, I., et al. (2009). Cxcl12, cxcr4 and cxcr7 expression in brain metastases. Cancer Biology & Therapy, 8(17), 1608–1614.CrossRef
86.
go back to reference Burger, J. A., & Kipps, T. J. (2006). Cxcr4: A key receptor in the crosstalk between tumor cells and their microenvironment. Blood, 107(5), 1761–1767.PubMedCrossRef Burger, J. A., & Kipps, T. J. (2006). Cxcr4: A key receptor in the crosstalk between tumor cells and their microenvironment. Blood, 107(5), 1761–1767.PubMedCrossRef
87.
go back to reference Burger, M., Glodek, A., Hartmann, T., Schmitt-Graff, A., Silberstein, L. E., Fujii, N., et al. (2003). Functional expression of cxcr4 (cd184) on small-cell lung cancer cells mediates migration, integrin activation, and adhesion to stromal cells. Oncogene, 22(50), 8093–8101.PubMedCrossRef Burger, M., Glodek, A., Hartmann, T., Schmitt-Graff, A., Silberstein, L. E., Fujii, N., et al. (2003). Functional expression of cxcr4 (cd184) on small-cell lung cancer cells mediates migration, integrin activation, and adhesion to stromal cells. Oncogene, 22(50), 8093–8101.PubMedCrossRef
88.
go back to reference Hartmann, T. N., Burger, J. A., Glodek, A., Fujii, N., & Burger, M. (2005). Cxcr4 chemokine receptor and integrin signaling co-operate in mediating adhesion and chemoresistance in small cell lung cancer (sclc) cells. Oncogene, 24(27), 4462–4471.PubMedCrossRef Hartmann, T. N., Burger, J. A., Glodek, A., Fujii, N., & Burger, M. (2005). Cxcr4 chemokine receptor and integrin signaling co-operate in mediating adhesion and chemoresistance in small cell lung cancer (sclc) cells. Oncogene, 24(27), 4462–4471.PubMedCrossRef
89.
go back to reference Su, L. P., Zhang, J. P., Xu, H. B., Chen, J., Wang, Y., & Xiong, S. D. (2005). the role of cxcr4 in lung cancer metastasis and its possible mechanism. Zhonghua Yi Xue Za Zhi, 85(17), 1190–1194.PubMed Su, L. P., Zhang, J. P., Xu, H. B., Chen, J., Wang, Y., & Xiong, S. D. (2005). the role of cxcr4 in lung cancer metastasis and its possible mechanism. Zhonghua Yi Xue Za Zhi, 85(17), 1190–1194.PubMed
90.
go back to reference Kijima, T., Maulik, G., Ma, P. C., Tibaldi, E. V., Turner, R. E., Rollins, B., et al. (2002). Regulation of cellular proliferation, cytoskeletal function, and signal transduction through cxcr4 and c-kit in small cell lung cancer cells. Cancer Research, 62(21), 6304–6311.PubMed Kijima, T., Maulik, G., Ma, P. C., Tibaldi, E. V., Turner, R. E., Rollins, B., et al. (2002). Regulation of cellular proliferation, cytoskeletal function, and signal transduction through cxcr4 and c-kit in small cell lung cancer cells. Cancer Research, 62(21), 6304–6311.PubMed
91.
go back to reference Phillips, R. J., Mestas, J., Gharaee-Kermani, M., Burdick, M. D., Sica, A., Belperio, J. A., et al. (2005). Epidermal growth factor and hypoxia-induced expression of cxc chemokine receptor 4 on non-small cell lung cancer cells is regulated by the phosphatidylinositol 3-kinase/pten/akt/mammalian target of rapamycin signaling pathway and activation of hypoxia inducible factor-1alpha. The Journal of Biological Chemistry, 280(23), 22473–22481.PubMedCrossRef Phillips, R. J., Mestas, J., Gharaee-Kermani, M., Burdick, M. D., Sica, A., Belperio, J. A., et al. (2005). Epidermal growth factor and hypoxia-induced expression of cxc chemokine receptor 4 on non-small cell lung cancer cells is regulated by the phosphatidylinositol 3-kinase/pten/akt/mammalian target of rapamycin signaling pathway and activation of hypoxia inducible factor-1alpha. The Journal of Biological Chemistry, 280(23), 22473–22481.PubMedCrossRef
92.
go back to reference Iwakiri, S., Mino, N., Takahashi, T., Sonobe, M., Nagai, S., Okubo, K., et al. (2009). Higher expression of chemokine receptor cxcr7 is linked to early and metastatic recurrence in pathological stage I nonsmall cell lung cancer. Cancer, 115(11), 2580–2593.PubMedCrossRef Iwakiri, S., Mino, N., Takahashi, T., Sonobe, M., Nagai, S., Okubo, K., et al. (2009). Higher expression of chemokine receptor cxcr7 is linked to early and metastatic recurrence in pathological stage I nonsmall cell lung cancer. Cancer, 115(11), 2580–2593.PubMedCrossRef
93.
go back to reference Billadeau, D. D., Chatterjee, S., Bramati, P., Sreekumar, R., Shah, V., Hedin, K., et al. (2006). Characterization of the cxcr4 signaling in pancreatic cancer cells. International Journal of Gastrointestinal Cancer, 37(4), 110–119.PubMed Billadeau, D. D., Chatterjee, S., Bramati, P., Sreekumar, R., Shah, V., Hedin, K., et al. (2006). Characterization of the cxcr4 signaling in pancreatic cancer cells. International Journal of Gastrointestinal Cancer, 37(4), 110–119.PubMed
94.
go back to reference Mori, T., Doi, R., Koizumi, M., Toyoda, E., Ito, D., Kami, K., et al. (2004). Cxcr4 antagonist inhibits stromal cell-derived factor 1-induced migration and invasion of human pancreatic cancer. Molecular Cancer Therapeutics, 3(1), 29–37.PubMed Mori, T., Doi, R., Koizumi, M., Toyoda, E., Ito, D., Kami, K., et al. (2004). Cxcr4 antagonist inhibits stromal cell-derived factor 1-induced migration and invasion of human pancreatic cancer. Molecular Cancer Therapeutics, 3(1), 29–37.PubMed
95.
go back to reference Koshiba, T., Hosotani, R., Miyamoto, Y., Ida, J., Tsuji, S., Nakajima, S., et al. (2000). Expression of stromal cell-derived factor 1 and cxcr4 ligand receptor system in pancreatic cancer: A possible role for tumor progression. Clinical Cancer Research, 6(9), 3530–3535.PubMed Koshiba, T., Hosotani, R., Miyamoto, Y., Ida, J., Tsuji, S., Nakajima, S., et al. (2000). Expression of stromal cell-derived factor 1 and cxcr4 ligand receptor system in pancreatic cancer: A possible role for tumor progression. Clinical Cancer Research, 6(9), 3530–3535.PubMed
96.
go back to reference Marchesi, F., Monti, P., Leone, B. E., Zerbi, A., Vecchi, A., Piemonti, L., et al. (2004). Increased survival, proliferation, and migration in metastatic human pancreatic tumor cells expressing functional cxcr4. Cancer Research, 64(22), 8420–8427.PubMedCrossRef Marchesi, F., Monti, P., Leone, B. E., Zerbi, A., Vecchi, A., Piemonti, L., et al. (2004). Increased survival, proliferation, and migration in metastatic human pancreatic tumor cells expressing functional cxcr4. Cancer Research, 64(22), 8420–8427.PubMedCrossRef
97.
go back to reference Gao, Z., Wang, X., Wu, K., Zhao, Y., & Hu, G. (2010). Pancreatic stellate cells increase the invasion of human pancreatic cancer cells through the stromal cell-derived factor-1/cxcr4 axis. Pancreatology, 10(2–3), 186–193.PubMedCrossRef Gao, Z., Wang, X., Wu, K., Zhao, Y., & Hu, G. (2010). Pancreatic stellate cells increase the invasion of human pancreatic cancer cells through the stromal cell-derived factor-1/cxcr4 axis. Pancreatology, 10(2–3), 186–193.PubMedCrossRef
98.
go back to reference Marechal, R., Demetter, P., Nagy, N., Berton, A., Decaestecker, C., Polus, M., et al. (2009). High expression of cxcr4 may predict poor survival in resected pancreatic adenocarcinoma. British Journal of Cancer, 100(9), 1444–1451.PubMedCrossRef Marechal, R., Demetter, P., Nagy, N., Berton, A., Decaestecker, C., Polus, M., et al. (2009). High expression of cxcr4 may predict poor survival in resected pancreatic adenocarcinoma. British Journal of Cancer, 100(9), 1444–1451.PubMedCrossRef
99.
go back to reference Jankowski, K., Kucia, M., Wysoczynski, M., Reca, R., Zhao, D., Trzyna, E., et al. (2003). Both hepatocyte growth factor (hgf) and stromal-derived factor-1 regulate the metastatic behavior of human rhabdomyosarcoma cells, but only hgf enhances their resistance to radiochemotherapy. Cancer Research, 63(22), 7926–7935.PubMed Jankowski, K., Kucia, M., Wysoczynski, M., Reca, R., Zhao, D., Trzyna, E., et al. (2003). Both hepatocyte growth factor (hgf) and stromal-derived factor-1 regulate the metastatic behavior of human rhabdomyosarcoma cells, but only hgf enhances their resistance to radiochemotherapy. Cancer Research, 63(22), 7926–7935.PubMed
100.
go back to reference Balkwill, F. (2004). The significance of cancer cell expression of the chemokine receptor cxcr4. Seminars in Cancer Biology, 14(3), 171–179.PubMedCrossRef Balkwill, F. (2004). The significance of cancer cell expression of the chemokine receptor cxcr4. Seminars in Cancer Biology, 14(3), 171–179.PubMedCrossRef
101.
go back to reference Bertolini, F., Dell’Agnola, C., Mancuso, P., Rabascio, C., Burlini, A., Monestiroli, S., et al. (2002). Cxcr4 neutralization, a novel therapeutic approach for non-Hodgkin’s lymphoma. Cancer Research, 62(11), 3106–3112.PubMed Bertolini, F., Dell’Agnola, C., Mancuso, P., Rabascio, C., Burlini, A., Monestiroli, S., et al. (2002). Cxcr4 neutralization, a novel therapeutic approach for non-Hodgkin’s lymphoma. Cancer Research, 62(11), 3106–3112.PubMed
102.
go back to reference Scotton, C. J., Wilson, J. L., Scott, K., Stamp, G., Wilbanks, G. D., Fricker, S., et al. (2002). Multiple actions of the chemokine cxcl12 on epithelial tumor cells in human ovarian cancer. Cancer Research, 62(20), 5930–5938.PubMed Scotton, C. J., Wilson, J. L., Scott, K., Stamp, G., Wilbanks, G. D., Fricker, S., et al. (2002). Multiple actions of the chemokine cxcl12 on epithelial tumor cells in human ovarian cancer. Cancer Research, 62(20), 5930–5938.PubMed
103.
go back to reference Zhou, Y., Larsen, P. H., Hao, C., & Yong, V. W. (2002). Cxcr4 is a major chemokine receptor on glioma cells and mediates their survival. The Journal of Biological Chemistry, 277(51), 49481–49487.PubMedCrossRef Zhou, Y., Larsen, P. H., Hao, C., & Yong, V. W. (2002). Cxcr4 is a major chemokine receptor on glioma cells and mediates their survival. The Journal of Biological Chemistry, 277(51), 49481–49487.PubMedCrossRef
104.
go back to reference Rubin, J. B., Kung, A. L., Klein, R. S., Chan, J. A., Sun, Y., Schmidt, K., et al. (2003). A small-molecule antagonist of cxcr4 inhibits intracranial growth of primary brain tumors. Proceedings of the National Academy of Sciences of the United States of America, 100(23), 13513–13518.PubMedCrossRef Rubin, J. B., Kung, A. L., Klein, R. S., Chan, J. A., Sun, Y., Schmidt, K., et al. (2003). A small-molecule antagonist of cxcr4 inhibits intracranial growth of primary brain tumors. Proceedings of the National Academy of Sciences of the United States of America, 100(23), 13513–13518.PubMedCrossRef
105.
go back to reference Sehgal, A., Keener, C., Boynton, A. L., Warrick, J., & Murphy, G. P. (1998). Cxcr-4, a chemokine receptor, is overexpressed in and required for proliferation of glioblastoma tumor cells. Journal of Surgical Oncology, 69(2), 99–104.PubMedCrossRef Sehgal, A., Keener, C., Boynton, A. L., Warrick, J., & Murphy, G. P. (1998). Cxcr-4, a chemokine receptor, is overexpressed in and required for proliferation of glioblastoma tumor cells. Journal of Surgical Oncology, 69(2), 99–104.PubMedCrossRef
106.
go back to reference Kim, J., Mori, T., Chen, S. L., Amersi, F. F., Martinez, S. R., Kuo, C., et al. (2006). Chemokine receptor cxcr4 expression in patients with melanoma and colorectal cancer liver metastases and the association with disease outcome. Annals of Surgery, 244(1), 113–120.PubMedCrossRef Kim, J., Mori, T., Chen, S. L., Amersi, F. F., Martinez, S. R., Kuo, C., et al. (2006). Chemokine receptor cxcr4 expression in patients with melanoma and colorectal cancer liver metastases and the association with disease outcome. Annals of Surgery, 244(1), 113–120.PubMedCrossRef
107.
go back to reference Geminder, H., Sagi-Assif, O., Goldberg, L., Meshel, T., Rechavi, G., Witz, I. P., et al. (2001). A possible role for cxcr4 and its ligand, the cxc chemokine stromal cell-derived factor-1, in the development of bone marrow metastases in neuroblastoma. Journal of Immunology, 167(8), 4747–4757. Geminder, H., Sagi-Assif, O., Goldberg, L., Meshel, T., Rechavi, G., Witz, I. P., et al. (2001). A possible role for cxcr4 and its ligand, the cxc chemokine stromal cell-derived factor-1, in the development of bone marrow metastases in neuroblastoma. Journal of Immunology, 167(8), 4747–4757.
108.
go back to reference Scala, S., Ottaiano, A., Ascierto, P. A., Cavalli, M., Simeone, E., Giuliano, P., et al. (2005). Expression of cxcr4 predicts poor prognosis in patients with malignant melanoma. Clinical Cancer Research, 11(5), 1835–1841.PubMedCrossRef Scala, S., Ottaiano, A., Ascierto, P. A., Cavalli, M., Simeone, E., Giuliano, P., et al. (2005). Expression of cxcr4 predicts poor prognosis in patients with malignant melanoma. Clinical Cancer Research, 11(5), 1835–1841.PubMedCrossRef
109.
go back to reference Zeelenberg, I. S., Ruuls-Van Stalle, L., & Roos, E. (2003). The chemokine receptor cxcr4 is required for outgrowth of colon carcinoma micrometastases. Cancer Research, 63(13), 3833–3839.PubMed Zeelenberg, I. S., Ruuls-Van Stalle, L., & Roos, E. (2003). The chemokine receptor cxcr4 is required for outgrowth of colon carcinoma micrometastases. Cancer Research, 63(13), 3833–3839.PubMed
110..
go back to reference Grymula, K., Tarnowski, M., Wysoczynski, M., Drukala, J., Barr, F. G., Ratajczak, J., et al. (2010) Overlapping and distinct role of cxcr7-sdf-1/itac and cxcr4-sdf-1 axes in regulating metastatic behavior of human rhabdomyosarcomas. Int J Cancer (in press). Grymula, K., Tarnowski, M., Wysoczynski, M., Drukala, J., Barr, F. G., Ratajczak, J., et al. (2010) Overlapping and distinct role of cxcr7-sdf-1/itac and cxcr4-sdf-1 axes in regulating metastatic behavior of human rhabdomyosarcomas. Int J Cancer (in press).
111.
go back to reference Libura, J., Drukala, J., Majka, M., Tomescu, O., Navenot, J. M., Kucia, M., et al. (2002). Cxcr4-sdf-1 signaling is active in rhabdomyosarcoma cells and regulates locomotion, chemotaxis, and adhesion. Blood, 100(7), 2597–2606.PubMedCrossRef Libura, J., Drukala, J., Majka, M., Tomescu, O., Navenot, J. M., Kucia, M., et al. (2002). Cxcr4-sdf-1 signaling is active in rhabdomyosarcoma cells and regulates locomotion, chemotaxis, and adhesion. Blood, 100(7), 2597–2606.PubMedCrossRef
112.
go back to reference Tarnowski, M., Grymula, K., Reca, R., Jankowski, K., Maksym, R., Tarnowska, J., et al. (2010). Regulation of expression of stromal-derived factor-1 receptors: Cxcr4 and cxcr7 in human rhabdomyosarcomas. Mol Cancer Res, 8(1), 1–14.PubMedCrossRef Tarnowski, M., Grymula, K., Reca, R., Jankowski, K., Maksym, R., Tarnowska, J., et al. (2010). Regulation of expression of stromal-derived factor-1 receptors: Cxcr4 and cxcr7 in human rhabdomyosarcomas. Mol Cancer Res, 8(1), 1–14.PubMedCrossRef
113.
go back to reference Matsunaga, T., Takemoto, N., Sato, T., Takimoto, R., Tanaka, I., Fujimi, A., et al. (2003). Interaction between leukemic-cell vla-4 and stromal fibronectin is a decisive factor for minimal residual disease of acute myelogenous leukemia. Natural Medicines, 9(9), 1158–1165.CrossRef Matsunaga, T., Takemoto, N., Sato, T., Takimoto, R., Tanaka, I., Fujimi, A., et al. (2003). Interaction between leukemic-cell vla-4 and stromal fibronectin is a decisive factor for minimal residual disease of acute myelogenous leukemia. Natural Medicines, 9(9), 1158–1165.CrossRef
114.
go back to reference Sanz-Rodriguez, F., Hidalgo, A., & Teixido, J. (2001). Chemokine stromal cell-derived factor-1alpha modulates vla-4 integrin-mediated multiple myeloma cell adhesion to cs-1/fibronectin and vcam-1. Blood, 97(2), 346–351.PubMedCrossRef Sanz-Rodriguez, F., Hidalgo, A., & Teixido, J. (2001). Chemokine stromal cell-derived factor-1alpha modulates vla-4 integrin-mediated multiple myeloma cell adhesion to cs-1/fibronectin and vcam-1. Blood, 97(2), 346–351.PubMedCrossRef
115.
go back to reference Dvorak, H. F. (1986). Tumors: Wounds that do not heal. Similarities between tumor stroma generation and wound healing. The New England journal of medicine, 315(26), 1650–1659.PubMedCrossRef Dvorak, H. F. (1986). Tumors: Wounds that do not heal. Similarities between tumor stroma generation and wound healing. The New England journal of medicine, 315(26), 1650–1659.PubMedCrossRef
116.
go back to reference Horgan, K., Jones, D. L., & Mansel, R. E. (1987). Mitogenicity of human fibroblasts in vivo for human breast cancer cells. The British Journal of Surgery, 74(3), 227–229.PubMedCrossRef Horgan, K., Jones, D. L., & Mansel, R. E. (1987). Mitogenicity of human fibroblasts in vivo for human breast cancer cells. The British Journal of Surgery, 74(3), 227–229.PubMedCrossRef
117.
go back to reference Ronnov-Jessen, L., Petersen, O. W., Koteliansky, V. E., & Bissell, M. J. (1995). The origin of the myofibroblasts in breast cancer. Recapitulation of tumor environment in culture unravels diversity and implicates converted fibroblasts and recruited smooth muscle cells. The Journal of clinical investigation, 95(2), 859–873.PubMedCrossRef Ronnov-Jessen, L., Petersen, O. W., Koteliansky, V. E., & Bissell, M. J. (1995). The origin of the myofibroblasts in breast cancer. Recapitulation of tumor environment in culture unravels diversity and implicates converted fibroblasts and recruited smooth muscle cells. The Journal of clinical investigation, 95(2), 859–873.PubMedCrossRef
118.
go back to reference Clarke, M. F., & Fuller, M. (2006). Stem cells and cancer: Two faces of eve. Cell, 124(6), 1111–1115.PubMedCrossRef Clarke, M. F., & Fuller, M. (2006). Stem cells and cancer: Two faces of eve. Cell, 124(6), 1111–1115.PubMedCrossRef
119.
go back to reference Li, L., & Neaves, W. B. (2006). Normal stem cells and cancer stem cells: The niche matters. Cancer Research, 66(9), 4553–4557.PubMedCrossRef Li, L., & Neaves, W. B. (2006). Normal stem cells and cancer stem cells: The niche matters. Cancer Research, 66(9), 4553–4557.PubMedCrossRef
120.
go back to reference Polyak, K., & Hahn, W. C. (2006). Roots and stems: Stem cells in cancer. Natural Medicines, 12(3), 296–300.CrossRef Polyak, K., & Hahn, W. C. (2006). Roots and stems: Stem cells in cancer. Natural Medicines, 12(3), 296–300.CrossRef
121.
go back to reference Rak, J. (2006). Is cancer stem cell a cell, or a multicellular unit capable of inducing angiogenesis? Medical Hypotheses, 66(3), 601–604.PubMedCrossRef Rak, J. (2006). Is cancer stem cell a cell, or a multicellular unit capable of inducing angiogenesis? Medical Hypotheses, 66(3), 601–604.PubMedCrossRef
122.
go back to reference Yilmaz, O. H., Valdez, R., Theisen, B. K., Guo, W., Ferguson, D. O., Wu, H., et al. (2006). Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature, 441(7092), 475–482.PubMedCrossRef Yilmaz, O. H., Valdez, R., Theisen, B. K., Guo, W., Ferguson, D. O., Wu, H., et al. (2006). Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature, 441(7092), 475–482.PubMedCrossRef
123.
go back to reference Begley, L., Monteleon, C., Shah, R. B., Macdonald, J. W., & Macoska, J. A. (2005). Cxcl12 overexpression and secretion by aging fibroblasts enhance human prostate epithelial proliferation in vitro. Aging Cell, 4(6), 291–298.PubMedCrossRef Begley, L., Monteleon, C., Shah, R. B., Macdonald, J. W., & Macoska, J. A. (2005). Cxcl12 overexpression and secretion by aging fibroblasts enhance human prostate epithelial proliferation in vitro. Aging Cell, 4(6), 291–298.PubMedCrossRef
124.
go back to reference Kaplan, R. N., Riba, R. D., Zacharoulis, S., Bramley, A. H., Vincent, L., Costa, C., et al. (2005). Vegfr1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature, 438(7069), 820–827.PubMedCrossRef Kaplan, R. N., Riba, R. D., Zacharoulis, S., Bramley, A. H., Vincent, L., Costa, C., et al. (2005). Vegfr1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature, 438(7069), 820–827.PubMedCrossRef
125.
go back to reference Houshmand, P., & Zlotnik, A. (2003). Targeting tumor cells. Current Opinion in Cell Biology, 15(5), 640–644.PubMedCrossRef Houshmand, P., & Zlotnik, A. (2003). Targeting tumor cells. Current Opinion in Cell Biology, 15(5), 640–644.PubMedCrossRef
126.
go back to reference Ao, M., Franco, O. E., Park, D., Raman, D., Williams, K., & Hayward, S. W. (2007). Cross-talk between paracrine-acting cytokine and chemokine pathways promotes malignancy in benign human prostatic epithelium. Cancer Research, 67(9), 4244–4253.PubMedCrossRef Ao, M., Franco, O. E., Park, D., Raman, D., Williams, K., & Hayward, S. W. (2007). Cross-talk between paracrine-acting cytokine and chemokine pathways promotes malignancy in benign human prostatic epithelium. Cancer Research, 67(9), 4244–4253.PubMedCrossRef
127.
go back to reference Zhang, L., Yeger, H., Das, B., Irwin, M. S., & Baruchel, S. (2007). Tissue microenvironment modulates cxcr4 expression and tumor metastasis in neuroblastoma. Neoplasia, 9(1), 36–46.PubMedCrossRef Zhang, L., Yeger, H., Das, B., Irwin, M. S., & Baruchel, S. (2007). Tissue microenvironment modulates cxcr4 expression and tumor metastasis in neuroblastoma. Neoplasia, 9(1), 36–46.PubMedCrossRef
128.
go back to reference Donahue, R. E., Jin, P., Bonifacino, A. C., Metzger, M. E., Ren, J., Wang, E., et al. (2009). Plerixafor (amd3100) and granulocyte colony-stimulating factor (g-csf) mobilize different cd34+ cell populations based on global gene and microrna expression signatures. Blood, 114(12), 2530–2541.PubMedCrossRef Donahue, R. E., Jin, P., Bonifacino, A. C., Metzger, M. E., Ren, J., Wang, E., et al. (2009). Plerixafor (amd3100) and granulocyte colony-stimulating factor (g-csf) mobilize different cd34+ cell populations based on global gene and microrna expression signatures. Blood, 114(12), 2530–2541.PubMedCrossRef
129.
go back to reference Kim, S. Y., Lee, C. H., Midura, B. V., Yeung, C., Mendoza, A., Hong, S. H., et al. (2008). Inhibition of the cxcr4/cxcl12 chemokine pathway reduces the development of murine pulmonary metastases. Clinical & Experimental Metastasis, 25(3), 201–211.CrossRef Kim, S. Y., Lee, C. H., Midura, B. V., Yeung, C., Mendoza, A., Hong, S. H., et al. (2008). Inhibition of the cxcr4/cxcl12 chemokine pathway reduces the development of murine pulmonary metastases. Clinical & Experimental Metastasis, 25(3), 201–211.CrossRef
130.
go back to reference Porvasnik, S., Sakamoto, N., Kusmartsev, S., Eruslanov, E., Kim, W. J., Cao, W., et al. (2009). Effects of cxcr4 antagonist ctce-9908 on prostate tumor growth. The Prostate, 69(13), 1460–1469.PubMedCrossRef Porvasnik, S., Sakamoto, N., Kusmartsev, S., Eruslanov, E., Kim, W. J., Cao, W., et al. (2009). Effects of cxcr4 antagonist ctce-9908 on prostate tumor growth. The Prostate, 69(13), 1460–1469.PubMedCrossRef
131.
go back to reference Richert, M. M., Vaidya, K. S., Mills, C. N., Wong, D., Korz, W., Hurst, D. R., et al. (2009). Inhibition of cxcr4 by ctce-9908 inhibits breast cancer metastasis to lung and bone. Oncology Reports, 21(3), 761–767.PubMed Richert, M. M., Vaidya, K. S., Mills, C. N., Wong, D., Korz, W., Hurst, D. R., et al. (2009). Inhibition of cxcr4 by ctce-9908 inhibits breast cancer metastasis to lung and bone. Oncology Reports, 21(3), 761–767.PubMed
132.
go back to reference Hojo, S., Koizumi, K., Tsuneyama, K., Arita, Y., Cui, Z., Shinohara, K., et al. (2007). High-level expression of chemokine cxcl16 by tumor cells correlates with a good prognosis and increased tumor-infiltrating lymphocytes in colorectal cancer. Cancer Research, 67(10), 4725–4731.PubMedCrossRef Hojo, S., Koizumi, K., Tsuneyama, K., Arita, Y., Cui, Z., Shinohara, K., et al. (2007). High-level expression of chemokine cxcl16 by tumor cells correlates with a good prognosis and increased tumor-infiltrating lymphocytes in colorectal cancer. Cancer Research, 67(10), 4725–4731.PubMedCrossRef
133.
go back to reference Wysoczynski, M., Kucia, M., Ratajczak, J., & Ratajczak, M. Z. (2007). Cleavage fragments of the third complement component (c3) enhance stromal derived factor-1 (sdf-1)-mediated platelet production during reactive postbleeding thrombocytosis. Leukemia, 21(5), 973–982.PubMed Wysoczynski, M., Kucia, M., Ratajczak, J., & Ratajczak, M. Z. (2007). Cleavage fragments of the third complement component (c3) enhance stromal derived factor-1 (sdf-1)-mediated platelet production during reactive postbleeding thrombocytosis. Leukemia, 21(5), 973–982.PubMed
134.
go back to reference Wysoczynski, M., Miekus, K., Jankowski, K., Wanzeck, J., Bertolone, S., Janowska-Wieczorek, A., et al. (2007). Leukemia inhibitory factor: A newly identified metastatic factor in rhabdomyosarcomas. Cancer Research, 67(5), 2131–2140.PubMedCrossRef Wysoczynski, M., Miekus, K., Jankowski, K., Wanzeck, J., Bertolone, S., Janowska-Wieczorek, A., et al. (2007). Leukemia inhibitory factor: A newly identified metastatic factor in rhabdomyosarcomas. Cancer Research, 67(5), 2131–2140.PubMedCrossRef
135.
go back to reference McGrath, K. E., Koniski, A. D., Maltby, K. M., McGann, J. K., & Palis, J. (1999). Embryonic expression and function of the chemokine sdf-1 and its receptor, cxcr4. Developmental Biology, 213(2), 442–456.PubMedCrossRef McGrath, K. E., Koniski, A. D., Maltby, K. M., McGann, J. K., & Palis, J. (1999). Embryonic expression and function of the chemokine sdf-1 and its receptor, cxcr4. Developmental Biology, 213(2), 442–456.PubMedCrossRef
136.
go back to reference Mohle, R., Moore, M. A., Nachman, R. L., & Rafii, S. (1997). Transendothelial migration of cd34+ and mature hematopoietic cells: An in vitro study using a human bone marrow endothelial cell line. Blood, 89(1), 72–80.PubMed Mohle, R., Moore, M. A., Nachman, R. L., & Rafii, S. (1997). Transendothelial migration of cd34+ and mature hematopoietic cells: An in vitro study using a human bone marrow endothelial cell line. Blood, 89(1), 72–80.PubMed
Metadata
Title
CXCL12 / CXCR4 / CXCR7 chemokine axis and cancer progression
Authors
Xueqing Sun
Guangcun Cheng
Mingang Hao
Jianghua Zheng
Xiaoming Zhou
Jian Zhang
Russell S. Taichman
Kenneth J. Pienta
Jianhua Wang
Publication date
01-12-2010
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 4/2010
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-010-9256-x

Other articles of this Issue 4/2010

Cancer and Metastasis Reviews 4/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine