Skip to main content
Top
Published in: Cancer and Metastasis Reviews 1-2/2009

01-06-2009

The cytoskeleton and cancer

Author: Alan Hall

Published in: Cancer and Metastasis Reviews | Issue 1-2/2009

Login to get access

Abstract

Cancer is a disease in which many of the characteristics of normal cell behavior are lost or perturbed. Uncontrolled cell proliferation and inappropriate cell survival are common features of all cancers, but in addition defects in cellular morphogenesis that lead to tissue disruption, the acquisition of inappropriate migratory and invasive characteristics and the generation of genomic instability through defects in mitosis also accompany progression of the disease. This volume is focused on the actin and microtubule cytoskeletons, key players that underpin these cellular processes. Actin and tubulin form highly versatile, dynamic polymers that are capable of organizing cytoplasmic organelles and intracellular compartments, defining cell polarity and generating both pushing and contractile forces. In the cell cycle, these two cytoskeletal structures drive chromosomal separation and cell division. During morphogenesis, they determine cell shape and polarity, and promote stable cell-cell and cell-matrix adhesions through their interactions with cadherins and integrins, respectively. Finally, during cell migration they generate protrusive forces at the front and retraction forces at the rear. These are all aspects of cell behavior than often go awry in cancer. This volume brings together those interested in understanding the contribution of the actin and microtubule cytoskeletons to the cell biology of cancer.
Literature
2.
go back to reference Bishop, A. L., & Hall, A. (2000). Rho GTPases and their effector proteins. Biochemical Journal, 348, 241–255.PubMedCrossRef Bishop, A. L., & Hall, A. (2000). Rho GTPases and their effector proteins. Biochemical Journal, 348, 241–255.PubMedCrossRef
3.
go back to reference Ridley, A. J., & Hall, A. (1992). The small GTP-binding protein Rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell, 70, 389–399.PubMedCrossRef Ridley, A. J., & Hall, A. (1992). The small GTP-binding protein Rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell, 70, 389–399.PubMedCrossRef
4.
go back to reference Ridley, A. J., Paterson, H. F., Johnston, C. L., Diekmann, D., & Hall, A. (1992). The small GTP-binding protein Rac regulates growth factor-induced membrane ruffling. Cell, 70, 401–410.PubMedCrossRef Ridley, A. J., Paterson, H. F., Johnston, C. L., Diekmann, D., & Hall, A. (1992). The small GTP-binding protein Rac regulates growth factor-induced membrane ruffling. Cell, 70, 401–410.PubMedCrossRef
5.
go back to reference Nobes, C. D., & Hall, A. (1995). Rho, Rac and Cdc42 GTPases regulate the assembly of multi-molecular focal complexes associated with actin stress fibers, lamellipodia and filopodia. Cell, 81, 53–62.PubMedCrossRef Nobes, C. D., & Hall, A. (1995). Rho, Rac and Cdc42 GTPases regulate the assembly of multi-molecular focal complexes associated with actin stress fibers, lamellipodia and filopodia. Cell, 81, 53–62.PubMedCrossRef
6.
go back to reference Watanabe, N., Kato, T., Fujita, A., Ishizaki, T., & Narumiya, S. (1999). Cooperation between mDia1 and ROCK in Rho-induced actin reorganization. Nature cell biology, 1, 136–143.PubMedCrossRef Watanabe, N., Kato, T., Fujita, A., Ishizaki, T., & Narumiya, S. (1999). Cooperation between mDia1 and ROCK in Rho-induced actin reorganization. Nature cell biology, 1, 136–143.PubMedCrossRef
7.
go back to reference Rohatgi, R., Ma, L., Miki, H., Lopez, M., Kirchhausen, T., & Takenawa, T. (1999). The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell, 97, 221–231.PubMedCrossRef Rohatgi, R., Ma, L., Miki, H., Lopez, M., Kirchhausen, T., & Takenawa, T. (1999). The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell, 97, 221–231.PubMedCrossRef
8.
go back to reference Eden, S., Rohatgi, R., Podtelejnikov, A. V., Mann, M., & Kirschner, M. W. (2002). Mechanism of regulation of WAVE1-induced actin nucleation by Rac1 and Nck. Nature, 418, 790–793.PubMedCrossRef Eden, S., Rohatgi, R., Podtelejnikov, A. V., Mann, M., & Kirschner, M. W. (2002). Mechanism of regulation of WAVE1-induced actin nucleation by Rac1 and Nck. Nature, 418, 790–793.PubMedCrossRef
9.
10.
go back to reference Ewen, M. E., Sluss, H. K., Sherr, C. J., Matsushime, H., Kato, J., & Livingston, D. M. (1993). Functional interactions of the retinoblastoma protein with mammalian D-type cyclins. Cell, 73, 487–497.PubMedCrossRef Ewen, M. E., Sluss, H. K., Sherr, C. J., Matsushime, H., Kato, J., & Livingston, D. M. (1993). Functional interactions of the retinoblastoma protein with mammalian D-type cyclins. Cell, 73, 487–497.PubMedCrossRef
11.
go back to reference Dynlacht, R. B., Flores, O., Lees, J. A., & Harlow, E. (1994). Differential regulation of E2F transactivation by cyclin/cdk2 complexes. Genes & Development, 8, 1772–1286.CrossRef Dynlacht, R. B., Flores, O., Lees, J. A., & Harlow, E. (1994). Differential regulation of E2F transactivation by cyclin/cdk2 complexes. Genes & Development, 8, 1772–1286.CrossRef
12.
go back to reference Malumbres, M., & Barbacid, M. (2003). RAS oncogenes: the first 30 years. Nature reviews Cancer, 3, 459–465.PubMedCrossRef Malumbres, M., & Barbacid, M. (2003). RAS oncogenes: the first 30 years. Nature reviews Cancer, 3, 459–465.PubMedCrossRef
13.
go back to reference Gille, H., & Downward, J. (1994). Multiple Ras effector pathways contribute to G1 cell cycle progression. Journal of biological chemistry, 274, 22033–22040.CrossRef Gille, H., & Downward, J. (1994). Multiple Ras effector pathways contribute to G1 cell cycle progression. Journal of biological chemistry, 274, 22033–22040.CrossRef
14.
go back to reference Fu, J., Bian, M., Jiang, Q., & Zhang, C. (2007). Roles of Aurora kinases in mitosis and tumorigenesis. Mol Cancer Rev, 5, 1–10.CrossRef Fu, J., Bian, M., Jiang, Q., & Zhang, C. (2007). Roles of Aurora kinases in mitosis and tumorigenesis. Mol Cancer Rev, 5, 1–10.CrossRef
15.
go back to reference Boutros, R., Dozier, C., & Ducommun, B. (2006). The when and wheres of CDC25 phosphatases. Current opinion in chemical biology, 18, 185–191. Boutros, R., Dozier, C., & Ducommun, B. (2006). The when and wheres of CDC25 phosphatases. Current opinion in chemical biology, 18, 185–191.
16.
go back to reference Larochelle, S., Merrick, K. A., Terret, M. E., Wohlbold, L., Barboza, N. M., & Zhang, C. (2007). Requirements for Cdk7 in the assembly of Cdk1/cyclinB and activation of Cdk2 revealed by chemical genetics in human cells. Molecular cell, 25, 839–850.PubMedCrossRef Larochelle, S., Merrick, K. A., Terret, M. E., Wohlbold, L., Barboza, N. M., & Zhang, C. (2007). Requirements for Cdk7 in the assembly of Cdk1/cyclinB and activation of Cdk2 revealed by chemical genetics in human cells. Molecular cell, 25, 839–850.PubMedCrossRef
17.
go back to reference Eckerdt, F., & Strebhardt, K. (2006). Polo-like kinase 1: Target and regulator of Anaphase-promoting complex/cyclosome-dependent proteolysis. Cancer research, 66, 6895–6898.PubMedCrossRef Eckerdt, F., & Strebhardt, K. (2006). Polo-like kinase 1: Target and regulator of Anaphase-promoting complex/cyclosome-dependent proteolysis. Cancer research, 66, 6895–6898.PubMedCrossRef
18.
go back to reference Pines, J. (2005). Mitosis: a matter of getting rid of the right protein at the right time. Trends in cell biology, 16, 55–63.PubMedCrossRef Pines, J. (2005). Mitosis: a matter of getting rid of the right protein at the right time. Trends in cell biology, 16, 55–63.PubMedCrossRef
19.
go back to reference Glotzer, M. (2001). Animal cell cytokinesis. AnnualReveview Cell Developments in biologicals, 17, 351–386. Glotzer, M. (2001). Animal cell cytokinesis. AnnualReveview Cell Developments in biologicals, 17, 351–386.
20.
go back to reference Kops, G. J. P. L., Weaver, B. A. A., & Cleveland, D. W. (2005). On the road to cancer: aneuploidy and the mitotic checkpoint. Nature reviews Cancer, 5, 773–785.PubMedCrossRef Kops, G. J. P. L., Weaver, B. A. A., & Cleveland, D. W. (2005). On the road to cancer: aneuploidy and the mitotic checkpoint. Nature reviews Cancer, 5, 773–785.PubMedCrossRef
21.
go back to reference Ganem, N. J., Storchova, Z., & Pellman, D. (2007). Tetraploidy, aneuploidy and cancer. Current opinion in genetics & development, 17, 157–162.CrossRef Ganem, N. J., Storchova, Z., & Pellman, D. (2007). Tetraploidy, aneuploidy and cancer. Current opinion in genetics & development, 17, 157–162.CrossRef
22.
go back to reference Dai, W., Wang, Q., Liu, T., Swamy, M., Fang, Y., & Xie, S. (2004). Slippage of mitotic arrest and enhanced tumor development in mice with BubR1 haploinsufficiency. Cancer research, 64, 440–445.PubMedCrossRef Dai, W., Wang, Q., Liu, T., Swamy, M., Fang, Y., & Xie, S. (2004). Slippage of mitotic arrest and enhanced tumor development in mice with BubR1 haploinsufficiency. Cancer research, 64, 440–445.PubMedCrossRef
23.
go back to reference Rao, C. V., Yang, Y. M., Swamy, V. M., Liu, T., Fang, Y., & Mahmood, R. (2005). Colonic tumorigenesis in BubR1+/-ApcMin/+ compound mutant mice is linked to premature separation of sister chromatids and enhanced genomic instability. Proceedings of the National Academy of Sciences of the United States of America, 102, 4365–4370.PubMedCrossRef Rao, C. V., Yang, Y. M., Swamy, V. M., Liu, T., Fang, Y., & Mahmood, R. (2005). Colonic tumorigenesis in BubR1+/-ApcMin/+ compound mutant mice is linked to premature separation of sister chromatids and enhanced genomic instability. Proceedings of the National Academy of Sciences of the United States of America, 102, 4365–4370.PubMedCrossRef
24.
go back to reference Yamamoto, M., Marui, N., Sakai, T., & Kozaki, S. (1993). ADP-ribosylation of the RhoA gene product by botulinum C3 exoenzyme causes Swiss 3T3 cells to accumulate in the G1 phase of the cell cycle. Oncogene, 8, 1449–14455.PubMed Yamamoto, M., Marui, N., Sakai, T., & Kozaki, S. (1993). ADP-ribosylation of the RhoA gene product by botulinum C3 exoenzyme causes Swiss 3T3 cells to accumulate in the G1 phase of the cell cycle. Oncogene, 8, 1449–14455.PubMed
25.
go back to reference Olson, M. F., Ashworth, A., & Hall, A. (1995). An essential role for Rho, Rac and Cdc42 GTPases in cell cycle progression through G1. Science, 269, 1270–1272.PubMedCrossRef Olson, M. F., Ashworth, A., & Hall, A. (1995). An essential role for Rho, Rac and Cdc42 GTPases in cell cycle progression through G1. Science, 269, 1270–1272.PubMedCrossRef
26.
go back to reference Coleman, M. L., Marshall, C. J., & Olson, M. F. (2004). Ras and Rho GTPases in G1-phase cell cycle regulation. Nature reviews. Molecular cell biology, 5, 355–366.PubMedCrossRef Coleman, M. L., Marshall, C. J., & Olson, M. F. (2004). Ras and Rho GTPases in G1-phase cell cycle regulation. Nature reviews. Molecular cell biology, 5, 355–366.PubMedCrossRef
27.
go back to reference Welsh, C. F., Roovers, K., Villanueva, J., Liu, Y., Schwartz, M. A., & Assoian, R. K. (2001). Timing of cyclin D1 expression within G1 phase is controlled by Rho. Nature cell biology, 3, 950–957.PubMedCrossRef Welsh, C. F., Roovers, K., Villanueva, J., Liu, Y., Schwartz, M. A., & Assoian, R. K. (2001). Timing of cyclin D1 expression within G1 phase is controlled by Rho. Nature cell biology, 3, 950–957.PubMedCrossRef
28.
go back to reference Croft, D. R., & Olson, M. F. (2006). The Rho GTPase effector ROCK regulates cyclin A, cyclin D1 and p27KIP1 levels by distinct mechanisms. Biol Molecular and cellular biology, 26, 4612–4627.CrossRef Croft, D. R., & Olson, M. F. (2006). The Rho GTPase effector ROCK regulates cyclin A, cyclin D1 and p27KIP1 levels by distinct mechanisms. Biol Molecular and cellular biology, 26, 4612–4627.CrossRef
29.
go back to reference Mammoto, A., Huang, S., Moore, K., Oh, P., & Ingber, D. E. (2004). Role of RhoA, mDia and ROCK in cell shape-dependent control of the Skp-p27kip1 pathway and the G1/s transition. Journal of biological chemistry, 279, 26323–26330.PubMedCrossRef Mammoto, A., Huang, S., Moore, K., Oh, P., & Ingber, D. E. (2004). Role of RhoA, mDia and ROCK in cell shape-dependent control of the Skp-p27kip1 pathway and the G1/s transition. Journal of biological chemistry, 279, 26323–26330.PubMedCrossRef
30.
go back to reference Vidal, A., Millard, S. S., Miller, J. P., & Koff, A. (2002). Rho activity can alter the translation of p27 mRNA and is important for RasV12-induced transformation in a manner dependent on p27 status. Journal of biological chemistry, 277, 16433–16440.PubMedCrossRef Vidal, A., Millard, S. S., Miller, J. P., & Koff, A. (2002). Rho activity can alter the translation of p27 mRNA and is important for RasV12-induced transformation in a manner dependent on p27 status. Journal of biological chemistry, 277, 16433–16440.PubMedCrossRef
31.
go back to reference Rosenblatt, J., Cramer, L. P., Baum, B., & McGee, M. (2004). Myosin II-dependent cortical movement is required for centrosome separation and positioning during mitotic spindle assembly. Cell, 117, 361–372.PubMedCrossRef Rosenblatt, J., Cramer, L. P., Baum, B., & McGee, M. (2004). Myosin II-dependent cortical movement is required for centrosome separation and positioning during mitotic spindle assembly. Cell, 117, 361–372.PubMedCrossRef
32.
go back to reference Maddox, A. S., & Burridge, K. (2003). RhoA is required for cortical retraction and rigidity during mitotic cell rounding. Journal of cell biology, 160, 255–265.PubMedCrossRef Maddox, A. S., & Burridge, K. (2003). RhoA is required for cortical retraction and rigidity during mitotic cell rounding. Journal of cell biology, 160, 255–265.PubMedCrossRef
33.
go back to reference Yasuda, S., Oceguera-Yanez, F., Kato, T., Okamoto, M., Yonemura, S., & Terada, Y. (2004). Cdc42 and mDia3 regulate microtubule attachment to kinetochores. Nature, 428, 767–771.PubMedCrossRef Yasuda, S., Oceguera-Yanez, F., Kato, T., Okamoto, M., Yonemura, S., & Terada, Y. (2004). Cdc42 and mDia3 regulate microtubule attachment to kinetochores. Nature, 428, 767–771.PubMedCrossRef
34.
go back to reference Oceguera-Yanez, F., Kimura, K., Yasuda, S., Higashida, C., Kitamura, T., & Hiraoka, Y. (2005). Ect2 and MgcRacGAP regulate activation and function of Cdc42 in mitosis. Journal of cell biology, 168, 221–232.PubMedCrossRef Oceguera-Yanez, F., Kimura, K., Yasuda, S., Higashida, C., Kitamura, T., & Hiraoka, Y. (2005). Ect2 and MgcRacGAP regulate activation and function of Cdc42 in mitosis. Journal of cell biology, 168, 221–232.PubMedCrossRef
35.
go back to reference Bakal, C. J., Finn, D., LaRose, J., Wells, C. D., Gish, G., & Kulkarni, S. (2005). The Rho GTP exchange factor Lfc promotes spindle assembly in early mitosis. Proceedings of the National Academy of Sciences of the United States of America, 102, 9529–9534.PubMedCrossRef Bakal, C. J., Finn, D., LaRose, J., Wells, C. D., Gish, G., & Kulkarni, S. (2005). The Rho GTP exchange factor Lfc promotes spindle assembly in early mitosis. Proceedings of the National Academy of Sciences of the United States of America, 102, 9529–9534.PubMedCrossRef
36.
go back to reference Betschinger, J., & Knoblich, J. A. (2004). Dare to be different: asymmetric cell division in Drosophila, C. elegans and vertebrates. Current biology, 14, R674–685.PubMedCrossRef Betschinger, J., & Knoblich, J. A. (2004). Dare to be different: asymmetric cell division in Drosophila, C. elegans and vertebrates. Current biology, 14, R674–685.PubMedCrossRef
37.
go back to reference Schonegg, S., & Hyman, A. A. (2006). Cdc42 and Rho-1 coordinate acto-myosin contractility and PAR protein localization during polarity establishment in C. elegans embryos. Development, 133, 3507–3516.PubMedCrossRef Schonegg, S., & Hyman, A. A. (2006). Cdc42 and Rho-1 coordinate acto-myosin contractility and PAR protein localization during polarity establishment in C. elegans embryos. Development, 133, 3507–3516.PubMedCrossRef
38.
go back to reference Aceto, D., Beers, M., & Kemphues, K. J. (2006). Interaction of Par-6 with Cdc42 is required for maintenance but not establishment of PAR asymmetry in C. elegans. Developments in biologicals, 299, 386–397.CrossRef Aceto, D., Beers, M., & Kemphues, K. J. (2006). Interaction of Par-6 with Cdc42 is required for maintenance but not establishment of PAR asymmetry in C. elegans. Developments in biologicals, 299, 386–397.CrossRef
39.
go back to reference Narumiya, S., & Yasuda, S. (2006). Rho GTPases in animal cell mitosis. Current opinion in chemical biology, 18, 199–205. Narumiya, S., & Yasuda, S. (2006). Rho GTPases in animal cell mitosis. Current opinion in chemical biology, 18, 199–205.
40.
go back to reference Naim, V., Imarisio, S., Di Cunto, F., Gatti, M., & Bonaccorsi, S. (2004). Drosophila citron kinase is required for the final steps of cytokinesis. Molecular biology of the cell, 15, 5053−5063.PubMedCrossRef Naim, V., Imarisio, S., Di Cunto, F., Gatti, M., & Bonaccorsi, S. (2004). Drosophila citron kinase is required for the final steps of cytokinesis. Molecular biology of the cell, 15, 5053−5063.PubMedCrossRef
41.
go back to reference Schmidt, A., Durgan, J., Magalhaes, A., & Hall, A. (2007). Rho GTPases regulate PRK2 to control entry into mitosis and exit from mitosis. EMBO Jounal, 26, 1624−1636. Schmidt, A., Durgan, J., Magalhaes, A., & Hall, A. (2007). Rho GTPases regulate PRK2 to control entry into mitosis and exit from mitosis. EMBO Jounal, 26, 1624−1636.
42.
go back to reference Roh, M. H., & Margolis, B. (2003). Composition and function of PDZ protein complexes during cell polarization. Am J Renal Physiol, 285, F377−387. Roh, M. H., & Margolis, B. (2003). Composition and function of PDZ protein complexes during cell polarization. Am J Renal Physiol, 285, F377−387.
43.
go back to reference Medina, E., Lemmers, C., Lane-Guermonprez, L., & Le Bivic, A. (2002). Role of Crumbs complex in the regulation of junction formation in Drosophila and mammalian epithelial cells. Biology of the cell, 94, 305–313.PubMedCrossRef Medina, E., Lemmers, C., Lane-Guermonprez, L., & Le Bivic, A. (2002). Role of Crumbs complex in the regulation of junction formation in Drosophila and mammalian epithelial cells. Biology of the cell, 94, 305–313.PubMedCrossRef
44.
go back to reference Kirby, C., Kusch, M., & Kemphues, K. (1990). Mutations in the par genes of C. elegans affect cytoplasmic reorganization during first cell cycle. Developments in biologicals, 142, 203–215.CrossRef Kirby, C., Kusch, M., & Kemphues, K. (1990). Mutations in the par genes of C. elegans affect cytoplasmic reorganization during first cell cycle. Developments in biologicals, 142, 203–215.CrossRef
45.
go back to reference Etienne-Manneville, S., & Hall, A. (2001). Integrin-mediated activation of Ccd42 controls cell polarity in migrating astrocytes through PKCζ. Cell, 106, 489–498.PubMedCrossRef Etienne-Manneville, S., & Hall, A. (2001). Integrin-mediated activation of Ccd42 controls cell polarity in migrating astrocytes through PKCζ. Cell, 106, 489–498.PubMedCrossRef
46.
go back to reference Izumi, Y., Hirose, T., Tamai, Y., Hirai, S., Nagashima, Y., & Fujimoto, T. (1998). An atypical PKC directly associates and colocalizes at the epithelial tight junction with ASIP, a mammalian homologue of C. elegans polarity protein Par-3. Journal of cell biology, 143, 95–106.PubMedCrossRef Izumi, Y., Hirose, T., Tamai, Y., Hirai, S., Nagashima, Y., & Fujimoto, T. (1998). An atypical PKC directly associates and colocalizes at the epithelial tight junction with ASIP, a mammalian homologue of C. elegans polarity protein Par-3. Journal of cell biology, 143, 95–106.PubMedCrossRef
47.
go back to reference Shi, S. H., Jan, L. Y., & Jan, Y. N. (2003). Hippocampal neuronal polarity specified by spatially localized mPar3/mPar6 and PI 3-kinase activity. Cell, 112, 63–75.PubMedCrossRef Shi, S. H., Jan, L. Y., & Jan, Y. N. (2003). Hippocampal neuronal polarity specified by spatially localized mPar3/mPar6 and PI 3-kinase activity. Cell, 112, 63–75.PubMedCrossRef
48.
go back to reference Macara, I. (2004). Par proteins: partners in polarization. Current biology, 14, 160–162. Macara, I. (2004). Par proteins: partners in polarization. Current biology, 14, 160–162.
49.
go back to reference Elbert, M., Cohen, D., & Musch, A. (2006). Par1b promotes cell-cell adhesion and inhibits disheveled-mediated transformation of MDCK cells. Molecular biology of the cell, 17, 3345–3355.PubMedCrossRef Elbert, M., Cohen, D., & Musch, A. (2006). Par1b promotes cell-cell adhesion and inhibits disheveled-mediated transformation of MDCK cells. Molecular biology of the cell, 17, 3345–3355.PubMedCrossRef
50.
go back to reference Hardie, D. G. (2005). New roles for the LKB1-AMPK pathway. Current opinion in chemical biology, 17, 167–173. Hardie, D. G. (2005). New roles for the LKB1-AMPK pathway. Current opinion in chemical biology, 17, 167–173.
51.
go back to reference Hemminke, A. (1998). A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature, 391, 184–187.CrossRef Hemminke, A. (1998). A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature, 391, 184–187.CrossRef
52.
go back to reference Shaw, R. J., Bardeesy, N., Manning, B. D., Lopez, L., Kosmatka, M., & DePinho, R. A. (2004). The LKB tumor suppressor negatively regulates mTOR signaling. Cancer Cell, 6, 91–99.PubMedCrossRef Shaw, R. J., Bardeesy, N., Manning, B. D., Lopez, L., Kosmatka, M., & DePinho, R. A. (2004). The LKB tumor suppressor negatively regulates mTOR signaling. Cancer Cell, 6, 91–99.PubMedCrossRef
53.
go back to reference Martin, S. G., & St Johnston, D. (2003). A role for Drosophila LKB1 in anterior-posterior axis formation and epithelial polarity. Nature, 421, 379–384.PubMedCrossRef Martin, S. G., & St Johnston, D. (2003). A role for Drosophila LKB1 in anterior-posterior axis formation and epithelial polarity. Nature, 421, 379–384.PubMedCrossRef
54.
go back to reference Baas, A. F., Kuipers, J., van der Wel, N. N., Batle, E., Koerten, H. K., Peters, P. J., et al. (2004). Complete polarization of single intestinal epithelial cells upon activation of LKB1 by STRAD. Cell, 116, 457–466.PubMedCrossRef Baas, A. F., Kuipers, J., van der Wel, N. N., Batle, E., Koerten, H. K., Peters, P. J., et al. (2004). Complete polarization of single intestinal epithelial cells upon activation of LKB1 by STRAD. Cell, 116, 457–466.PubMedCrossRef
55.
go back to reference Van Aelst, L., & Symons, M. (2002). Role of Rho family GTPases in epithelial morphogenesis. Genes & Development, 16, 1032–1054.CrossRef Van Aelst, L., & Symons, M. (2002). Role of Rho family GTPases in epithelial morphogenesis. Genes & Development, 16, 1032–1054.CrossRef
56.
go back to reference Hutterer, A., Betschinegr, J., Petronczki, M., & Knoblich, J. A. (2004). Sequential roles of Cdc42, Par6, aPKC and Lgl in the establishment of epithelial polarity during Drosophila embryogenesis. Developments in cell, 6, 845–854.CrossRef Hutterer, A., Betschinegr, J., Petronczki, M., & Knoblich, J. A. (2004). Sequential roles of Cdc42, Par6, aPKC and Lgl in the establishment of epithelial polarity during Drosophila embryogenesis. Developments in cell, 6, 845–854.CrossRef
57.
go back to reference Sotillos, S., Diaz-Mecco, M. T., Caminero, E., Moscat, J., & Campuzano, S. (2004). DaPKC-dependent phosphorylation of Crumbs is required for epithelial cell polarity in Drosophila. Journal of cell biology, 166, 549–557.PubMedCrossRef Sotillos, S., Diaz-Mecco, M. T., Caminero, E., Moscat, J., & Campuzano, S. (2004). DaPKC-dependent phosphorylation of Crumbs is required for epithelial cell polarity in Drosophila. Journal of cell biology, 166, 549–557.PubMedCrossRef
58.
go back to reference Betschinger, J., Eisenhaber, F., & Knoblich, J. A. (2005). Phosphorylation-induced autoinhibition regulates the cytoskeletal protein Lethal (2) giant larvae. Current biology, 15, 276–282.PubMedCrossRef Betschinger, J., Eisenhaber, F., & Knoblich, J. A. (2005). Phosphorylation-induced autoinhibition regulates the cytoskeletal protein Lethal (2) giant larvae. Current biology, 15, 276–282.PubMedCrossRef
59.
go back to reference Hurd, T. W., Gao, L., Roh, M. H., Macara, I. G., & Margolis, B. (2003). Direct interaction of two polarity complexes implicated in epithelial tight junction assembly. Nature cell biology, 5, 137–142.PubMedCrossRef Hurd, T. W., Gao, L., Roh, M. H., Macara, I. G., & Margolis, B. (2003). Direct interaction of two polarity complexes implicated in epithelial tight junction assembly. Nature cell biology, 5, 137–142.PubMedCrossRef
60.
go back to reference Braga, V. M. M., Machesky, L., Hall, A., & Hotchin, N. A. (1997). The small GTPases Rho and Rac are required for the establishment of cadherin-dependent cell-cell contacts. Journal of cell biology, 137, 1421–1431.PubMedCrossRef Braga, V. M. M., Machesky, L., Hall, A., & Hotchin, N. A. (1997). The small GTPases Rho and Rac are required for the establishment of cadherin-dependent cell-cell contacts. Journal of cell biology, 137, 1421–1431.PubMedCrossRef
61.
go back to reference Takaishi, K., Sasaki, T., Kotani, H., Nishioka, H., & Takai, Y. (1997). Regulation of cell-cell adhesion by rac and rho small G proteins in MDCK cells. Journal of cell biology, 139, 1047–1059.PubMedCrossRef Takaishi, K., Sasaki, T., Kotani, H., Nishioka, H., & Takai, Y. (1997). Regulation of cell-cell adhesion by rac and rho small G proteins in MDCK cells. Journal of cell biology, 139, 1047–1059.PubMedCrossRef
62.
go back to reference Fox, D. T., Homem, C. C., Myster, S. H., Wang, F., Bain, E. E., & Peifer, M. (2005). Rho1 regulates Drosophila adherens junctions independently of p120ctn. Development, 132, 4819–4831.PubMedCrossRef Fox, D. T., Homem, C. C., Myster, S. H., Wang, F., Bain, E. E., & Peifer, M. (2005). Rho1 regulates Drosophila adherens junctions independently of p120ctn. Development, 132, 4819–4831.PubMedCrossRef
63.
go back to reference Vasioukhin, V., Bauer, C., Yin, M., & Fuchs, E. (2000). Directed actin polymerization is the driving force for epithelial cell-cell adhesion. Cell, 100, 209–219.PubMedCrossRef Vasioukhin, V., Bauer, C., Yin, M., & Fuchs, E. (2000). Directed actin polymerization is the driving force for epithelial cell-cell adhesion. Cell, 100, 209–219.PubMedCrossRef
64.
go back to reference Ehrlich, J. S., Hansen, M. D., & Nelson, W. J. (2002). Spatio-temporal regulation of Rac1 localization and lamellipodia dynamics in epithelial cell-cell adhesion. Developments in cell, 3, 259–270.CrossRef Ehrlich, J. S., Hansen, M. D., & Nelson, W. J. (2002). Spatio-temporal regulation of Rac1 localization and lamellipodia dynamics in epithelial cell-cell adhesion. Developments in cell, 3, 259–270.CrossRef
65.
go back to reference Fukuhara, T., Shimizu, K., Kawakatsu, T., Fukuyama, T., Minami, Y., Honda, T., et al. (2004). Activation of Cdc42 by trans interactions of cell adhesion molecules nectins through c-Src, Cdc42-GEF FRG. Journal of cell biology, 166, 393–405.PubMedCrossRef Fukuhara, T., Shimizu, K., Kawakatsu, T., Fukuyama, T., Minami, Y., Honda, T., et al. (2004). Activation of Cdc42 by trans interactions of cell adhesion molecules nectins through c-Src, Cdc42-GEF FRG. Journal of cell biology, 166, 393–405.PubMedCrossRef
66.
go back to reference Yang, J., & Weinberg, R. A. (2008). Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Development in Cell, 14, 818–829.CrossRef Yang, J., & Weinberg, R. A. (2008). Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Development in Cell, 14, 818–829.CrossRef
67.
go back to reference Mani, S. A., Guo, W., Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., et al. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 133, 704–715.PubMedCrossRef Mani, S. A., Guo, W., Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., et al. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 133, 704–715.PubMedCrossRef
68.
go back to reference Bilder, D. (2004). Epithelial polarity and proliferation control: links form the Drosophila neoplastic tumor suppressors. Genes & Development, 18, 1909–1925.CrossRef Bilder, D. (2004). Epithelial polarity and proliferation control: links form the Drosophila neoplastic tumor suppressors. Genes & Development, 18, 1909–1925.CrossRef
69.
go back to reference Pagliarini, R. A., & Xu, T. (2003). A genetic screen in Drosophila for metastatic behavior. Science, 302, 1227–1231.PubMedCrossRef Pagliarini, R. A., & Xu, T. (2003). A genetic screen in Drosophila for metastatic behavior. Science, 302, 1227–1231.PubMedCrossRef
70.
go back to reference Humbert, P., Russell, S., & Richardson, H. (2003). Dlg, Scribble and Lgl in cell polarity, cell proliferation and cancer. Bioassays, 25, 542–553.CrossRef Humbert, P., Russell, S., & Richardson, H. (2003). Dlg, Scribble and Lgl in cell polarity, cell proliferation and cancer. Bioassays, 25, 542–553.CrossRef
71.
go back to reference Thomas, M., Massimi, P., Navarro, C., Borg, J. P., & Banks, L. (2005). The hScrib/Dlg apico-basal control complex is differentially targeted by HPV-16 and HPV-18 E6 proteins. Oncogene, 24, 6222–6230.PubMedCrossRef Thomas, M., Massimi, P., Navarro, C., Borg, J. P., & Banks, L. (2005). The hScrib/Dlg apico-basal control complex is differentially targeted by HPV-16 and HPV-18 E6 proteins. Oncogene, 24, 6222–6230.PubMedCrossRef
72.
go back to reference Yuan, B. Z., Miller, M. J., Keck, C. L., Zimonjic, D. B., Thorgeirsson, S. S., & Popescu, N. C. (1998). Cloning, characterization, and chromosomal localization of a gene frequently deleted in human liver cancer (DLC-1) homologous to rat RhoGAP. Cancer research, 58, 2196–2199.PubMed Yuan, B. Z., Miller, M. J., Keck, C. L., Zimonjic, D. B., Thorgeirsson, S. S., & Popescu, N. C. (1998). Cloning, characterization, and chromosomal localization of a gene frequently deleted in human liver cancer (DLC-1) homologous to rat RhoGAP. Cancer research, 58, 2196–2199.PubMed
73.
go back to reference Xue, W., Krasnitz, A., Lucito, R., Sordella, R., Vanaelst, L., Cordon-Cardo, C., et al. (2008). DLC1 is a chromosome 8p tumor suppressor whose loss promotes hepatocellular carcinoma. Genes & Development, 22, 1439–1444.CrossRef Xue, W., Krasnitz, A., Lucito, R., Sordella, R., Vanaelst, L., Cordon-Cardo, C., et al. (2008). DLC1 is a chromosome 8p tumor suppressor whose loss promotes hepatocellular carcinoma. Genes & Development, 22, 1439–1444.CrossRef
74.
go back to reference Brodu, V., & Casanova, J. (2006). The RhoGAP crossveinless-c links trachealess and EGFR signaling to cell shape remodeling in Drosophila tracheal invagination. Genes & Development, 20, 1817–1828.CrossRef Brodu, V., & Casanova, J. (2006). The RhoGAP crossveinless-c links trachealess and EGFR signaling to cell shape remodeling in Drosophila tracheal invagination. Genes & Development, 20, 1817–1828.CrossRef
75.
go back to reference Raftopoulou, M., & Hall, A. (2004). Cell migration: Rho GTPases lead the way. Developments in biologicals, 265, 23–32.CrossRef Raftopoulou, M., & Hall, A. (2004). Cell migration: Rho GTPases lead the way. Developments in biologicals, 265, 23–32.CrossRef
76.
go back to reference Lehman, R. (2001). Cell migration in invertebrates: clues from border and distal tip cells. Current opinion in genetics & development, 11, 457–463.CrossRef Lehman, R. (2001). Cell migration in invertebrates: clues from border and distal tip cells. Current opinion in genetics & development, 11, 457–463.CrossRef
77.
go back to reference Condeelis, J. S., Wyckoff, J., & Segall, J. E. (2000). Imaging of cancer invasion and metastasis using green fluorescent protein. European journal of cancer, 36, 1671–1680.PubMedCrossRef Condeelis, J. S., Wyckoff, J., & Segall, J. E. (2000). Imaging of cancer invasion and metastasis using green fluorescent protein. European journal of cancer, 36, 1671–1680.PubMedCrossRef
78.
go back to reference Stebler, J., Spieler, D., Slanchev, K., Molyneaux, K. A., Richter, U., Cojocaru, V., et al. (2004). Primordial germ cell migration in the chick and mouse embryo: the role of the chemokine SDF-1/CXCL12. Developments in biologicals, 272, 351–361.CrossRef Stebler, J., Spieler, D., Slanchev, K., Molyneaux, K. A., Richter, U., Cojocaru, V., et al. (2004). Primordial germ cell migration in the chick and mouse embryo: the role of the chemokine SDF-1/CXCL12. Developments in biologicals, 272, 351–361.CrossRef
79.
go back to reference Schmitz, A. A., Govek, E. E., Bottner, B., & Van Aelst, L. (2000). Rho GTPases: signaling, migration and invasion. Experimental cell research, 261, 1–12.PubMedCrossRef Schmitz, A. A., Govek, E. E., Bottner, B., & Van Aelst, L. (2000). Rho GTPases: signaling, migration and invasion. Experimental cell research, 261, 1–12.PubMedCrossRef
80.
go back to reference Pertz, O., Hodgson, L., Klemke, R. L., & Hahn, K. M. (2006). Spatiotemporal dynamics of RhoA activity in migrating cells. Nature, 440, 1069–1072.PubMedCrossRef Pertz, O., Hodgson, L., Klemke, R. L., & Hahn, K. M. (2006). Spatiotemporal dynamics of RhoA activity in migrating cells. Nature, 440, 1069–1072.PubMedCrossRef
81.
go back to reference Wittmann, T., & Waterman-Storer, C. M. (2001). Cell motility: can Rho GTPases and microtubules point the way. Journal of Cell Science, 114, 3795–3803.PubMed Wittmann, T., & Waterman-Storer, C. M. (2001). Cell motility: can Rho GTPases and microtubules point the way. Journal of Cell Science, 114, 3795–3803.PubMed
82.
go back to reference Tanaka, T., Serneo, F. F., Higgins, C., Gambello, M. J., Wynshaw-Boris, A., & Gleeson, J. G. (2004). Lis1 and doublecortin function with dynein to mediate coupling of the nucleus to the centrosome in neuronal migration. Journal of cell biology, 165, 709–721.PubMedCrossRef Tanaka, T., Serneo, F. F., Higgins, C., Gambello, M. J., Wynshaw-Boris, A., & Gleeson, J. G. (2004). Lis1 and doublecortin function with dynein to mediate coupling of the nucleus to the centrosome in neuronal migration. Journal of cell biology, 165, 709–721.PubMedCrossRef
83.
go back to reference Sahai, E., & Marshall, C. J. (2003). Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signaling and extracellular proteolysis. Nature cell biology, 5, 711–719.PubMedCrossRef Sahai, E., & Marshall, C. J. (2003). Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signaling and extracellular proteolysis. Nature cell biology, 5, 711–719.PubMedCrossRef
84.
go back to reference Pankov, R., Endo, Y., Even-Ram, S., Araki, M., Clark, K., & Cukierman, E. (2005). A Rac switch regulates random versus directionally persistent cell migration. Journal of cell biology, 170, 793–802.PubMedCrossRef Pankov, R., Endo, Y., Even-Ram, S., Araki, M., Clark, K., & Cukierman, E. (2005). A Rac switch regulates random versus directionally persistent cell migration. Journal of cell biology, 170, 793–802.PubMedCrossRef
85.
go back to reference Devreotes, P., & Janetopoulos, C. (2003). Eukaryotic chemotaxis: distinctions between directional sensing and polarization. Journal of biological chemistry, 278, 20445–20448.PubMedCrossRef Devreotes, P., & Janetopoulos, C. (2003). Eukaryotic chemotaxis: distinctions between directional sensing and polarization. Journal of biological chemistry, 278, 20445–20448.PubMedCrossRef
86.
go back to reference Nobes, C. D., & Hall, A. (1999). Rho GTPases control polarity, protrusion and adhesion during cell movement. Journal of cell biology, 144, 1235–1244.PubMedCrossRef Nobes, C. D., & Hall, A. (1999). Rho GTPases control polarity, protrusion and adhesion during cell movement. Journal of cell biology, 144, 1235–1244.PubMedCrossRef
87.
go back to reference Srinivasan, S., Wang, F., Glavas, S., Ott, A., Hofmann, F., & Aktories, K. (2003). Rac and Cdc42 play distinct roles in regulating PI(3,4,5)P3 and polarity during neutrophil chemotaxis. Journal of cell biology, 160, 375–385.PubMedCrossRef Srinivasan, S., Wang, F., Glavas, S., Ott, A., Hofmann, F., & Aktories, K. (2003). Rac and Cdc42 play distinct roles in regulating PI(3,4,5)P3 and polarity during neutrophil chemotaxis. Journal of cell biology, 160, 375–385.PubMedCrossRef
88.
go back to reference Li, Z., Hannigan, M., Mo, Z., Liu, B., Lu, W., Wu, Y., et al. (2003). Directional sensing requires G beta gamma-mediated PAK1 and PIX-alpha-dependent activation of Cdc42. Cell, 114, 215–227.PubMedCrossRef Li, Z., Hannigan, M., Mo, Z., Liu, B., Lu, W., Wu, Y., et al. (2003). Directional sensing requires G beta gamma-mediated PAK1 and PIX-alpha-dependent activation of Cdc42. Cell, 114, 215–227.PubMedCrossRef
89.
go back to reference Iijima, M., & Devreotes, P. (2002). Tumor suppressor PTEN mediates sensing of chemoattractant gradients. Cell, 109, 599–610.PubMedCrossRef Iijima, M., & Devreotes, P. (2002). Tumor suppressor PTEN mediates sensing of chemoattractant gradients. Cell, 109, 599–610.PubMedCrossRef
90.
go back to reference Van Keymeulen, A., Wong, K., Knight, Z. A., Govaerts, C., Hahn, K. M., & Shokat, K. M. (2006). To stabilize neutrophil polarity, PIP3 and Cdc42 augment RhoA activity at the back as well as signals at the front. Journal of cell biology, 174, 437–445.PubMedCrossRef Van Keymeulen, A., Wong, K., Knight, Z. A., Govaerts, C., Hahn, K. M., & Shokat, K. M. (2006). To stabilize neutrophil polarity, PIP3 and Cdc42 augment RhoA activity at the back as well as signals at the front. Journal of cell biology, 174, 437–445.PubMedCrossRef
91.
go back to reference Gomes, E. R., Jani, S., & Gundersen, G. G. (2005). Nuclear movement regulated by Cdc42, MRCK, myosin and actin flow establishes MTOC polarization. Cell, 121, 451–463.PubMedCrossRef Gomes, E. R., Jani, S., & Gundersen, G. G. (2005). Nuclear movement regulated by Cdc42, MRCK, myosin and actin flow establishes MTOC polarization. Cell, 121, 451–463.PubMedCrossRef
92.
go back to reference Tzima, E., Kiosses, W. B., del Pozo, M. A., & Schwartz, M. A. (2003). Localized Cdc42 activation detected using a novel assay, mediates microtubule organizing center positioning in endothelial cells in response to fluid stress. Journal of biological chemistry, 278, 31020–31023.PubMedCrossRef Tzima, E., Kiosses, W. B., del Pozo, M. A., & Schwartz, M. A. (2003). Localized Cdc42 activation detected using a novel assay, mediates microtubule organizing center positioning in endothelial cells in response to fluid stress. Journal of biological chemistry, 278, 31020–31023.PubMedCrossRef
93.
go back to reference Etienne-Manneville, S., & Hall, A. (2003). Cdc42 regulates GSK3b and adenomatous polyposis coli to control cell polarity. Nature, 421, 753–756.PubMedCrossRef Etienne-Manneville, S., & Hall, A. (2003). Cdc42 regulates GSK3b and adenomatous polyposis coli to control cell polarity. Nature, 421, 753–756.PubMedCrossRef
94.
go back to reference Etienne-Manneville, S., Manneville, J. B., Nicholls, S., Ferenczi, M. A., & Hall, A. (2005). Cdc42 and Par6-PKCz regulate the spatially localized association of Dlg1 and APC to control cell polarization. Journal of cell biology, 170, 895–901.PubMedCrossRef Etienne-Manneville, S., Manneville, J. B., Nicholls, S., Ferenczi, M. A., & Hall, A. (2005). Cdc42 and Par6-PKCz regulate the spatially localized association of Dlg1 and APC to control cell polarization. Journal of cell biology, 170, 895–901.PubMedCrossRef
95.
go back to reference Schlessinger, K., McManus, E. J., & Hall, A. (2007). Cdc42 and non-canonical Wnt signal transduction pathways cooperate to promote cell polarity. Journal of cell biology, 178, 355–361.PubMedCrossRef Schlessinger, K., McManus, E. J., & Hall, A. (2007). Cdc42 and non-canonical Wnt signal transduction pathways cooperate to promote cell polarity. Journal of cell biology, 178, 355–361.PubMedCrossRef
96.
go back to reference Cau, J., & Hall, A. (2005). Cdc42 controls the polarity of the actin and microtubule cytoskeletons through two distinct signal transduction pathways. Journal of Cell Science, 118, 2579–2587.PubMedCrossRef Cau, J., & Hall, A. (2005). Cdc42 controls the polarity of the actin and microtubule cytoskeletons through two distinct signal transduction pathways. Journal of Cell Science, 118, 2579–2587.PubMedCrossRef
Metadata
Title
The cytoskeleton and cancer
Author
Alan Hall
Publication date
01-06-2009
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 1-2/2009
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-008-9166-3

Other articles of this Issue 1-2/2009

Cancer and Metastasis Reviews 1-2/2009 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine