Skip to main content
Top
Published in: The International Journal of Cardiovascular Imaging 12/2018

01-12-2018 | Original Paper

Relationship between cardiovascular risk factors and myocardial strain values of both ventricles in asymptomatic Asian subjects: measurement using cardiovascular magnetic resonance tissue tracking

Authors: Ji-won Hwang, Min Jae Cha, Sung Mok Kim, Yiseul Kim, Yeon Hyeon Choe

Published in: The International Journal of Cardiovascular Imaging | Issue 12/2018

Login to get access

Abstract

The purpose of this study was to evaluate the association between myocardial deformation parameters and cardiovascular risk factors in asymptomatic Asian subjects and to provide reproducibility for deformation parameters of both ventricles using cardiovascular magnetic resonance (CMR) tissue tracking (TT). We enrolled 129 asymptomatic healthy adults who underwent CMR and assessed the cardiovascular risk factors in all individuals. All subjects had normal left ventricular systolic function. Commercial software was used to derive myocardial deformation parameters of both ventricles from short-axis cine images and long-axis cine images with two-, three-, and four-chamber views. Linear regression analysis was performed for evaluation of the association with all strain parameters for each age and systolic blood pressure. Intra class correlation was also calculated in CMR-TT to determine interobserver variability. In all 129 patients, the strain values for the left ventricle (LV) were 48.90 ± 9.05 for radial strain (RS, %), − 22.30 ± 2.33 for circumferential strain (CS, %), and − 19.76 ± 2.22 for longitudinal strain (LS, %). The strain values for the right ventricle (RV) were 18.63 ± 6.52 for RS, − 10.60 ± 3.33 for CS, and − 25.06 ± 3.01 for LS. In all 129 patients (male, n = 105), all strain parameters of LV and RV was significantly different among males and females (all p values < 0.05). The LV strain parameters were significantly associated with age by univariate linear regression analysis: RS, beta = 0.219, p = 0.002; CS, beta = − 0.668, p = 0.014 (except for LS, beta = − 0.104, p = 0.720). With regard to hypertension, diabetes mellitus and dyslipidemia, the values of all strain parameters in both ventricles were not significantly different between individuals with or without risk factors. Inter-observer agreement for three strain variables of LV and RV was 0.915 and 0.715 by iota index, and intra-observer agreement of LV and RV was 0.955 and 0.959 by iota index. The strain parameters by CMR-TT showed an association with age and significant difference in gender, on the other hands, not significantly different between with or without of the other conventional cardiovascular risk factors. The reproducibility of three LV strain parameters was higher than that of the respective RV strain parameters.
Literature
1.
go back to reference Steg PG, James SK, Atar D et al (2012) ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J 33(20):2569–2619CrossRef Steg PG, James SK, Atar D et al (2012) ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J 33(20):2569–2619CrossRef
2.
go back to reference Manisty CH, Francis DP (2008) Ejection fraction: a measure of desperation? Heart 94(4):400–401CrossRef Manisty CH, Francis DP (2008) Ejection fraction: a measure of desperation? Heart 94(4):400–401CrossRef
3.
go back to reference Cho GY, Marwick TH, Kim HS et al (2009) Global 2-dimensional strain as a new prognosticator in patients with heart failure. J Am Coll Cardiol 54(7):618–624CrossRef Cho GY, Marwick TH, Kim HS et al (2009) Global 2-dimensional strain as a new prognosticator in patients with heart failure. J Am Coll Cardiol 54(7):618–624CrossRef
4.
go back to reference Motoki H, Borowski AG, Shrestha K et al (2012) Incremental prognostic value of assessing left ventricular myocardial mechanics in patients with chronic systolic heart failure. J Am Coll Cardiol 60(20):2074–2081CrossRef Motoki H, Borowski AG, Shrestha K et al (2012) Incremental prognostic value of assessing left ventricular myocardial mechanics in patients with chronic systolic heart failure. J Am Coll Cardiol 60(20):2074–2081CrossRef
5.
go back to reference Gorcsan J 3rd, Tanaka H (2011) Echocardiographic assessment of myocardial strain. J Am Coll Cardiol 58(14):1401–1413CrossRef Gorcsan J 3rd, Tanaka H (2011) Echocardiographic assessment of myocardial strain. J Am Coll Cardiol 58(14):1401–1413CrossRef
6.
go back to reference Potter DD, Araoz PA, McGee KP et al (2008) Low-dose dobutamine cardiac magnetic resonance imaging with myocardial strain analysis predicts myocardial recoverability after coronary artery bypass grafting. J Thorac Cardiovasc Surg 135(6):1342–1347CrossRef Potter DD, Araoz PA, McGee KP et al (2008) Low-dose dobutamine cardiac magnetic resonance imaging with myocardial strain analysis predicts myocardial recoverability after coronary artery bypass grafting. J Thorac Cardiovasc Surg 135(6):1342–1347CrossRef
7.
go back to reference Choi EY, Rosen BD, Fernandes VR et al (2013) Prognostic value of myocardial circumferential strain for incident heart failure and cardiovascular events in asymptomatic individuals: the Multi-Ethnic Study of Atherosclerosis. Eur Heart J 34(30):2354–2361CrossRef Choi EY, Rosen BD, Fernandes VR et al (2013) Prognostic value of myocardial circumferential strain for incident heart failure and cardiovascular events in asymptomatic individuals: the Multi-Ethnic Study of Atherosclerosis. Eur Heart J 34(30):2354–2361CrossRef
8.
go back to reference Korosoglou G, Gitsioudis G, Voss A et al (2011) Strain-encoded cardiac magnetic resonance during high-dose dobutamine stress testing for the estimation of cardiac outcomes: comparison to clinical parameters and conventional wall motion readings. J Am Coll Cardiol 58(11):1140–1149CrossRef Korosoglou G, Gitsioudis G, Voss A et al (2011) Strain-encoded cardiac magnetic resonance during high-dose dobutamine stress testing for the estimation of cardiac outcomes: comparison to clinical parameters and conventional wall motion readings. J Am Coll Cardiol 58(11):1140–1149CrossRef
9.
go back to reference Andre F, Steen H, Matheis P et al (2015) Age- and gender-related normal left ventricular deformation assessed by cardiovascular magnetic resonance feature tracking. J Cardiovasc Magn Reson 17:25CrossRef Andre F, Steen H, Matheis P et al (2015) Age- and gender-related normal left ventricular deformation assessed by cardiovascular magnetic resonance feature tracking. J Cardiovasc Magn Reson 17:25CrossRef
10.
go back to reference Taylor RJ, Moody WE, Umar F et al (2015) Myocardial strain measurement with feature-tracking cardiovascular magnetic resonance: normal values. Eur Heart J Cardiovasc Imaging 16(8):871–881CrossRef Taylor RJ, Moody WE, Umar F et al (2015) Myocardial strain measurement with feature-tracking cardiovascular magnetic resonance: normal values. Eur Heart J Cardiovasc Imaging 16(8):871–881CrossRef
11.
go back to reference Kempny A, Fernandez-Jimenez R, Orwat S et al (2012) Quantification of biventricular myocardial function using cardiac magnetic resonance feature tracking, endocardial border delineation and echocardiographic speckle tracking in patients with repaired tetralogy of Fallot and healthy controls. J Cardiovasc Magn Reson 14:32CrossRef Kempny A, Fernandez-Jimenez R, Orwat S et al (2012) Quantification of biventricular myocardial function using cardiac magnetic resonance feature tracking, endocardial border delineation and echocardiographic speckle tracking in patients with repaired tetralogy of Fallot and healthy controls. J Cardiovasc Magn Reson 14:32CrossRef
12.
go back to reference Heermann P, Hedderich DM, Paul M et al (2014) Biventricular myocardial strain analysis in patients with arrhythmogenic right ventricular cardiomyopathy (ARVC) using cardiovascular magnetic resonance feature tracking. J Cardiovasc Magn Reson 16:75CrossRef Heermann P, Hedderich DM, Paul M et al (2014) Biventricular myocardial strain analysis in patients with arrhythmogenic right ventricular cardiomyopathy (ARVC) using cardiovascular magnetic resonance feature tracking. J Cardiovasc Magn Reson 16:75CrossRef
13.
go back to reference Schmidt B, Dick A, Treutlein M et al (2017) Intra- and inter-observer reproducibility of global and regional magnetic resonance feature tracking derived strain parameters of the left and right ventricle. Eur J Radiol 89:97–105CrossRef Schmidt B, Dick A, Treutlein M et al (2017) Intra- and inter-observer reproducibility of global and regional magnetic resonance feature tracking derived strain parameters of the left and right ventricle. Eur J Radiol 89:97–105CrossRef
14.
go back to reference Jellis C, Martin J, Narula J et al (2010) Assessment of nonischemic myocardial fibrosis. J Am Coll Cardiol 56(2):89–97CrossRef Jellis C, Martin J, Narula J et al (2010) Assessment of nonischemic myocardial fibrosis. J Am Coll Cardiol 56(2):89–97CrossRef
15.
go back to reference Maharaj N, Khandheria BK, Libhaber E et al (2014) Relationship between left ventricular twist and circulating biomarkers of collagen turnover in hypertensive patients with heart failure. J Am Soc Echocardiogr 27(10):1064–1071CrossRef Maharaj N, Khandheria BK, Libhaber E et al (2014) Relationship between left ventricular twist and circulating biomarkers of collagen turnover in hypertensive patients with heart failure. J Am Soc Echocardiogr 27(10):1064–1071CrossRef
16.
go back to reference D’Agostino RB, Vasan RS, Pencina MJ et al (2008) General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation 117(6):743–753CrossRef D’Agostino RB, Vasan RS, Pencina MJ et al (2008) General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation 117(6):743–753CrossRef
17.
go back to reference Schuster A, Stahnke VC, Unterberg-Buchwald C et al (2015) Cardiovascular magnetic resonance feature-tracking assessment of myocardial mechanics: intervendor agreement and considerations regarding reproducibility. Clin Radiol 70(9):989–998CrossRef Schuster A, Stahnke VC, Unterberg-Buchwald C et al (2015) Cardiovascular magnetic resonance feature-tracking assessment of myocardial mechanics: intervendor agreement and considerations regarding reproducibility. Clin Radiol 70(9):989–998CrossRef
18.
go back to reference Harald Janson UO (2001) A Measure of agreement for interval or nominal multivariate observations. Educ Psychol Measur 61(2):277–289CrossRef Harald Janson UO (2001) A Measure of agreement for interval or nominal multivariate observations. Educ Psychol Measur 61(2):277–289CrossRef
19.
go back to reference Maceira AM, Prasad SK, Khan M et al (2006) Normalized left ventricular systolic and diastolic function by steady state free precession cardiovascular magnetic resonance. J Cardiovasc Magn Reson 8(3):417–426CrossRef Maceira AM, Prasad SK, Khan M et al (2006) Normalized left ventricular systolic and diastolic function by steady state free precession cardiovascular magnetic resonance. J Cardiovasc Magn Reson 8(3):417–426CrossRef
20.
go back to reference Yingchoncharoen T, Agarwal S, Popovic ZB et al (2013) Normal ranges of left ventricular strain: a meta-analysis. J Am Soc Echocardiogr 26(2):185–191CrossRef Yingchoncharoen T, Agarwal S, Popovic ZB et al (2013) Normal ranges of left ventricular strain: a meta-analysis. J Am Soc Echocardiogr 26(2):185–191CrossRef
21.
go back to reference Plana JC, Galderisi M, Barac A et al (2014) Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 27(9):911–939CrossRef Plana JC, Galderisi M, Barac A et al (2014) Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 27(9):911–939CrossRef
22.
go back to reference Hwang JW, Kim SM, Park SJ et al (2017) Assessment of reverse remodeling predicted by myocardial deformation on tissue tracking in patients with severe aortic stenosis: a cardiovascular magnetic resonance imaging study. J Cardiovasc Magn Reson 19(1):80CrossRef Hwang JW, Kim SM, Park SJ et al (2017) Assessment of reverse remodeling predicted by myocardial deformation on tissue tracking in patients with severe aortic stenosis: a cardiovascular magnetic resonance imaging study. J Cardiovasc Magn Reson 19(1):80CrossRef
23.
go back to reference Yang LT, Yamashita E, Nagata Y et al (2017) Prognostic value of biventricular mechanical parameters assessed using cardiac magnetic resonance feature-tracking analysis to predict future cardiac events. J Magn Reson Imaging 45(4):1034–1045CrossRef Yang LT, Yamashita E, Nagata Y et al (2017) Prognostic value of biventricular mechanical parameters assessed using cardiac magnetic resonance feature-tracking analysis to predict future cardiac events. J Magn Reson Imaging 45(4):1034–1045CrossRef
24.
go back to reference Shetye AM, Nazir SA, Razvi NA et al (2017) Comparison of global myocardial strain assessed by cardiovascular magnetic resonance tagging and feature tracking to infarct size at predicting remodelling following STEMI. BMC Cardiovasc Disord 17(1):7CrossRef Shetye AM, Nazir SA, Razvi NA et al (2017) Comparison of global myocardial strain assessed by cardiovascular magnetic resonance tagging and feature tracking to infarct size at predicting remodelling following STEMI. BMC Cardiovasc Disord 17(1):7CrossRef
25.
go back to reference Adamo L, Perry A, Novak E et al (2017) Abnormal global longitudinal strain predicts future deterioration of left ventricular function in heart failure patients with a recovered left ventricular ejection fraction. Circ Heart Fail 10(6). pii: e003788CrossRef Adamo L, Perry A, Novak E et al (2017) Abnormal global longitudinal strain predicts future deterioration of left ventricular function in heart failure patients with a recovered left ventricular ejection fraction. Circ Heart Fail 10(6). pii: e003788CrossRef
26.
go back to reference Buss SJ, Emami M, Mereles D et al (2012) Longitudinal left ventricular function for prediction of survival in systemic light-chain amyloidosis: incremental value compared with clinical and biochemical markers. J Am Coll Cardiol 60(12):1067–1076CrossRef Buss SJ, Emami M, Mereles D et al (2012) Longitudinal left ventricular function for prediction of survival in systemic light-chain amyloidosis: incremental value compared with clinical and biochemical markers. J Am Coll Cardiol 60(12):1067–1076CrossRef
27.
go back to reference Shehata ML, Cheng S, Osman NF et al (2009) Myocardial tissue tagging with cardiovascular magnetic resonance. J Cardiovasc Magn Reson 11:55CrossRef Shehata ML, Cheng S, Osman NF et al (2009) Myocardial tissue tagging with cardiovascular magnetic resonance. J Cardiovasc Magn Reson 11:55CrossRef
28.
go back to reference Kuijer JP, Hofman MB, Zwanenburg JJ et al (2006) DENSE and HARP: two views on the same technique of phase-based strain imaging. J Magn Reson Imaging 24(6):1432–1438CrossRef Kuijer JP, Hofman MB, Zwanenburg JJ et al (2006) DENSE and HARP: two views on the same technique of phase-based strain imaging. J Magn Reson Imaging 24(6):1432–1438CrossRef
29.
go back to reference Zerhouni EA, Parish DM, Rogers WJ et al (1988) Human heart: tagging with MR imaging: a method for noninvasive assessment of myocardial motion. Radiology 169(1):59–63CrossRef Zerhouni EA, Parish DM, Rogers WJ et al (1988) Human heart: tagging with MR imaging: a method for noninvasive assessment of myocardial motion. Radiology 169(1):59–63CrossRef
30.
go back to reference Onishi T, Saha SK, Ludwig DR et al (2013) Feature tracking measurement of dyssynchrony from cardiovascular magnetic resonance cine acquisitions: comparison with echocardiographic speckle tracking. J Cardiovasc Magn Reson 15:95CrossRef Onishi T, Saha SK, Ludwig DR et al (2013) Feature tracking measurement of dyssynchrony from cardiovascular magnetic resonance cine acquisitions: comparison with echocardiographic speckle tracking. J Cardiovasc Magn Reson 15:95CrossRef
31.
go back to reference Hor KN, Gottliebson WM, Carson C et al (2010) Comparison of magnetic resonance feature tracking for strain calculation with harmonic phase imaging analysis. JACC Cardiovasc Imaging 3(2):144–151CrossRef Hor KN, Gottliebson WM, Carson C et al (2010) Comparison of magnetic resonance feature tracking for strain calculation with harmonic phase imaging analysis. JACC Cardiovasc Imaging 3(2):144–151CrossRef
32.
go back to reference Augustine D, Lewandowski AJ, Lazdam M et al (2013) Global and regional left ventricular myocardial deformation measures by magnetic resonance feature tracking in healthy volunteers: comparison with tagging and relevance of gender. J Cardiovasc Magn Reson 15:8CrossRef Augustine D, Lewandowski AJ, Lazdam M et al (2013) Global and regional left ventricular myocardial deformation measures by magnetic resonance feature tracking in healthy volunteers: comparison with tagging and relevance of gender. J Cardiovasc Magn Reson 15:8CrossRef
33.
go back to reference Pirat B, Khoury DS, Hartley CJ et al (2008) A novel feature-tracking echocardiographic method for the quantitation of regional myocardial function: validation in an animal model of ischemia-reperfusion. J Am Coll Cardiol 51(6):651–659CrossRef Pirat B, Khoury DS, Hartley CJ et al (2008) A novel feature-tracking echocardiographic method for the quantitation of regional myocardial function: validation in an animal model of ischemia-reperfusion. J Am Coll Cardiol 51(6):651–659CrossRef
34.
go back to reference Schuster A, Kutty S, Padiyath A et al (2011) Cardiovascular magnetic resonance myocardial feature tracking detects quantitative wall motion during dobutamine stress. J Cardiovasc Magn Reson 13:58CrossRef Schuster A, Kutty S, Padiyath A et al (2011) Cardiovascular magnetic resonance myocardial feature tracking detects quantitative wall motion during dobutamine stress. J Cardiovasc Magn Reson 13:58CrossRef
35.
go back to reference Bogaert J, Rademakers FE (2001) Regional nonuniformity of normal adult human left ventricle. Am J Physiol Heart Circ Physiol 280(2):H610–H620CrossRef Bogaert J, Rademakers FE (2001) Regional nonuniformity of normal adult human left ventricle. Am J Physiol Heart Circ Physiol 280(2):H610–H620CrossRef
36.
go back to reference Kocabay G, Muraru D, Peluso D et al (2014) Normal left ventricular mechanics by two-dimensional speckle-tracking echocardiography. Reference values in healthy adults. Rev Esp Cardiol (Engl Ed) 67(8):651–658CrossRef Kocabay G, Muraru D, Peluso D et al (2014) Normal left ventricular mechanics by two-dimensional speckle-tracking echocardiography. Reference values in healthy adults. Rev Esp Cardiol (Engl Ed) 67(8):651–658CrossRef
37.
go back to reference Cheng S, Fernandes VR, Bluemke DA et al (2009) Age-related left ventricular remodeling and associated risk for cardiovascular outcomes: the Multi-Ethnic Study of Atherosclerosis. Circ Cardiovasc Imaging 2(3):191–198CrossRef Cheng S, Fernandes VR, Bluemke DA et al (2009) Age-related left ventricular remodeling and associated risk for cardiovascular outcomes: the Multi-Ethnic Study of Atherosclerosis. Circ Cardiovasc Imaging 2(3):191–198CrossRef
38.
go back to reference Morris DA, Krisper M, Nakatani S et al (2017) Normal range and usefulness of right ventricular systolic strain to detect subtle right ventricular systolic abnormalities in patients with heart failure: a multicentre study. Eur Heart J Cardiovasc Imaging 18(2):212–223CrossRef Morris DA, Krisper M, Nakatani S et al (2017) Normal range and usefulness of right ventricular systolic strain to detect subtle right ventricular systolic abnormalities in patients with heart failure: a multicentre study. Eur Heart J Cardiovasc Imaging 18(2):212–223CrossRef
39.
go back to reference Rudski LG, Lai WW, Afilalo J et al (2010) Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr 23(7):685–713 (quiz 786–688)CrossRef Rudski LG, Lai WW, Afilalo J et al (2010) Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr 23(7):685–713 (quiz 786–688)CrossRef
40.
go back to reference Truong VT, Safdar KS, Kalra DK et al (2017) Cardiac magnetic resonance tissue tracking in right ventricle: feasibility and normal values. Magn Reson Imaging 38:189–195CrossRef Truong VT, Safdar KS, Kalra DK et al (2017) Cardiac magnetic resonance tissue tracking in right ventricle: feasibility and normal values. Magn Reson Imaging 38:189–195CrossRef
41.
go back to reference Pedrizzetti G, Claus P, Kilner PJ et al (2016) Principles of cardiovascular magnetic resonance feature tracking and echocardiographic speckle tracking for informed clinical use. J Cardiovasc Magn Reson 18(1):51CrossRef Pedrizzetti G, Claus P, Kilner PJ et al (2016) Principles of cardiovascular magnetic resonance feature tracking and echocardiographic speckle tracking for informed clinical use. J Cardiovasc Magn Reson 18(1):51CrossRef
42.
go back to reference Lamacie MM, Thavendiranathan P, Hanneman K et al (2017) Quantification of global myocardial function by cine MRI deformable registration-based analysis: comparison with MR feature tracking and speckle-tracking echocardiography. Eur Radiol 27(4):1404–1415CrossRef Lamacie MM, Thavendiranathan P, Hanneman K et al (2017) Quantification of global myocardial function by cine MRI deformable registration-based analysis: comparison with MR feature tracking and speckle-tracking echocardiography. Eur Radiol 27(4):1404–1415CrossRef
43.
go back to reference Onishi T, Saha SK, Delgado-Montero A et al (2015) Global longitudinal strain and global circumferential strain by speckle-tracking echocardiography and feature-tracking cardiac magnetic resonance imaging: comparison with left ventricular ejection fraction. J Am Soc Echocardiogr 28(5):587–596CrossRef Onishi T, Saha SK, Delgado-Montero A et al (2015) Global longitudinal strain and global circumferential strain by speckle-tracking echocardiography and feature-tracking cardiac magnetic resonance imaging: comparison with left ventricular ejection fraction. J Am Soc Echocardiogr 28(5):587–596CrossRef
44.
go back to reference Wu L, Germans T, Guclu A et al (2014) Feature tracking compared with tissue tagging measurements of segmental strain by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 16:10CrossRef Wu L, Germans T, Guclu A et al (2014) Feature tracking compared with tissue tagging measurements of segmental strain by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 16:10CrossRef
Metadata
Title
Relationship between cardiovascular risk factors and myocardial strain values of both ventricles in asymptomatic Asian subjects: measurement using cardiovascular magnetic resonance tissue tracking
Authors
Ji-won Hwang
Min Jae Cha
Sung Mok Kim
Yiseul Kim
Yeon Hyeon Choe
Publication date
01-12-2018
Publisher
Springer Netherlands
Published in
The International Journal of Cardiovascular Imaging / Issue 12/2018
Print ISSN: 1569-5794
Electronic ISSN: 1875-8312
DOI
https://doi.org/10.1007/s10554-018-1414-1

Other articles of this Issue 12/2018

The International Journal of Cardiovascular Imaging 12/2018 Go to the issue