Skip to main content
Top
Published in: The International Journal of Cardiovascular Imaging 8/2012

01-12-2012 | Original paper

In vivo and in vitro validation of aortic flow quantification by time-resolved three-dimensional velocity-encoded MRI

Authors: Fabian Rengier, Michael Delles, Roland Unterhinninghofen, Sebastian Ley, Matthias Müller-Eschner, Sasan Partovi, Philipp Geisbüsch, Rüdiger Dillmann, Hans-Ulrich Kauczor, Hendrik von Tengg-Kobligk

Published in: The International Journal of Cardiovascular Imaging | Issue 8/2012

Login to get access

Abstract

Three-dimensional velocity-encoded cine magnetic resonance imaging (3D VEC MRI) allows for calculation of secondary flow parameters that may be used to estimate prognosis of individual cardiovascular diseases. However, its accuracy has not been fully investigated yet. The purpose of this study was to validate aortic flow quantification by 3D VEC MRI in vitro and in vivo using stacked two-dimensional acquisitions. Time-resolved stacks of two-dimensional planes with three-directional velocity-encoding (stacked-2D-3dir-MRI) were acquired in an elastic tube phantom with pulsatile flow simulating aortic flow as well as in 11 healthy volunteers (23 ± 2 years). Previously validated two-dimensional through-plane VEC MRI at six equidistant levels in vitro and three locations in vivo (ascending aorta/aortic arch/descending aorta) was used as reference standard. The percentage difference of the stacked-2D-3dir-MRI measurement to the reference standard was defined as the parameter for accuracy. For in vitro aortic flow, stacked-2D-3dir-MRI underestimated average velocity by −6.8% (p < 0.001), overestimated average area by 13.6% (p < 0.001), and underestimated average flow by −7.4% (p < 0.001). Accuracy was significantly higher in the field of view centre compared to off-centre (p = 0.001). In vivo, stacked-2D-3dir-MRI underestimated average velocity (all three locations p < 0.001) and overestimated average area at all three locations (p = n.s./<0.001/<0.001). Average flow was significantly underestimated in the ascending aorta (p = 0.035), but tended to be overestimated in the aortic arch and descending aorta. In conclusion, stacked-2D-3dir-MRI tends to overestimate average aortic area and to underestimate average aortic velocity, resulting in significant underestimation of average flow in the ascending aorta.
Literature
1.
go back to reference Hope TA, Herfkens RJ (2008) Imaging of the thoracic aorta with time-resolved three-dimensional phase-contrast MRI: a review. Semin Thorac Cardiovasc Surg 20:358–364PubMedCrossRef Hope TA, Herfkens RJ (2008) Imaging of the thoracic aorta with time-resolved three-dimensional phase-contrast MRI: a review. Semin Thorac Cardiovasc Surg 20:358–364PubMedCrossRef
2.
go back to reference Kilner PJ, Yang GZ, Mohiaddin RH, Firmin DN, Longmore DB (1993) Helical and retrograde secondary flow patterns in the aortic arch studied by three-directional magnetic resonance velocity mapping. Circulation 88:2235–2247PubMedCrossRef Kilner PJ, Yang GZ, Mohiaddin RH, Firmin DN, Longmore DB (1993) Helical and retrograde secondary flow patterns in the aortic arch studied by three-directional magnetic resonance velocity mapping. Circulation 88:2235–2247PubMedCrossRef
3.
go back to reference von Tengg-Kobligk H, Weber TF, Rengier F, Kotelis D, Geisbüsch P, Böckler D, Schumacher H, Ley S (2008) Imaging modalities for the thoracic aorta. J Cardiovasc Surg (Torino) 49:429–447 von Tengg-Kobligk H, Weber TF, Rengier F, Kotelis D, Geisbüsch P, Böckler D, Schumacher H, Ley S (2008) Imaging modalities for the thoracic aorta. J Cardiovasc Surg (Torino) 49:429–447
4.
go back to reference Ley-Zaporozhan J, Unterhinninghofen R, Rengier F, Markl M, Eichhorn J, von Tengg-Kobligk H, Ley S (2009) Four-dimensional visualization of thoracic blood flow by magnetic resonance imaging in a patient following correction of transposition of the great arteries (d-TGA) and uncorrected aortic coarctation. Acta Radiol 50:909–913PubMedCrossRef Ley-Zaporozhan J, Unterhinninghofen R, Rengier F, Markl M, Eichhorn J, von Tengg-Kobligk H, Ley S (2009) Four-dimensional visualization of thoracic blood flow by magnetic resonance imaging in a patient following correction of transposition of the great arteries (d-TGA) and uncorrected aortic coarctation. Acta Radiol 50:909–913PubMedCrossRef
5.
go back to reference Hope MD, Meadows AK, Hope TA, Ordovas KG, Saloner D, Reddy GP, Alley MT, Higgins CB (2010) Clinical evaluation of aortic coarctation with 4D flow MR imaging. J Magn Reson Imaging 31:711–718PubMedCrossRef Hope MD, Meadows AK, Hope TA, Ordovas KG, Saloner D, Reddy GP, Alley MT, Higgins CB (2010) Clinical evaluation of aortic coarctation with 4D flow MR imaging. J Magn Reson Imaging 31:711–718PubMedCrossRef
6.
go back to reference Bogren HG, Buonocore MH (1999) 4D magnetic resonance velocity mapping of blood flow patterns in the aorta in young vs. elderly normal subjects. J Magn Reson Imaging 10:861–869PubMedCrossRef Bogren HG, Buonocore MH (1999) 4D magnetic resonance velocity mapping of blood flow patterns in the aorta in young vs. elderly normal subjects. J Magn Reson Imaging 10:861–869PubMedCrossRef
7.
go back to reference Unterhinninghofen R, Ley S, Ley-Zaporozhan J, von Tengg-Kobligk H, Bock M, Kauczor H, Szabó G, Dillmann R (2008) Concepts for visualization of multidirectional phase-contrast MRI of the heart and large thoracic vessels. Acad Radiol 15:361–369PubMedCrossRef Unterhinninghofen R, Ley S, Ley-Zaporozhan J, von Tengg-Kobligk H, Bock M, Kauczor H, Szabó G, Dillmann R (2008) Concepts for visualization of multidirectional phase-contrast MRI of the heart and large thoracic vessels. Acad Radiol 15:361–369PubMedCrossRef
8.
go back to reference Karmonik C, Bismuth JX, Davies MG, Lumsden AB (2008) Computational hemodynamics in the human aorta: a computational fluid dynamics study of three cases with patient-specific geometries and inflow rates. Technol Health Care 16:343–354PubMed Karmonik C, Bismuth JX, Davies MG, Lumsden AB (2008) Computational hemodynamics in the human aorta: a computational fluid dynamics study of three cases with patient-specific geometries and inflow rates. Technol Health Care 16:343–354PubMed
9.
go back to reference Stalder AF, Russe MF, Frydrychowicz A, Bock J, Hennig J, Markl M (2008) Quantitative 2D and 3D phase contrast MRI: optimized analysis of blood flow and vessel wall parameters. Magn Reson Med 60:1218–1231PubMedCrossRef Stalder AF, Russe MF, Frydrychowicz A, Bock J, Hennig J, Markl M (2008) Quantitative 2D and 3D phase contrast MRI: optimized analysis of blood flow and vessel wall parameters. Magn Reson Med 60:1218–1231PubMedCrossRef
10.
go back to reference Scotti CM, Jimenez J, Muluk SC, Finol EA (2008) Wall stress and flow dynamics in abdominal aortic aneurysms: finite element analysis vs. fluid-structure interaction. Comput Methods Biomech Biomed Eng 11:301–322CrossRef Scotti CM, Jimenez J, Muluk SC, Finol EA (2008) Wall stress and flow dynamics in abdominal aortic aneurysms: finite element analysis vs. fluid-structure interaction. Comput Methods Biomech Biomed Eng 11:301–322CrossRef
11.
go back to reference Tyszka JM, Laidlaw DH, Asa JW, Silverman JM (2000) Three-dimensional, time-resolved (4D) relative pressure mapping using magnetic resonance imaging. J Magn Reson Imaging 12:321–329PubMedCrossRef Tyszka JM, Laidlaw DH, Asa JW, Silverman JM (2000) Three-dimensional, time-resolved (4D) relative pressure mapping using magnetic resonance imaging. J Magn Reson Imaging 12:321–329PubMedCrossRef
12.
go back to reference Delles M, Rengier F, Ley S, von Tengg-Kobligk H, Kauczor H, Dillmann R, Unterhinninghofen R (2011) Polynomial regularization for robust MRI-based estimation of blood flow velocities and pressure gradients. Conf Proc IEEE Eng Med Biol Soc 2011:6829–6832PubMed Delles M, Rengier F, Ley S, von Tengg-Kobligk H, Kauczor H, Dillmann R, Unterhinninghofen R (2011) Polynomial regularization for robust MRI-based estimation of blood flow velocities and pressure gradients. Conf Proc IEEE Eng Med Biol Soc 2011:6829–6832PubMed
13.
go back to reference Heiberg E, Ebbers T, Wigstrom L, Karlsson M (2003) Three-dimensional flow characterization using vector pattern matching. IEEE Trans Vis Comput Graph 9:313–319CrossRef Heiberg E, Ebbers T, Wigstrom L, Karlsson M (2003) Three-dimensional flow characterization using vector pattern matching. IEEE Trans Vis Comput Graph 9:313–319CrossRef
14.
go back to reference Rengier F, Delles M, Unterhinninghofen R, Ley S, Partovi S, Dillmann R, Kauczor H, von Tengg-Kobligk H (2011) Impact of an aortic nitinol stent graft on flow measurements by time-resolved three-dimensional velocity-encoded MRI. Acad Radiol. doi:10.1016/j.acra.2011.10.025 [Epub ahead of print] Rengier F, Delles M, Unterhinninghofen R, Ley S, Partovi S, Dillmann R, Kauczor H, von Tengg-Kobligk H (2011) Impact of an aortic nitinol stent graft on flow measurements by time-resolved three-dimensional velocity-encoded MRI. Acad Radiol. doi:10.​1016/​j.​acra.​2011.​10.​025 [Epub ahead of print]
15.
go back to reference Bock J, Frydrychowicz A, Lorenz R, Hirtler D, Barker AJ, Johnson KM, Arnold R, Burkhardt H, Hennig J, Markl M (2011) In vivo noninvasive 4D pressure difference mapping in the human aorta: phantom comparison and application in healthy volunteers and patients. Magn Reson Med 66:1079–1088PubMedCrossRef Bock J, Frydrychowicz A, Lorenz R, Hirtler D, Barker AJ, Johnson KM, Arnold R, Burkhardt H, Hennig J, Markl M (2011) In vivo noninvasive 4D pressure difference mapping in the human aorta: phantom comparison and application in healthy volunteers and patients. Magn Reson Med 66:1079–1088PubMedCrossRef
16.
go back to reference Frydrychowicz A, Arnold R, Hirtler D, Schlensak C, Stalder AF, Hennig J, Langer M, Markl M (2008) Multidirectional flow analysis by cardiovascular magnetic resonance in aneurysm development following repair of aortic coarctation. J Cardiovasc Magn Reson 10:30PubMedCrossRef Frydrychowicz A, Arnold R, Hirtler D, Schlensak C, Stalder AF, Hennig J, Langer M, Markl M (2008) Multidirectional flow analysis by cardiovascular magnetic resonance in aneurysm development following repair of aortic coarctation. J Cardiovasc Magn Reson 10:30PubMedCrossRef
17.
go back to reference Markl M, Chan FP, Alley MT, Wedding KL, Draney MT, Elkins CJ, Parker DW, Wicker R, Taylor CA, Herfkens RJ, Pelc NJ (2003) Time-resolved three-dimensional phase-contrast MRI. J Magn Reson Imaging 17:499–506PubMedCrossRef Markl M, Chan FP, Alley MT, Wedding KL, Draney MT, Elkins CJ, Parker DW, Wicker R, Taylor CA, Herfkens RJ, Pelc NJ (2003) Time-resolved three-dimensional phase-contrast MRI. J Magn Reson Imaging 17:499–506PubMedCrossRef
18.
go back to reference Brix L, Ringgaard S, Rasmusson A, Sørensen TS, Kim WY (2009) Three dimensional three component whole heart cardiovascular magnetic resonance velocity mapping: comparison of flow measurements from 3D and 2D acquisitions. J Cardiovasc Magn Reson 11:3PubMedCrossRef Brix L, Ringgaard S, Rasmusson A, Sørensen TS, Kim WY (2009) Three dimensional three component whole heart cardiovascular magnetic resonance velocity mapping: comparison of flow measurements from 3D and 2D acquisitions. J Cardiovasc Magn Reson 11:3PubMedCrossRef
19.
go back to reference Nordmeyer S, Riesenkampff E, Crelier G, Khasheei A, Schnackenburg B, Berger F, Kuehne T (2010) Flow-sensitive four-dimensional cine magnetic resonance imaging for offline blood flow quantification in multiple vessels: a validation study. J Magn Reson Imaging 32:677–683PubMedCrossRef Nordmeyer S, Riesenkampff E, Crelier G, Khasheei A, Schnackenburg B, Berger F, Kuehne T (2010) Flow-sensitive four-dimensional cine magnetic resonance imaging for offline blood flow quantification in multiple vessels: a validation study. J Magn Reson Imaging 32:677–683PubMedCrossRef
20.
go back to reference Walsh EG, Holton AD, Brott BC, Venugopalan R, Anayiotos AS (2005) Magnetic resonance phase velocity mapping through NiTi stents in a flow phantom model. J Magn Reson Imaging 21:59–65PubMedCrossRef Walsh EG, Holton AD, Brott BC, Venugopalan R, Anayiotos AS (2005) Magnetic resonance phase velocity mapping through NiTi stents in a flow phantom model. J Magn Reson Imaging 21:59–65PubMedCrossRef
21.
go back to reference Rengier F, Delles M, Weber TF, Böckler D, Ley S, Kauczor H, von Tengg-Kobligk H (2011) In vitro validation of flow measurements in an aortic nitinol stent graft by velocity-encoded MRI. Eur J Radiol 80:163–167PubMedCrossRef Rengier F, Delles M, Weber TF, Böckler D, Ley S, Kauczor H, von Tengg-Kobligk H (2011) In vitro validation of flow measurements in an aortic nitinol stent graft by velocity-encoded MRI. Eur J Radiol 80:163–167PubMedCrossRef
22.
go back to reference Delles M, Rengier F, von Tengg-Kobligk H, Ley S, Kauczor H, Unterhinninghofen R, Dillmann R (2009) Quadratic phase offset error correction of velocity-encoded magnetic resonance imaging data. Int J Comput Assist Radiol Surg 4:S10–S11 Delles M, Rengier F, von Tengg-Kobligk H, Ley S, Kauczor H, Unterhinninghofen R, Dillmann R (2009) Quadratic phase offset error correction of velocity-encoded magnetic resonance imaging data. Int J Comput Assist Radiol Surg 4:S10–S11
23.
go back to reference Shrout PE, Fleiss JL (1979) Intraclass correlations: uses in assessing rater reliability. Psychol Bull 86:420–428PubMedCrossRef Shrout PE, Fleiss JL (1979) Intraclass correlations: uses in assessing rater reliability. Psychol Bull 86:420–428PubMedCrossRef
24.
go back to reference Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310PubMedCrossRef Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310PubMedCrossRef
25.
go back to reference Dietrich O, Raya JG, Reeder SB, Reiser MF, Schoenberg SO (2007) Measurement of signal-to-noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters. J Magn Reson Imaging 26:375–385PubMedCrossRef Dietrich O, Raya JG, Reeder SB, Reiser MF, Schoenberg SO (2007) Measurement of signal-to-noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters. J Magn Reson Imaging 26:375–385PubMedCrossRef
26.
go back to reference Lotz J, Döker R, Noeske R, Schüttert M, Felix R, Galanski M, Gutberlet M, Meyer GP (2005) In vitro validation of phase-contrast flow measurements at 3 T in comparison to 1.5 T: precision, accuracy, and signal-to-noise ratios. J Magn Reson Imaging 21:604–610PubMedCrossRef Lotz J, Döker R, Noeske R, Schüttert M, Felix R, Galanski M, Gutberlet M, Meyer GP (2005) In vitro validation of phase-contrast flow measurements at 3 T in comparison to 1.5 T: precision, accuracy, and signal-to-noise ratios. J Magn Reson Imaging 21:604–610PubMedCrossRef
27.
go back to reference Gatehouse PD, Rolf MP, Graves MJ, Hofman MB, Totman J, Werner B, Quest RA, Liu Y, von Spiczak J, Dieringer M, Firmin DN, van Rossum A, Lombardi M, Schwitter J, Schulz-Menger J, Kilner PJ (2010) Flow measurement by cardiovascular magnetic resonance: a multi-centre multi-vendor study of background phase offset errors that can compromise the accuracy of derived regurgitant or shunt flow measurements. J Cardiovasc Magn Reson 12:5PubMedCrossRef Gatehouse PD, Rolf MP, Graves MJ, Hofman MB, Totman J, Werner B, Quest RA, Liu Y, von Spiczak J, Dieringer M, Firmin DN, van Rossum A, Lombardi M, Schwitter J, Schulz-Menger J, Kilner PJ (2010) Flow measurement by cardiovascular magnetic resonance: a multi-centre multi-vendor study of background phase offset errors that can compromise the accuracy of derived regurgitant or shunt flow measurements. J Cardiovasc Magn Reson 12:5PubMedCrossRef
28.
go back to reference Lotz J, Meier C, Leppert A, Galanski M (2002) Cardiovascular flow measurement with phase-contrast MR imaging: basic facts and implementation. Radiographics 22:651–671PubMed Lotz J, Meier C, Leppert A, Galanski M (2002) Cardiovascular flow measurement with phase-contrast MR imaging: basic facts and implementation. Radiographics 22:651–671PubMed
29.
go back to reference Gill RW (1985) Measurement of blood flow by ultrasound: accuracy and sources of error. Ultrasound Med Biol 11:625–641PubMedCrossRef Gill RW (1985) Measurement of blood flow by ultrasound: accuracy and sources of error. Ultrasound Med Biol 11:625–641PubMedCrossRef
30.
go back to reference Westenberg JJM, Danilouchkine MG, Doornbos J, Bax JJ, van der Geest RJ, Labadie G, Lamb HJ, Versteegh MIM, de Roos A, Reiber JHC (2004) Accurate and reproducible mitral valvular blood flow measurement with three-directional velocity-encoded magnetic resonance imaging. J Cardiovasc Magn Reson 6:767–776PubMedCrossRef Westenberg JJM, Danilouchkine MG, Doornbos J, Bax JJ, van der Geest RJ, Labadie G, Lamb HJ, Versteegh MIM, de Roos A, Reiber JHC (2004) Accurate and reproducible mitral valvular blood flow measurement with three-directional velocity-encoded magnetic resonance imaging. J Cardiovasc Magn Reson 6:767–776PubMedCrossRef
31.
go back to reference Roes SD, Hammer S, van der Geest RJ, Marsan NA, Bax JJ, Lamb HJ, Reiber JHC, de Roos A, Westenberg JJM (2009) Flow assessment through four heart valves simultaneously using 3-dimensional 3-directional velocity-encoded magnetic resonance imaging with retrospective valve tracking in healthy volunteers and patients with valvular regurgitation. Invest Radiol 44:669–675PubMedCrossRef Roes SD, Hammer S, van der Geest RJ, Marsan NA, Bax JJ, Lamb HJ, Reiber JHC, de Roos A, Westenberg JJM (2009) Flow assessment through four heart valves simultaneously using 3-dimensional 3-directional velocity-encoded magnetic resonance imaging with retrospective valve tracking in healthy volunteers and patients with valvular regurgitation. Invest Radiol 44:669–675PubMedCrossRef
32.
go back to reference Markl M, Wallis W, Harloff A (2011) Reproducibility of flow and wall shear stress analysis using flow-sensitive four-dimensional MRI. J Magn Reson Imaging 33:988–994PubMedCrossRef Markl M, Wallis W, Harloff A (2011) Reproducibility of flow and wall shear stress analysis using flow-sensitive four-dimensional MRI. J Magn Reson Imaging 33:988–994PubMedCrossRef
33.
go back to reference Boussel L, Rayz V, Martin A, Acevedo-Bolton G, Lawton MT, Higashida R, Smith WS, Young WL, Saloner D (2009) Phase-contrast magnetic resonance imaging measurements in intracranial aneurysms in vivo of flow patterns, velocity fields, and wall shear stress: comparison with computational fluid dynamics. Magn Reson Med 61:409–417PubMedCrossRef Boussel L, Rayz V, Martin A, Acevedo-Bolton G, Lawton MT, Higashida R, Smith WS, Young WL, Saloner D (2009) Phase-contrast magnetic resonance imaging measurements in intracranial aneurysms in vivo of flow patterns, velocity fields, and wall shear stress: comparison with computational fluid dynamics. Magn Reson Med 61:409–417PubMedCrossRef
34.
go back to reference Baltes C, Kozerke S, Hansen MS, Pruessmann KP, Tsao J, Boesiger P (2005) Accelerating cine phase-contrast flow measurements using k-t BLAST and k-t SENSE. Magn Reson Med 54:1430–1438PubMedCrossRef Baltes C, Kozerke S, Hansen MS, Pruessmann KP, Tsao J, Boesiger P (2005) Accelerating cine phase-contrast flow measurements using k-t BLAST and k-t SENSE. Magn Reson Med 54:1430–1438PubMedCrossRef
35.
go back to reference Uribe S, Beerbaum P, Sørensen TS, Rasmusson A, Razavi R, Schaeffter T (2009) Four-dimensional (4D) flow of the whole heart and great vessels using real-time respiratory self-gating. Magn Reson Med 62:984–992PubMedCrossRef Uribe S, Beerbaum P, Sørensen TS, Rasmusson A, Razavi R, Schaeffter T (2009) Four-dimensional (4D) flow of the whole heart and great vessels using real-time respiratory self-gating. Magn Reson Med 62:984–992PubMedCrossRef
Metadata
Title
In vivo and in vitro validation of aortic flow quantification by time-resolved three-dimensional velocity-encoded MRI
Authors
Fabian Rengier
Michael Delles
Roland Unterhinninghofen
Sebastian Ley
Matthias Müller-Eschner
Sasan Partovi
Philipp Geisbüsch
Rüdiger Dillmann
Hans-Ulrich Kauczor
Hendrik von Tengg-Kobligk
Publication date
01-12-2012
Publisher
Springer Netherlands
Published in
The International Journal of Cardiovascular Imaging / Issue 8/2012
Print ISSN: 1569-5794
Electronic ISSN: 1875-8312
DOI
https://doi.org/10.1007/s10554-012-0027-3

Other articles of this Issue 8/2012

The International Journal of Cardiovascular Imaging 8/2012 Go to the issue