Skip to main content
Top
Published in: Breast Cancer Research and Treatment 1/2019

01-05-2019 | Preclinical study

S-adenosylmethionine biosynthesis is a targetable metabolic vulnerability of cancer stem cells

Authors: Elena Strekalova, Dmitry Malin, Erin M. M. Weisenhorn, Jason D. Russell, Dominik Hoelper, Aayushi Jain, Joshua J. Coon, Peter W. Lewis, Vincent L. Cryns

Published in: Breast Cancer Research and Treatment | Issue 1/2019

Login to get access

Abstract

Purpose

Many transformed cells and embryonic stem cells are dependent on the biosynthesis of the universal methyl-donor S-adenosylmethionine (SAM) from methionine by the enzyme MAT2A to maintain their epigenome. We hypothesized that cancer stem cells (CSCs) rely on SAM biosynthesis and that the combination of methionine depletion and MAT2A inhibition would eradicate CSCs.

Methods

Human triple (ER/PR/HER2)-negative breast carcinoma (TNBC) cell lines were cultured as CSC-enriched mammospheres in control or methionine-free media. MAT2A was inhibited with siRNAs or cycloleucine. The effects of methionine restriction and/or MAT2A inhibition on the formation of mammospheres, the expression of CSC markers (CD44hi/C24low), MAT2A and CSC transcriptional regulators, apoptosis induction and histone modifications were determined. A murine model of metastatic TNBC was utilized to evaluate the effects of dietary methionine restriction, MAT2A inhibition and the combination.

Results

Methionine restriction inhibited mammosphere formation and reduced the CD44hi/C24low CSC population; these effects were partly rescued by SAM. Methionine depletion induced MAT2A expression (mRNA and protein) and sensitized CSCs to inhibition of MAT2A (siRNAs or cycloleucine). Cycloleucine enhanced the effects of methionine depletion on H3K4me3 demethylation and suppression of Sox9 expression. Dietary methionine restriction induced MAT2A expression in mammary tumors, and the combination of methionine restriction and cycloleucine was more effective than either alone at suppressing primary and lung metastatic tumor burden in a murine TNBC model.

Conclusions

Our findings point to SAM biosynthesis as a unique metabolic vulnerability of CSCs that can be targeted by combining methionine depletion with MAT2A inhibition to eradicate drug-resistant CSCs.
Appendix
Available only for authorised users
Literature
1.
go back to reference Shiraki N, Shiraki Y, Tsuyama T, Obata F, Miura M, Nagae G et al (2014) Methionine metabolism regulates maintenance and differentiation of human pluripotent stem cells. Cell Metab 19:780–794CrossRefPubMed Shiraki N, Shiraki Y, Tsuyama T, Obata F, Miura M, Nagae G et al (2014) Methionine metabolism regulates maintenance and differentiation of human pluripotent stem cells. Cell Metab 19:780–794CrossRefPubMed
2.
go back to reference Chandrasekaran S, Zhang J, Sun Z, Zhang L, Ross CA, Huang YC et al (2017) Comprehensive mapping of pluripotent stem cell metabolism using dynamic genome-scale network modeling. Cell Rep 21:2965–2977CrossRefPubMedPubMedCentral Chandrasekaran S, Zhang J, Sun Z, Zhang L, Ross CA, Huang YC et al (2017) Comprehensive mapping of pluripotent stem cell metabolism using dynamic genome-scale network modeling. Cell Rep 21:2965–2977CrossRefPubMedPubMedCentral
3.
go back to reference Maldonado LY, Arsene D, Mato JM, Lu SC (2018) Methionine adenosyltransferases in cancers: mechanisms of dysregulation and implications for therapy. Exp Biol Med (Maywood) 243:107–117CrossRef Maldonado LY, Arsene D, Mato JM, Lu SC (2018) Methionine adenosyltransferases in cancers: mechanisms of dysregulation and implications for therapy. Exp Biol Med (Maywood) 243:107–117CrossRef
5.
go back to reference Shyh-Chang N, Locasale JW, Lyssiotis CA, Zheng Y, Teo RY, Ratanasirintrawoot S et al (2013) Influence of threonine metabolism on S-adenosylmethionine and histone methylation. Science 339:222–226CrossRefPubMed Shyh-Chang N, Locasale JW, Lyssiotis CA, Zheng Y, Teo RY, Ratanasirintrawoot S et al (2013) Influence of threonine metabolism on S-adenosylmethionine and histone methylation. Science 339:222–226CrossRefPubMed
6.
go back to reference Ang YS, Tsai SY, Lee DF, Monk J, Su J, Ratnakumar K et al (2011) Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network. Cell 145:183–197CrossRefPubMedPubMedCentral Ang YS, Tsai SY, Lee DF, Monk J, Su J, Ratnakumar K et al (2011) Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network. Cell 145:183–197CrossRefPubMedPubMedCentral
7.
go back to reference Kreis W, Baker A, Ryan V, Bertasso A (1980) Effect of nutritional and enzymatic methionine deprivation upon human normal and malignant cells in tissue culture. Cancer Res 40:634–641PubMed Kreis W, Baker A, Ryan V, Bertasso A (1980) Effect of nutritional and enzymatic methionine deprivation upon human normal and malignant cells in tissue culture. Cancer Res 40:634–641PubMed
8.
go back to reference Guo H, Lishko VK, Herrera H, Groce A, Kubota T, Hoffman RM (1993) Therapeutic tumor-specific cell cycle block induced by methionine starvation in vivo. Cancer Res 53:5676–5679PubMed Guo H, Lishko VK, Herrera H, Groce A, Kubota T, Hoffman RM (1993) Therapeutic tumor-specific cell cycle block induced by methionine starvation in vivo. Cancer Res 53:5676–5679PubMed
9.
go back to reference Hoshiya Y, Guo H, Kubota T, Inada T, Asanuma F, Yamada Y et al (1995) Human tumors are methionine dependent in vivo. Anticancer Res 15:717–718PubMed Hoshiya Y, Guo H, Kubota T, Inada T, Asanuma F, Yamada Y et al (1995) Human tumors are methionine dependent in vivo. Anticancer Res 15:717–718PubMed
10.
go back to reference Lu S, Hoestje SM, Choo E, Epner DE (2003) Induction of caspase-dependent and -independent apoptosis in response to methionine restriction. Int J Oncol 22:415–420PubMed Lu S, Hoestje SM, Choo E, Epner DE (2003) Induction of caspase-dependent and -independent apoptosis in response to methionine restriction. Int J Oncol 22:415–420PubMed
11.
go back to reference Mecham JO, Rowitch D, Wallace CD, Stern PH, Hoffman RM (1983) The metabolic defect of methionine dependence occurs frequently in human tumor cell lines. Biochem Biophys Res Commun 117:429–434CrossRefPubMed Mecham JO, Rowitch D, Wallace CD, Stern PH, Hoffman RM (1983) The metabolic defect of methionine dependence occurs frequently in human tumor cell lines. Biochem Biophys Res Commun 117:429–434CrossRefPubMed
12.
go back to reference Halpern BC, Clark BR, Hardy DN, Halpern RM, Smith RA (1974) The effect of replacement of methionine by homocystine on survival of malignant and normal adult mammalian cells in culture. Proc Natl Acad Sci USA 71:1133–1136CrossRefPubMedPubMedCentral Halpern BC, Clark BR, Hardy DN, Halpern RM, Smith RA (1974) The effect of replacement of methionine by homocystine on survival of malignant and normal adult mammalian cells in culture. Proc Natl Acad Sci USA 71:1133–1136CrossRefPubMedPubMedCentral
13.
go back to reference Durando X, Farges MC, Buc E, Abrial C, Petorin-Lesens C, Gillet B et al (2010) Dietary methionine restriction with FOLFOX regimen as first line therapy of metastatic colorectal cancer: a feasibility study. Oncology 78:205–209CrossRefPubMed Durando X, Farges MC, Buc E, Abrial C, Petorin-Lesens C, Gillet B et al (2010) Dietary methionine restriction with FOLFOX regimen as first line therapy of metastatic colorectal cancer: a feasibility study. Oncology 78:205–209CrossRefPubMed
14.
go back to reference Epner DE, Morrow S, Wilcox M, Houghton JL (2002) Nutrient intake and nutritional indexes in adults with metastatic cancer on a phase I clinical trial of dietary methionine restriction. Nutr Cancer 42:158–166CrossRefPubMed Epner DE, Morrow S, Wilcox M, Houghton JL (2002) Nutrient intake and nutritional indexes in adults with metastatic cancer on a phase I clinical trial of dietary methionine restriction. Nutr Cancer 42:158–166CrossRefPubMed
15.
go back to reference Thivat E, Durando X, Demidem A, Farges MC, Rapp M, Cellarier E et al (2007) A methionine-free diet associated with nitrosourea treatment down-regulates methylguanine-DNA methyl transferase activity in patients with metastatic cancer. Anticancer Res 27:2779–2783PubMed Thivat E, Durando X, Demidem A, Farges MC, Rapp M, Cellarier E et al (2007) A methionine-free diet associated with nitrosourea treatment down-regulates methylguanine-DNA methyl transferase activity in patients with metastatic cancer. Anticancer Res 27:2779–2783PubMed
16.
go back to reference Strekalova E, Malin D, Good DM, Cryns VL (2015) Methionine deprivation induces a targetable vulnerability in triple-negative breast cancer cells by enhancing TRAIL receptor-expression. Clin Cancer Res 21:2780–2791CrossRefPubMedPubMedCentral Strekalova E, Malin D, Good DM, Cryns VL (2015) Methionine deprivation induces a targetable vulnerability in triple-negative breast cancer cells by enhancing TRAIL receptor-expression. Clin Cancer Res 21:2780–2791CrossRefPubMedPubMedCentral
17.
18.
go back to reference Martinez-Chantar ML, Latasa MU, Varela-Rey M, Lu SC, Garcia-Trevijano ER, Mato JM et al (2003) L-methionine availability regulates expression of the methionine adenosyltransferase 2A gene in human hepatocarcinoma cells: role of S-adenosylmethionine. J Biol Chem 278:19885–19890CrossRefPubMed Martinez-Chantar ML, Latasa MU, Varela-Rey M, Lu SC, Garcia-Trevijano ER, Mato JM et al (2003) L-methionine availability regulates expression of the methionine adenosyltransferase 2A gene in human hepatocarcinoma cells: role of S-adenosylmethionine. J Biol Chem 278:19885–19890CrossRefPubMed
19.
go back to reference Malin D, Strekalova E, Petrovic V, Deal AM, Al Ahmad A, Adamo B et al (2014) αB-crystallin: a novel regulator of breast cancer metastasis to the brain. Clin Cancer Res 20:56–67CrossRefPubMed Malin D, Strekalova E, Petrovic V, Deal AM, Al Ahmad A, Adamo B et al (2014) αB-crystallin: a novel regulator of breast cancer metastasis to the brain. Clin Cancer Res 20:56–67CrossRefPubMed
20.
go back to reference Malin D, Strekalova E, Petrovic V, Rajanala H, Sharma B, Ugolkov A et al (2015) ERK-regulated αB-crystallin induction by matrix detachment inhibits anoikis and promotes lung metastasis in vivo. Oncogene 34:5626–5634CrossRefPubMedPubMedCentral Malin D, Strekalova E, Petrovic V, Rajanala H, Sharma B, Ugolkov A et al (2015) ERK-regulated αB-crystallin induction by matrix detachment inhibits anoikis and promotes lung metastasis in vivo. Oncogene 34:5626–5634CrossRefPubMedPubMedCentral
21.
go back to reference Moyano JV, Evans JR, Chen F, Lu M, Werner ME, Yehiely F et al (2006) αB-crystallin is a novel oncoprotein that predicts poor clinical outcome in breast cancer. J Clin Invest 116:261–270CrossRefPubMedPubMedCentral Moyano JV, Evans JR, Chen F, Lu M, Werner ME, Yehiely F et al (2006) αB-crystallin is a novel oncoprotein that predicts poor clinical outcome in breast cancer. J Clin Invest 116:261–270CrossRefPubMedPubMedCentral
22.
go back to reference Lu C, Jain SU, Hoelper D, Bechet D, Molden RC, Ran L et al (2016) Histone H3K36 mutations promote sarcomagenesis through altered histone methylation landscape. Science 352:844–849CrossRefPubMedPubMedCentral Lu C, Jain SU, Hoelper D, Bechet D, Molden RC, Ran L et al (2016) Histone H3K36 mutations promote sarcomagenesis through altered histone methylation landscape. Science 352:844–849CrossRefPubMedPubMedCentral
23.
go back to reference Hoelper D, Huang H, Jain AY, Patel DJ, Lewis PW (2017) Structural and mechanistic insights into ATRX-dependent and -independent functions of the histone chaperone DAXX. Nat Commun 8:1193CrossRefPubMedPubMedCentral Hoelper D, Huang H, Jain AY, Patel DJ, Lewis PW (2017) Structural and mechanistic insights into ATRX-dependent and -independent functions of the histone chaperone DAXX. Nat Commun 8:1193CrossRefPubMedPubMedCentral
24.
go back to reference Malin D, Chen F, Schiller C, Koblinski J, Cryns VL (2011) Enhanced metastasis suppression by targeting TRAIL receptor 2 in a murine model of triple-negative breast cancer. Clin Cancer Res 17:5005–5015CrossRefPubMed Malin D, Chen F, Schiller C, Koblinski J, Cryns VL (2011) Enhanced metastasis suppression by targeting TRAIL receptor 2 in a murine model of triple-negative breast cancer. Clin Cancer Res 17:5005–5015CrossRefPubMed
25.
go back to reference Sufrin JR, Coulter AW, Talalay P (1979) Structural and conformational analogues of L-methionine as inhibitors of the enzymatic synthesis of S-adenosyl-l-methionine. IV. Further mono-, bi- and tricyclic amino acids. Mol Pharmacol 15:661–677PubMed Sufrin JR, Coulter AW, Talalay P (1979) Structural and conformational analogues of L-methionine as inhibitors of the enzymatic synthesis of S-adenosyl-l-methionine. IV. Further mono-, bi- and tricyclic amino acids. Mol Pharmacol 15:661–677PubMed
26.
go back to reference Mentch SJ, Mehrmohamadi M, Huang L, Liu X, Gupta D, Mattocks D et al (2015) Histone methylation dynamics and gene regulation occur through the sensing of one-carbon metabolism. Cell Metab 22:861–873CrossRefPubMedPubMedCentral Mentch SJ, Mehrmohamadi M, Huang L, Liu X, Gupta D, Mattocks D et al (2015) Histone methylation dynamics and gene regulation occur through the sensing of one-carbon metabolism. Cell Metab 22:861–873CrossRefPubMedPubMedCentral
27.
go back to reference Jeselsohn R, Cornwell M, Pun M, Buchwalter G, Nguyen M, Bango C et al (2017) Embryonic transcription factor SOX9 drives breast cancer endocrine resistance. Proc Natl Acad Sic USA 114:E4482–E4491CrossRef Jeselsohn R, Cornwell M, Pun M, Buchwalter G, Nguyen M, Bango C et al (2017) Embryonic transcription factor SOX9 drives breast cancer endocrine resistance. Proc Natl Acad Sic USA 114:E4482–E4491CrossRef
28.
go back to reference Yu F, Li J, Chen H, Fu J, Ray S, Huang S et al (2011) Kruppel-like factor 4 (KLF4) is required for maintenance of breast cancer stem cells and for cell migration and invasion. Oncogene 30:2161–2172CrossRefPubMedPubMedCentral Yu F, Li J, Chen H, Fu J, Ray S, Huang S et al (2011) Kruppel-like factor 4 (KLF4) is required for maintenance of breast cancer stem cells and for cell migration and invasion. Oncogene 30:2161–2172CrossRefPubMedPubMedCentral
29.
go back to reference Greco CM, Powell HC, Garrett RS, Lampert PW (1980) Cycloleucine encephalopathy. Neuropathol Appl Neurobiol 6:349–360CrossRefPubMed Greco CM, Powell HC, Garrett RS, Lampert PW (1980) Cycloleucine encephalopathy. Neuropathol Appl Neurobiol 6:349–360CrossRefPubMed
30.
go back to reference Guarino AM, Rozencweig M, Kline I, Penta JS, Venditti JM, Lloyd HH et al (1979) Adequacies and inadequacies in assessing murine toxicity data with antineoplastic agents. Cancer Res 39:2204–2210PubMed Guarino AM, Rozencweig M, Kline I, Penta JS, Venditti JM, Lloyd HH et al (1979) Adequacies and inadequacies in assessing murine toxicity data with antineoplastic agents. Cancer Res 39:2204–2210PubMed
31.
go back to reference Savlov ED, MacIntyre JM, Knight E, Wolter J (1981) Comparison of doxorubicin with cycloleucine in the treatment of sarcomas. Cancer Treat Rep 65:21–27PubMed Savlov ED, MacIntyre JM, Knight E, Wolter J (1981) Comparison of doxorubicin with cycloleucine in the treatment of sarcomas. Cancer Treat Rep 65:21–27PubMed
32.
go back to reference Quinlan CL, Kaiser SE, Bolanos B, Nowlin D, Grantner R, Karlicek-Bryant S et al (2017) Targeting S-adenosylmethionine biosynthesis with a novel allosteric inhibitor of Mat2A. Nat Chem Biol 13:785–792CrossRefPubMed Quinlan CL, Kaiser SE, Bolanos B, Nowlin D, Grantner R, Karlicek-Bryant S et al (2017) Targeting S-adenosylmethionine biosynthesis with a novel allosteric inhibitor of Mat2A. Nat Chem Biol 13:785–792CrossRefPubMed
33.
go back to reference Stone KP, Wanders D, Orgeron M, Cortez CC, Gettys TW (2014) Mechanisms of increased in vivo insulin sensitivity by dietary methionine restriction in mice. Diabetes 63:3721–3733CrossRefPubMedPubMedCentral Stone KP, Wanders D, Orgeron M, Cortez CC, Gettys TW (2014) Mechanisms of increased in vivo insulin sensitivity by dietary methionine restriction in mice. Diabetes 63:3721–3733CrossRefPubMedPubMedCentral
34.
go back to reference Yu D, Yang SE, Miller BR, Wisinski JA, Sherman DS, Brinkman JA et al (2018) Short-term methionine deprivation improves metabolic health via sexually dimorphic, mTORC1-independent mechanisms. FASEB J 32(6):3471–3482CrossRefPubMedPubMedCentral Yu D, Yang SE, Miller BR, Wisinski JA, Sherman DS, Brinkman JA et al (2018) Short-term methionine deprivation improves metabolic health via sexually dimorphic, mTORC1-independent mechanisms. FASEB J 32(6):3471–3482CrossRefPubMedPubMedCentral
35.
go back to reference Liu Q, Liu L, Zhao Y, Zhang J, Wang D, Chen J et al (2011) Hypoxia induces genomic DNA demethylation through the activation of HIF-1alpha and transcriptional upregulation of MAT2A in hepatoma cells. Mol Cancer Ther 10:1113–1123CrossRefPubMed Liu Q, Liu L, Zhao Y, Zhang J, Wang D, Chen J et al (2011) Hypoxia induces genomic DNA demethylation through the activation of HIF-1alpha and transcriptional upregulation of MAT2A in hepatoma cells. Mol Cancer Ther 10:1113–1123CrossRefPubMed
36.
go back to reference Yang H, Li TW, Peng J, Mato JM, Lu SC (2011) Insulin-like growth factor 1 activates methionine adenosyltransferase 2A transcription by multiple pathways in human colon cancer cells. Biochem J 436:507–516CrossRefPubMed Yang H, Li TW, Peng J, Mato JM, Lu SC (2011) Insulin-like growth factor 1 activates methionine adenosyltransferase 2A transcription by multiple pathways in human colon cancer cells. Biochem J 436:507–516CrossRefPubMed
37.
go back to reference Phuong NT, Kim SK, Im JH, Yang JW, Choi MC, Lim SC et al (2016) Induction of methionine adenosyltransferase 2A in tamoxifen-resistant breast cancer cells. Oncotarget 7:13902–13916CrossRefPubMed Phuong NT, Kim SK, Im JH, Yang JW, Choi MC, Lim SC et al (2016) Induction of methionine adenosyltransferase 2A in tamoxifen-resistant breast cancer cells. Oncotarget 7:13902–13916CrossRefPubMed
38.
go back to reference Liu Q, Wu K, Zhu Y, He Y, Wu J, Liu Z (2007) Silencing MAT2A gene by RNA interference inhibited cell growth and induced apoptosis in human hepatoma cells. Hepatol Res 37:376–388CrossRefPubMed Liu Q, Wu K, Zhu Y, He Y, Wu J, Liu Z (2007) Silencing MAT2A gene by RNA interference inhibited cell growth and induced apoptosis in human hepatoma cells. Hepatol Res 37:376–388CrossRefPubMed
Metadata
Title
S-adenosylmethionine biosynthesis is a targetable metabolic vulnerability of cancer stem cells
Authors
Elena Strekalova
Dmitry Malin
Erin M. M. Weisenhorn
Jason D. Russell
Dominik Hoelper
Aayushi Jain
Joshua J. Coon
Peter W. Lewis
Vincent L. Cryns
Publication date
01-05-2019
Publisher
Springer US
Published in
Breast Cancer Research and Treatment / Issue 1/2019
Print ISSN: 0167-6806
Electronic ISSN: 1573-7217
DOI
https://doi.org/10.1007/s10549-019-05146-7

Other articles of this Issue 1/2019

Breast Cancer Research and Treatment 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine