Skip to main content
Top
Published in: Breast Cancer Research and Treatment 1/2018

Open Access 01-11-2018 | Preclinical study

Field template-based design and biological evaluation of new sphingosine kinase 1 inhibitors

Authors: Heba Alshaker, Shyam Srivats, Danielle Monteil, Qi Wang, Caroline M. R. Low, Dmitri Pchejetski

Published in: Breast Cancer Research and Treatment | Issue 1/2018

Login to get access

Abstract

Purpose

Sphingosine kinase 1 (SK1) is a protooncogenic enzyme expressed in many human tumours and is associated with chemoresistance and poor prognosis. It is a potent therapy target and its inhibition chemosensitises solid tumours. Despite recent advances in SK1 inhibitors synthesis and validation, their clinical safety and chemosensitising options are not well described. In this study, we have designed, synthesised and tested a new specific SK1 inhibitor with a low toxicity profile.

Methods

Field template molecular modelling was used for compound design. Lead compounds were tested in cell and mouse cancer models.

Results

Field template analysis of three known SK1 inhibitors, SKI-178, 12aa and SK1-I, was performed and compound screening identified six potential new SK1 inhibitors. SK1 activity assays in both cell-free and in vitro settings showed that two compounds were effective SK1 inhibitors. Compound SK-F has potently decreased cancer cell viability in vitro and sensitised mouse breast tumours to docetaxel (DTX) in vivo, without significant whole-body toxicity.

Conclusion

Through field template screening, we have identified a new SK1 inhibitor, SK-F, which demonstrated antitumour activity in vitro and in vivo without overt toxicity when combined with DTX.
Appendix
Available only for authorised users
Literature
1.
go back to reference Pyne N et al (2009) New aspects of sphingosine 1-phosphate signaling in mammalian cells. Adv Enzyme Regul 49(1):214CrossRef Pyne N et al (2009) New aspects of sphingosine 1-phosphate signaling in mammalian cells. Adv Enzyme Regul 49(1):214CrossRef
2.
go back to reference White C et al (2016) The emerging role of FTY720 (Fingolimod) in cancer treatment. Oncotarget 7(17):23106–23127CrossRef White C et al (2016) The emerging role of FTY720 (Fingolimod) in cancer treatment. Oncotarget 7(17):23106–23127CrossRef
3.
go back to reference Alshaker H et al (2013) Therapeutic potential of targeting SK1 in human cancers. Adv Cancer Res 117:143–200CrossRef Alshaker H et al (2013) Therapeutic potential of targeting SK1 in human cancers. Adv Cancer Res 117:143–200CrossRef
4.
go back to reference Pchejetski D et al (2011) Therapeutic potential of targeting sphingosine kinase 1 in prostate cancer. Nat Rev Urol 8(10):569–678CrossRef Pchejetski D et al (2011) Therapeutic potential of targeting sphingosine kinase 1 in prostate cancer. Nat Rev Urol 8(10):569–678CrossRef
5.
go back to reference Bonhoure E et al (2006) Overcoming MDR-associated chemoresistance in HL-60 acute myeloid leukemia cells by targeting sphingosine kinase-1. Leukemia 20(1):95–102CrossRef Bonhoure E et al (2006) Overcoming MDR-associated chemoresistance in HL-60 acute myeloid leukemia cells by targeting sphingosine kinase-1. Leukemia 20(1):95–102CrossRef
6.
go back to reference Sauer L et al (2009) Sphingosine kinase 1 inhibition sensitizes hormone-resistant prostate cancer to docetaxel. Int J Cancer 125(11):2728–2736CrossRef Sauer L et al (2009) Sphingosine kinase 1 inhibition sensitizes hormone-resistant prostate cancer to docetaxel. Int J Cancer 125(11):2728–2736CrossRef
7.
go back to reference Nunes J et al (2012) Circulating sphingosine-1-phosphate and erythrocyte sphingosine kinase-1 activity as novel biomarkers for early prostate cancer detection. Br J Cancer 106(5):909–915CrossRef Nunes J et al (2012) Circulating sphingosine-1-phosphate and erythrocyte sphingosine kinase-1 activity as novel biomarkers for early prostate cancer detection. Br J Cancer 106(5):909–915CrossRef
8.
go back to reference Xia P et al (2000) An oncogenic role of sphingosine kinase. Curr Biol 10(23):1527–1530CrossRef Xia P et al (2000) An oncogenic role of sphingosine kinase. Curr Biol 10(23):1527–1530CrossRef
9.
go back to reference Olivera A et al (1999) Sphingosine kinase expression increases intracellular sphingosine-1-phosphate and promotes cell growth and survival. J Cell Biol 147(3):545–558CrossRef Olivera A et al (1999) Sphingosine kinase expression increases intracellular sphingosine-1-phosphate and promotes cell growth and survival. J Cell Biol 147(3):545–558CrossRef
10.
go back to reference Xia P et al (1999) Activation of sphingosine kinase by tumor necrosis factor-alpha inhibits apoptosis in human endothelial cells. J Biol Chem 274(48):34499–34505CrossRef Xia P et al (1999) Activation of sphingosine kinase by tumor necrosis factor-alpha inhibits apoptosis in human endothelial cells. J Biol Chem 274(48):34499–34505CrossRef
11.
go back to reference Johnson KR et al (2005) Immunohistochemical distribution of sphingosine kinase 1 in normal and tumor lung tissue. J Histochem Cytochem 53(9):1159–1166CrossRef Johnson KR et al (2005) Immunohistochemical distribution of sphingosine kinase 1 in normal and tumor lung tissue. J Histochem Cytochem 53(9):1159–1166CrossRef
12.
go back to reference Van Brocklyn JR et al (2005) Sphingosine kinase-1 expression correlates with poor survival of patients with glioblastoma multiforme: roles of sphingosine kinase isoforms in growth of glioblastoma cell lines. J Neuropathol Exp Neurol 64(8):695–705CrossRef Van Brocklyn JR et al (2005) Sphingosine kinase-1 expression correlates with poor survival of patients with glioblastoma multiforme: roles of sphingosine kinase isoforms in growth of glioblastoma cell lines. J Neuropathol Exp Neurol 64(8):695–705CrossRef
13.
go back to reference Bayerl MG et al (2008) Sphingosine kinase 1 protein and mRNA are overexpressed in non-Hodgkin lymphomas and are attractive targets for novel pharmacological interventions. Leuk Lymphoma 49(5):948–954CrossRef Bayerl MG et al (2008) Sphingosine kinase 1 protein and mRNA are overexpressed in non-Hodgkin lymphomas and are attractive targets for novel pharmacological interventions. Leuk Lymphoma 49(5):948–954CrossRef
14.
go back to reference French KJ et al (2003) Discovery and evaluation of inhibitors of human sphingosine kinase. Cancer Res 63(18):5962–5969PubMed French KJ et al (2003) Discovery and evaluation of inhibitors of human sphingosine kinase. Cancer Res 63(18):5962–5969PubMed
15.
go back to reference Malavaud B et al Sphingosine kinase-1 activity and expression in human prostate cancer resection specimens. Eur J Cancer 46(18):3417–3424CrossRef Malavaud B et al Sphingosine kinase-1 activity and expression in human prostate cancer resection specimens. Eur J Cancer 46(18):3417–3424CrossRef
16.
go back to reference Le Scolan E et al (2005) Overexpression of sphingosine kinase 1 is an oncogenic event in erythroleukemic progression. Blood 106(5):1808–1816CrossRef Le Scolan E et al (2005) Overexpression of sphingosine kinase 1 is an oncogenic event in erythroleukemic progression. Blood 106(5):1808–1816CrossRef
17.
go back to reference Licht T et al (2003) Induction of pro-angiogenic signaling by a synthetic peptide derived from the second intracellular loop of S1P3 (EDG3). Blood 102(6):2099–2107CrossRef Licht T et al (2003) Induction of pro-angiogenic signaling by a synthetic peptide derived from the second intracellular loop of S1P3 (EDG3). Blood 102(6):2099–2107CrossRef
18.
go back to reference Visentin B et al (2006) Validation of an anti-sphingosine-1-phosphate antibody as a potential therapeutic in reducing growth, invasion, and angiogenesis in multiple tumor lineages. Cancer Cell 9(3):225–238CrossRef Visentin B et al (2006) Validation of an anti-sphingosine-1-phosphate antibody as a potential therapeutic in reducing growth, invasion, and angiogenesis in multiple tumor lineages. Cancer Cell 9(3):225–238CrossRef
19.
go back to reference Cuvillier O (2008) Downregulating sphingosine kinase-1 for cancer therapy. Expert Opin Ther Targets 12(8):1009–1020CrossRef Cuvillier O (2008) Downregulating sphingosine kinase-1 for cancer therapy. Expert Opin Ther Targets 12(8):1009–1020CrossRef
20.
go back to reference Merrill AH Jr et al (1997) Sphingolipids–the enigmatic lipid class: biochemistry, physiology, and pathophysiology. Toxicol Appl Pharmacol 142(1):208–225CrossRef Merrill AH Jr et al (1997) Sphingolipids–the enigmatic lipid class: biochemistry, physiology, and pathophysiology. Toxicol Appl Pharmacol 142(1):208–225CrossRef
21.
go back to reference Vessey DA et al (2007) Dimethylsphingosine and FTY720 inhibit the SK1 form but activate the SK2 form of sphingosine kinase from rat heart. J Biochem Mol Toxicol 21(5):273–279CrossRef Vessey DA et al (2007) Dimethylsphingosine and FTY720 inhibit the SK1 form but activate the SK2 form of sphingosine kinase from rat heart. J Biochem Mol Toxicol 21(5):273–279CrossRef
22.
go back to reference Tonelli F et al (2010) FTY720 and (S)-FTY720 vinylphosphonate inhibit sphingosine kinase 1 and promote its proteasomal degradation in human pulmonary artery smooth muscle, breast cancer and androgen-independent prostate cancer cells. Cell Signal 22(10):1536–1542CrossRef Tonelli F et al (2010) FTY720 and (S)-FTY720 vinylphosphonate inhibit sphingosine kinase 1 and promote its proteasomal degradation in human pulmonary artery smooth muscle, breast cancer and androgen-independent prostate cancer cells. Cell Signal 22(10):1536–1542CrossRef
23.
go back to reference Permpongkosol S et al (2002) Anticarcinogenic effect of FTY720 in human prostate carcinoma DU145 cells: modulation of mitogenic signaling, FAK, cell-cycle entry and apoptosis. Int J Cancer 98(2):167–172CrossRef Permpongkosol S et al (2002) Anticarcinogenic effect of FTY720 in human prostate carcinoma DU145 cells: modulation of mitogenic signaling, FAK, cell-cycle entry and apoptosis. Int J Cancer 98(2):167–172CrossRef
24.
go back to reference Wang JD et al (1999) Early induction of apoptosis in androgen-independent prostate cancer cell line by FTY720 requires caspase-3 activation. Prostate 40(1):50–55CrossRef Wang JD et al (1999) Early induction of apoptosis in androgen-independent prostate cancer cell line by FTY720 requires caspase-3 activation. Prostate 40(1):50–55CrossRef
25.
go back to reference Wang Q et al (2017) Core shell lipid-polymer hybrid nanoparticles with combined docetaxel and molecular targeted therapy for the treatment of metastatic prostate cancer. Sci Rep 7(1):017–06142CrossRef Wang Q et al (2017) Core shell lipid-polymer hybrid nanoparticles with combined docetaxel and molecular targeted therapy for the treatment of metastatic prostate cancer. Sci Rep 7(1):017–06142CrossRef
26.
go back to reference Alshaker H et al (2017) New FTY720-docetaxel nanoparticle therapy overcomes FTY720-induced lymphopenia and inhibits metastatic breast tumour growth. Breast Cancer Res Treat 10(10):017–4380 Alshaker H et al (2017) New FTY720-docetaxel nanoparticle therapy overcomes FTY720-induced lymphopenia and inhibits metastatic breast tumour growth. Breast Cancer Res Treat 10(10):017–4380
27.
go back to reference Pchejetski D et al (2010) FTY720 (fingolimod) sensitizes prostate cancer cells to radiotherapy by inhibition of sphingosine kinase-1. Cancer Res 70(21):8651–8661CrossRef Pchejetski D et al (2010) FTY720 (fingolimod) sensitizes prostate cancer cells to radiotherapy by inhibition of sphingosine kinase-1. Cancer Res 70(21):8651–8661CrossRef
28.
go back to reference Banno Y et al (1998) Evidence for the presence of multiple forms of Sph kinase in human platelets. Biochem J 335(Pt 2):301CrossRef Banno Y et al (1998) Evidence for the presence of multiple forms of Sph kinase in human platelets. Biochem J 335(Pt 2):301CrossRef
29.
go back to reference Kono K, Sugiura M, Kohama T (2002) Inhibition of recombinant sphingosine kinases by novel inhibitors of microbial origin, F-12509A and B-5354c. J Antibiot (Tokyo) 55(1):99–103CrossRef Kono K, Sugiura M, Kohama T (2002) Inhibition of recombinant sphingosine kinases by novel inhibitors of microbial origin, F-12509A and B-5354c. J Antibiot (Tokyo) 55(1):99–103CrossRef
30.
go back to reference Pchejetski D et al (2008) Chemosensitizing effects of sphingosine kinase-1 inhibition in prostate cancer cell and animal models. Mol Cancer Ther 7(7):1836–1845CrossRef Pchejetski D et al (2008) Chemosensitizing effects of sphingosine kinase-1 inhibition in prostate cancer cell and animal models. Mol Cancer Ther 7(7):1836–1845CrossRef
31.
go back to reference French KJ et al (2006) Antitumor activity of sphingosine kinase inhibitors. J Pharmacol Exp Ther 318(2):596–603CrossRef French KJ et al (2006) Antitumor activity of sphingosine kinase inhibitors. J Pharmacol Exp Ther 318(2):596–603CrossRef
32.
go back to reference Paugh SW et al (2008) A selective sphingosine kinase 1 inhibitor integrates multiple molecular therapeutic targets in human leukemia. Blood 112:1382–1391CrossRef Paugh SW et al (2008) A selective sphingosine kinase 1 inhibitor integrates multiple molecular therapeutic targets in human leukemia. Blood 112:1382–1391CrossRef
33.
go back to reference Xiang Y et al (2009) Discovery of novel sphingosine kinase 1 inhibitors. Bioorg Med Chem Lett 19(21):6119–6121CrossRef Xiang Y et al (2009) Discovery of novel sphingosine kinase 1 inhibitors. Bioorg Med Chem Lett 19(21):6119–6121CrossRef
34.
go back to reference Kennedy AJ et al (2011) Development of amidine-based sphingosine kinase 1 nanomolar inhibitors and reduction of sphingosine 1-phosphate in human leukemia cells. J Med Chem 54(10):3524–3548CrossRef Kennedy AJ et al (2011) Development of amidine-based sphingosine kinase 1 nanomolar inhibitors and reduction of sphingosine 1-phosphate in human leukemia cells. J Med Chem 54(10):3524–3548CrossRef
35.
go back to reference Hengst J et al (2010) Development of a sphingosine kinase 1 specific small-molecule inhibitor. Bioorg Med Chem Lett 20:7498–7502CrossRef Hengst J et al (2010) Development of a sphingosine kinase 1 specific small-molecule inhibitor. Bioorg Med Chem Lett 20:7498–7502CrossRef
36.
go back to reference Sharma AK (2011) Sphingo-guanidines and their use as inhibitors of sphingosine kinase (WO2010078247). Expert Opin Ther Pat 21(5):807–812CrossRef Sharma AK (2011) Sphingo-guanidines and their use as inhibitors of sphingosine kinase (WO2010078247). Expert Opin Ther Pat 21(5):807–812CrossRef
37.
go back to reference Budde K et al (2002) First human trial of FTY720, a novel immunomodulator, in stable renal transplant patients. J Am Soc Nephrol 13(4):1073–1083PubMed Budde K et al (2002) First human trial of FTY720, a novel immunomodulator, in stable renal transplant patients. J Am Soc Nephrol 13(4):1073–1083PubMed
38.
go back to reference Chiba K (2005) FTY720, a new class of immunomodulator, inhibits lymphocyte egress from secondary lymphoid tissues and thymus by agonistic activity at sphingosine 1-phosphate receptors. Pharmacol Ther 108(3):308–319CrossRef Chiba K (2005) FTY720, a new class of immunomodulator, inhibits lymphocyte egress from secondary lymphoid tissues and thymus by agonistic activity at sphingosine 1-phosphate receptors. Pharmacol Ther 108(3):308–319CrossRef
39.
go back to reference Low CMR, Vinter J (2008) Rationalizing the activities of diverse cholecystokinin 2 receptor antagonists using molecular field points. J Med Chem 51(3):565–573CrossRef Low CMR, Vinter J (2008) Rationalizing the activities of diverse cholecystokinin 2 receptor antagonists using molecular field points. J Med Chem 51(3):565–573CrossRef
40.
go back to reference Itsenko O, Kihlberg T, Långström B (2004) Photoinitiated Carbonylation with [11C]Carbon Monoxide Using Amines and Alkyl Iodides. J Org Chem 69(13):4356–4360CrossRef Itsenko O, Kihlberg T, Långström B (2004) Photoinitiated Carbonylation with [11C]Carbon Monoxide Using Amines and Alkyl Iodides. J Org Chem 69(13):4356–4360CrossRef
41.
go back to reference Chan LC, Cox BG (2007) Kinetics of amide formation through Carbodiimide/N-Hydroxybenzotriazole (HOBt) couplings. J Org Chem 72(23):8863–8869CrossRef Chan LC, Cox BG (2007) Kinetics of amide formation through Carbodiimide/N-Hydroxybenzotriazole (HOBt) couplings. J Org Chem 72(23):8863–8869CrossRef
42.
go back to reference Alshaker H et al (2017) Combination of RAD001 (everolimus) and docetaxel reduces prostate and breast cancer cell VEGF production and tumour vascularisation independently of sphingosine-kinase-1. Sci Rep 7(1):3493CrossRef Alshaker H et al (2017) Combination of RAD001 (everolimus) and docetaxel reduces prostate and breast cancer cell VEGF production and tumour vascularisation independently of sphingosine-kinase-1. Sci Rep 7(1):3493CrossRef
43.
go back to reference Alshaker H et al (2016) Everolimus (RAD001) sensitizes prostate cancer cells to docetaxel by down-regulation of HIF-1alpha and sphingosine kinase 1. Oncotarget 7(49):80943–80956CrossRef Alshaker H et al (2016) Everolimus (RAD001) sensitizes prostate cancer cells to docetaxel by down-regulation of HIF-1alpha and sphingosine kinase 1. Oncotarget 7(49):80943–80956CrossRef
44.
go back to reference Alshaker H et al (2014) Leptin induces upregulation of sphingosine kinase 1 in oestrogen receptor-negative breast cancer via Src family kinase-mediated, janus kinase 2-independent pathway. Breast Cancer Res 16(5):426CrossRef Alshaker H et al (2014) Leptin induces upregulation of sphingosine kinase 1 in oestrogen receptor-negative breast cancer via Src family kinase-mediated, janus kinase 2-independent pathway. Breast Cancer Res 16(5):426CrossRef
45.
go back to reference Alshaker H et al (2015) Sphingosine kinase 1 contributes to leptin-induced STAT3 phosphorylation through IL-6/gp130 transactivation in oestrogen receptor-negative breast cancer. Breast Cancer Res Treat 149(1):59–67CrossRef Alshaker H et al (2015) Sphingosine kinase 1 contributes to leptin-induced STAT3 phosphorylation through IL-6/gp130 transactivation in oestrogen receptor-negative breast cancer. Breast Cancer Res Treat 149(1):59–67CrossRef
46.
go back to reference Pchejetski D et al (2011) The involvement of sphingosine kinase 1 in LPS-induced Toll-like receptor 4-mediated accumulation of HIF-1alpha protein, activation of ASK1 and production of the pro-inflammatory cytokine IL-6. Immunol Cell Biol 89(2):268–274CrossRef Pchejetski D et al (2011) The involvement of sphingosine kinase 1 in LPS-induced Toll-like receptor 4-mediated accumulation of HIF-1alpha protein, activation of ASK1 and production of the pro-inflammatory cytokine IL-6. Immunol Cell Biol 89(2):268–274CrossRef
47.
go back to reference Paugh SW et al (2008) A selective sphingosine kinase 1 inhibitor integrates multiple molecular therapeutic targets in human leukemia. Blood 112(4):1382–1391CrossRef Paugh SW et al (2008) A selective sphingosine kinase 1 inhibitor integrates multiple molecular therapeutic targets in human leukemia. Blood 112(4):1382–1391CrossRef
48.
go back to reference Loveridge C et al (2010) The sphingosine kinase 1 inhibitor 2-(p-hydroxyanilino)-4-(p-chlorophenyl)thiazole induces proteasomal degradation of sphingosine kinase 1 in mammalian cells. J Biol Chem 285(50):38841–38852CrossRef Loveridge C et al (2010) The sphingosine kinase 1 inhibitor 2-(p-hydroxyanilino)-4-(p-chlorophenyl)thiazole induces proteasomal degradation of sphingosine kinase 1 in mammalian cells. J Biol Chem 285(50):38841–38852CrossRef
49.
go back to reference Tonelli F et al (2010) FTY720 and (S)-FTY720 vinylphosphonate inhibit sphingosine kinase 1 and promote its proteasomal degradation in human pulmonary artery smooth muscle, breast cancer and androgen-independent prostate cancer cells. Cellular Signal 22(10):1536–1542CrossRef Tonelli F et al (2010) FTY720 and (S)-FTY720 vinylphosphonate inhibit sphingosine kinase 1 and promote its proteasomal degradation in human pulmonary artery smooth muscle, breast cancer and androgen-independent prostate cancer cells. Cellular Signal 22(10):1536–1542CrossRef
50.
go back to reference Pchejetski D et al (2005) Sphingosine kinase-1 as a chemotherapy sensor in prostate adenocarcinoma cell and mouse models. Cancer Res 65(24):11667–11675CrossRef Pchejetski D et al (2005) Sphingosine kinase-1 as a chemotherapy sensor in prostate adenocarcinoma cell and mouse models. Cancer Res 65(24):11667–11675CrossRef
51.
go back to reference Shida D et al (2008) Targeting SphK1 as a new strategy against cancer. Curr Drug Targets 9(8):662–673CrossRef Shida D et al (2008) Targeting SphK1 as a new strategy against cancer. Curr Drug Targets 9(8):662–673CrossRef
52.
go back to reference Pyne NJ et al (2012) Targeting sphingosine kinase 1 in cancer. Adv Biol Regul 52(1):31–38CrossRef Pyne NJ et al (2012) Targeting sphingosine kinase 1 in cancer. Adv Biol Regul 52(1):31–38CrossRef
53.
go back to reference Cuvillier O (2007) Sphingosine kinase-1–a potential therapeutic target in cancer. Anticancer Drugs 18(2):105–110CrossRef Cuvillier O (2007) Sphingosine kinase-1–a potential therapeutic target in cancer. Anticancer Drugs 18(2):105–110CrossRef
54.
go back to reference Baker DL, Pham TC, Sparks MA (2013) Structure and catalytic function of sphingosine kinases: analysis by site-directed mutagenesis and enzyme kinetics. Biochim Biophys Acta 1:139–146CrossRef Baker DL, Pham TC, Sparks MA (2013) Structure and catalytic function of sphingosine kinases: analysis by site-directed mutagenesis and enzyme kinetics. Biochim Biophys Acta 1:139–146CrossRef
55.
go back to reference Schnute ME et al (2012) Modulation of cellular S1P levels with a novel, potent and specific inhibitor of sphingosine kinase-1. Biochem J 444(1):79–88CrossRef Schnute ME et al (2012) Modulation of cellular S1P levels with a novel, potent and specific inhibitor of sphingosine kinase-1. Biochem J 444(1):79–88CrossRef
56.
go back to reference Wang Z et al (2013) Molecular basis of sphingosine kinase 1 substrate recognition and catalysis. Structure 21(5):798–809CrossRef Wang Z et al (2013) Molecular basis of sphingosine kinase 1 substrate recognition and catalysis. Structure 21(5):798–809CrossRef
57.
go back to reference Fang L et al (2016) Assessing the ligand selectivity of sphingosine kinases using molecular dynamics and MM-PBSA binding free energy calculations. Mol Biosyst 12(4):1174–1182CrossRef Fang L et al (2016) Assessing the ligand selectivity of sphingosine kinases using molecular dynamics and MM-PBSA binding free energy calculations. Mol Biosyst 12(4):1174–1182CrossRef
58.
go back to reference Gustin DJ et al (2013) Structure guided design of a series of sphingosine kinase (SphK) inhibitors. Bioorg Med Chem Lett 23(16):4608–4616CrossRef Gustin DJ et al (2013) Structure guided design of a series of sphingosine kinase (SphK) inhibitors. Bioorg Med Chem Lett 23(16):4608–4616CrossRef
59.
go back to reference Baek DJ et al (2013) Structure-activity relationships and molecular modeling of sphingosine kinase inhibitors. J Med Chem 56(22):9310–9327CrossRef Baek DJ et al (2013) Structure-activity relationships and molecular modeling of sphingosine kinase inhibitors. J Med Chem 56(22):9310–9327CrossRef
60.
go back to reference Patwardhan NN et al (2015) Structure-activity relationship studies and in vivo activity of guanidine-based sphingosine kinase inhibitors: discovery of SphK1- and SphK2-selective inhibitors. J Med Chem 58(4):1879–1899CrossRef Patwardhan NN et al (2015) Structure-activity relationship studies and in vivo activity of guanidine-based sphingosine kinase inhibitors: discovery of SphK1- and SphK2-selective inhibitors. J Med Chem 58(4):1879–1899CrossRef
61.
go back to reference Low CM et al (2005) Scaffold hopping with molecular field points: identification of a cholecystokinin-2 (CCK2) receptor pharmacophore and its use in the design of a prototypical series of pyrrole- and imidazole-based CCK2 antagonists. J Med Chem 48(22):6790–6802CrossRef Low CM et al (2005) Scaffold hopping with molecular field points: identification of a cholecystokinin-2 (CCK2) receptor pharmacophore and its use in the design of a prototypical series of pyrrole- and imidazole-based CCK2 antagonists. J Med Chem 48(22):6790–6802CrossRef
62.
go back to reference Hengst JA et al (2010) Development of a sphingosine kinase 1 specific small-molecule inhibitor. Bioorg Med Chem Lett 20(24):7498–7502CrossRef Hengst JA et al (2010) Development of a sphingosine kinase 1 specific small-molecule inhibitor. Bioorg Med Chem Lett 20(24):7498–7502CrossRef
63.
go back to reference Kharel Y et al (2011) Sphingosine kinase type 1 inhibition reveals rapid turnover of circulating sphingosine 1-phosphate. Biochem J 440(3):345–353CrossRef Kharel Y et al (2011) Sphingosine kinase type 1 inhibition reveals rapid turnover of circulating sphingosine 1-phosphate. Biochem J 440(3):345–353CrossRef
64.
go back to reference Rex K et al (2013) Sphingosine kinase activity is not required for tumor cell viability. PLoS ONE 8(7):e68328CrossRef Rex K et al (2013) Sphingosine kinase activity is not required for tumor cell viability. PLoS ONE 8(7):e68328CrossRef
65.
go back to reference Lee JW et al (2015) Sphingosine kinase 1 as a potential therapeutic target in epithelial ovarian cancer. Int J Cancer 137(1):221–229CrossRef Lee JW et al (2015) Sphingosine kinase 1 as a potential therapeutic target in epithelial ovarian cancer. Int J Cancer 137(1):221–229CrossRef
66.
go back to reference Datta A et al (2014) SPHK1 regulates proliferation and survival responses in triple-negative breast cancer. Oncotarget 5(15):5920–5933CrossRef Datta A et al (2014) SPHK1 regulates proliferation and survival responses in triple-negative breast cancer. Oncotarget 5(15):5920–5933CrossRef
67.
go back to reference Martin JL et al (2014) Inhibition of insulin-like growth factor-binding protein-3 signaling through sphingosine kinase-1 sensitizes triple-negative breast cancer cells to EGF receptor blockade. Mol Cancer Ther 13(2):316–328CrossRef Martin JL et al (2014) Inhibition of insulin-like growth factor-binding protein-3 signaling through sphingosine kinase-1 sensitizes triple-negative breast cancer cells to EGF receptor blockade. Mol Cancer Ther 13(2):316–328CrossRef
68.
go back to reference Adams DR, Pyne S, Pyne NJ (2016) Sphingosine kinases: emerging structure-function insights. Trends Biochem Sci 41(5):395–409CrossRef Adams DR, Pyne S, Pyne NJ (2016) Sphingosine kinases: emerging structure-function insights. Trends Biochem Sci 41(5):395–409CrossRef
69.
go back to reference Murray S et al (2012) Taxane resistance in breast cancer: mechanisms, predictive biomarkers and circumvention strategies. Cancer Treat Rev 38(7):890–903CrossRef Murray S et al (2012) Taxane resistance in breast cancer: mechanisms, predictive biomarkers and circumvention strategies. Cancer Treat Rev 38(7):890–903CrossRef
70.
go back to reference Dickson MA et al (2011) A phase I clinical trial of safingol in combination with cisplatin in advanced solid tumors. Clin Cancer Res 17(8):2484–2492CrossRef Dickson MA et al (2011) A phase I clinical trial of safingol in combination with cisplatin in advanced solid tumors. Clin Cancer Res 17(8):2484–2492CrossRef
Metadata
Title
Field template-based design and biological evaluation of new sphingosine kinase 1 inhibitors
Authors
Heba Alshaker
Shyam Srivats
Danielle Monteil
Qi Wang
Caroline M. R. Low
Dmitri Pchejetski
Publication date
01-11-2018
Publisher
Springer US
Published in
Breast Cancer Research and Treatment / Issue 1/2018
Print ISSN: 0167-6806
Electronic ISSN: 1573-7217
DOI
https://doi.org/10.1007/s10549-018-4900-1

Other articles of this Issue 1/2018

Breast Cancer Research and Treatment 1/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine