Skip to main content
Top
Published in: Breast Cancer Research and Treatment 1/2017

01-11-2017 | Preclinical study

A small-molecule inhibitor of SMAD3 attenuates resistance to anti-HER2 drugs in HER2-positive breast cancer cells

Authors: Yoko Chihara, Masafumi Shimoda, Ami Hori, Ako Ohara, Yasuto Naoi, Jun-ichiro Ikeda, Naofumi Kagara, Tomonori Tanei, Atsushi Shimomura, Kenzo Shimazu, Seung Jin Kim, Shinzaburo Noguchi

Published in: Breast Cancer Research and Treatment | Issue 1/2017

Login to get access

Abstract

Purpose

Resistance against anti-HER2 drugs in HER2-positive breast cancer is a major obstacle to the improving prognosis. Transforming growth factor β (TGFβ) is a cytokine involved in the acquisition of more malignant phenotypes through epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC) properties. The aim of this study was to investigate the effects of TGFβ and its downstream SMAD pathway on resistance to anti-HER2 drugs.

Methods

HER2-positive breast cancer cell lines were stimulated with TGFβ for 14 days. Then, the sensitivity to trastuzumab and lapatinib and the expression levels of various EMT and CSC markers were examined. The correlation of nuclear SMAD3 expression in untreated breast tumor tissues with trastuzumab efficacy in neoadjuvant settings was examined. The effect of a small-molecule inhibitor of SMAD3 (SIS3) on resistance to anti-HER2 drugs was explored.

Results

We found that continuous activation of the TGFβ-SMAD3 pathway induced resistance to anti-HER2 drugs and CSC traits in HER2-positive breast cancer cells. The induction of drug resistance by TGFβ required strong activation of SMAD3. In fact, activated SMAD3 regulated multiple genes that harbor SMAD-binding elements and are involved in trastuzumab resistance. Nuclear SMAD3 expression in tumor tissue was inversely correlated with sensitivity to neoadjuvant treatment with trastuzumab. SIS3 not only prevented the acquisition of resistance to anti-HER2 drugs but also restored trastuzumab sensitivity in trastuzumab-resistant cells.

Conclusions

This study indicates that the TGFβ-SMAD3 pathway plays an important role in the induction and maintenance of resistance to anti-HER2 drugs. Thus, SMAD3 is a potential therapeutic target that can inhibit resistance and restore sensitivity to anti-HER2 drugs.
Appendix
Available only for authorised users
Literature
1.
go back to reference Perez EA, Romond EH, Suman VJ, Jeong JH, Sledge G, Geyer CE Jr et al (2014) Trastuzumab plus adjuvant chemotherapy for human epidermal growth factor receptor 2-positive breast cancer: planned joint analysis of overall survival from NSABP B-31 and NCCTG N9831. J Clin Oncol 32:3744–3752CrossRefPubMedPubMedCentral Perez EA, Romond EH, Suman VJ, Jeong JH, Sledge G, Geyer CE Jr et al (2014) Trastuzumab plus adjuvant chemotherapy for human epidermal growth factor receptor 2-positive breast cancer: planned joint analysis of overall survival from NSABP B-31 and NCCTG N9831. J Clin Oncol 32:3744–3752CrossRefPubMedPubMedCentral
2.
go back to reference Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A et al (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344:783–792CrossRefPubMed Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A et al (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344:783–792CrossRefPubMed
3.
go back to reference Geyer CE, Forster J, Lindquist D, Chan S, Romieu CG, Pienkowski T et al (2006) Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med 355:2733–2743CrossRefPubMed Geyer CE, Forster J, Lindquist D, Chan S, Romieu CG, Pienkowski T et al (2006) Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med 355:2733–2743CrossRefPubMed
4.
go back to reference Arteaga CL, Engelman JA (2014) ERBB receptors: from oncogene discovery to basic science to mechanism-based cancer therapeutics. Cancer Cell 25:282–303CrossRefPubMedPubMedCentral Arteaga CL, Engelman JA (2014) ERBB receptors: from oncogene discovery to basic science to mechanism-based cancer therapeutics. Cancer Cell 25:282–303CrossRefPubMedPubMedCentral
7.
go back to reference Liu L, Greger J, Shi H, Liu Y, Greshock J, Annan R et al (2009) Novel mechanism of lapatinib resistance in HER2-positive breast tumor cells: activation of AXL. Cancer Res 69:6871–6878CrossRefPubMed Liu L, Greger J, Shi H, Liu Y, Greshock J, Annan R et al (2009) Novel mechanism of lapatinib resistance in HER2-positive breast tumor cells: activation of AXL. Cancer Res 69:6871–6878CrossRefPubMed
8.
go back to reference Shattuck DL, Miller JK, Carraway KL 3rd, Sweeney C (2008) Met receptor contributes to trastuzumab resistance of Her2-overexpressing breast cancer cells. Cancer Res 68:1471–1477CrossRefPubMed Shattuck DL, Miller JK, Carraway KL 3rd, Sweeney C (2008) Met receptor contributes to trastuzumab resistance of Her2-overexpressing breast cancer cells. Cancer Res 68:1471–1477CrossRefPubMed
9.
go back to reference Nagy P, Friedlander E, Tanner M, Kapanen AI, Carraway KL, Isola J et al (2005) Decreased accessibility and lack of activation of ErbB2 in JIMT-1, a herceptin-resistant, MUC4-expressing breast cancer cell line. Cancer Res 65:473–482PubMed Nagy P, Friedlander E, Tanner M, Kapanen AI, Carraway KL, Isola J et al (2005) Decreased accessibility and lack of activation of ErbB2 in JIMT-1, a herceptin-resistant, MUC4-expressing breast cancer cell line. Cancer Res 65:473–482PubMed
10.
go back to reference Arribas J, Baselga J, Pedersen K, Parra-Palau JL (2011) p95HER2 and breast cancer. Cancer Res 71:1515–1519CrossRefPubMed Arribas J, Baselga J, Pedersen K, Parra-Palau JL (2011) p95HER2 and breast cancer. Cancer Res 71:1515–1519CrossRefPubMed
12.
go back to reference Shipitsin M, Campbell LL, Argani P, Weremowicz S, Bloushtain-Qimron N, Yao J et al (2007) Molecular definition of breast tumor heterogeneity. Cancer Cell 11:259–273CrossRefPubMed Shipitsin M, Campbell LL, Argani P, Weremowicz S, Bloushtain-Qimron N, Yao J et al (2007) Molecular definition of breast tumor heterogeneity. Cancer Cell 11:259–273CrossRefPubMed
13.
go back to reference Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715CrossRefPubMedPubMedCentral Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715CrossRefPubMedPubMedCentral
14.
go back to reference Wang Y, Yu Y, Tsuyada A, Ren X, Wu X, Stubblefield K et al (2011) Transforming growth factor-β regulates the sphere-initiating stem cell-like feature in breast cancer through miRNA-181 and ATM. Oncogene 30:1470–1480CrossRefPubMed Wang Y, Yu Y, Tsuyada A, Ren X, Wu X, Stubblefield K et al (2011) Transforming growth factor-β regulates the sphere-initiating stem cell-like feature in breast cancer through miRNA-181 and ATM. Oncogene 30:1470–1480CrossRefPubMed
15.
go back to reference Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu MF et al (2008) Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 100:672–679CrossRefPubMed Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu MF et al (2008) Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 100:672–679CrossRefPubMed
16.
go back to reference Walker RA, Dearing SJ (1992) Transforming growth factor β1 in ductal carcinoma in situ and invasive carcinomas of the breast. Eur J Cancer 28:641–644CrossRefPubMed Walker RA, Dearing SJ (1992) Transforming growth factor β1 in ductal carcinoma in situ and invasive carcinomas of the breast. Eur J Cancer 28:641–644CrossRefPubMed
17.
go back to reference Dalal BI, Keown PA, Greenberg AH (1993) Immunocytochemical localization of secreted transforming growth factor-β1 to the advancing edges of primary tumors and to lymph node metastases of human mammary carcinoma. Am J Pathol 143:381–389PubMedPubMedCentral Dalal BI, Keown PA, Greenberg AH (1993) Immunocytochemical localization of secreted transforming growth factor-β1 to the advancing edges of primary tumors and to lymph node metastases of human mammary carcinoma. Am J Pathol 143:381–389PubMedPubMedCentral
18.
go back to reference Gorsch SM, Memoli VA, Stukel TA, Gold LI, Arrick BA (1992) Immunohistochemical staining for transforming growth factor β1 associates with disease progression in human breast cancer. Cancer Res 52:6949–6952PubMed Gorsch SM, Memoli VA, Stukel TA, Gold LI, Arrick BA (1992) Immunohistochemical staining for transforming growth factor β1 associates with disease progression in human breast cancer. Cancer Res 52:6949–6952PubMed
19.
go back to reference Green MC, Buzdar AU, Smith T, Ibrahim NK, Valero V, Rosales MF et al (2005) Weekly paclitaxel improves pathologic complete remission in operable breast cancer when compared with paclitaxel once every 3 weeks. J Clin Oncol 23:5983–5992CrossRefPubMed Green MC, Buzdar AU, Smith T, Ibrahim NK, Valero V, Rosales MF et al (2005) Weekly paclitaxel improves pathologic complete remission in operable breast cancer when compared with paclitaxel once every 3 weeks. J Clin Oncol 23:5983–5992CrossRefPubMed
20.
go back to reference Morimoto K, Kim SJ, Tanei T, Shimazu K, Tanji Y, Taguchi T et al (2009) Stem cell marker aldehyde dehydrogenase 1-positive breast cancers are characterized by negative estrogen receptor, positive human epidermal growth factor receptor type 2, and high Ki67 expression. Cancer Sci 100:1062–1068CrossRefPubMed Morimoto K, Kim SJ, Tanei T, Shimazu K, Tanji Y, Taguchi T et al (2009) Stem cell marker aldehyde dehydrogenase 1-positive breast cancers are characterized by negative estrogen receptor, positive human epidermal growth factor receptor type 2, and high Ki67 expression. Cancer Sci 100:1062–1068CrossRefPubMed
21.
go back to reference Ocana OH, Corcoles R, Fabra A, Moreno-Bueno G, Acloque H, Vega S et al (2012) Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer Prrx1. Cancer Cell 22:709–724CrossRefPubMed Ocana OH, Corcoles R, Fabra A, Moreno-Bueno G, Acloque H, Vega S et al (2012) Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer Prrx1. Cancer Cell 22:709–724CrossRefPubMed
22.
go back to reference Stankic M, Pavlovic S, Chin Y, Brogi E, Padua D, Norton L et al (2013) TGF-β-Id1 signaling opposes Twist1 and promotes metastatic colonization via a mesenchymal-to-epithelial transition. Cell Rep 5:1228–1242CrossRefPubMedPubMedCentral Stankic M, Pavlovic S, Chin Y, Brogi E, Padua D, Norton L et al (2013) TGF-β-Id1 signaling opposes Twist1 and promotes metastatic colonization via a mesenchymal-to-epithelial transition. Cell Rep 5:1228–1242CrossRefPubMedPubMedCentral
23.
go back to reference O’Brien CA, Kreso A, Ryan P, Hermans KG, Gibson L, Wang Y et al (2012) ID1 and ID3 regulate the self-renewal capacity of human colon cancer-initiating cells through p21. Cancer Cell 21:777–792CrossRefPubMed O’Brien CA, Kreso A, Ryan P, Hermans KG, Gibson L, Wang Y et al (2012) ID1 and ID3 regulate the self-renewal capacity of human colon cancer-initiating cells through p21. Cancer Cell 21:777–792CrossRefPubMed
24.
go back to reference Lasorella A, Benezra R, Iavarone A (2014) The ID proteins: master regulators of cancer stem cells and tumour aggressiveness. Nat Rev Cancer 14:77–91CrossRefPubMed Lasorella A, Benezra R, Iavarone A (2014) The ID proteins: master regulators of cancer stem cells and tumour aggressiveness. Nat Rev Cancer 14:77–91CrossRefPubMed
25.
go back to reference Lyden D, Young AZ, Zagzag D, Yan W, Gerald W, O’Reilly R et al (1999) Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts. Nature 401:670–677CrossRefPubMed Lyden D, Young AZ, Zagzag D, Yan W, Gerald W, O’Reilly R et al (1999) Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts. Nature 401:670–677CrossRefPubMed
26.
go back to reference Sharma P, Patel D, Chaudhary J (2012) Id1 and Id3 expression is associated with increasing grade of prostate cancer: Id3 preferentially regulates CDKN1B. Cancer Med 1:187–197CrossRefPubMedPubMedCentral Sharma P, Patel D, Chaudhary J (2012) Id1 and Id3 expression is associated with increasing grade of prostate cancer: Id3 preferentially regulates CDKN1B. Cancer Med 1:187–197CrossRefPubMedPubMedCentral
27.
go back to reference Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983–3988CrossRefPubMedPubMedCentral Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983–3988CrossRefPubMedPubMedCentral
28.
go back to reference Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ et al (2003) In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17:1253–1270CrossRefPubMedPubMedCentral Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ et al (2003) In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17:1253–1270CrossRefPubMedPubMedCentral
29.
go back to reference Jinnin M, Ihn H, Tamaki K (2006) Characterization of SIS3, a novel specific inhibitor of Smad3, and its effect on transforming growth factor-β1-induced extracellular matrix expression. Mol Pharmacol 69:597–607CrossRefPubMed Jinnin M, Ihn H, Tamaki K (2006) Characterization of SIS3, a novel specific inhibitor of Smad3, and its effect on transforming growth factor-β1-induced extracellular matrix expression. Mol Pharmacol 69:597–607CrossRefPubMed
30.
go back to reference Zhang Y, Handley D, Kaplan T, Yu H, Bais AS, Richards T et al (2011) High throughput determination of TGFβ1/SMAD3 targets in A549 lung epithelial cells. PLoS ONE 6:e20319CrossRefPubMedPubMedCentral Zhang Y, Handley D, Kaplan T, Yu H, Bais AS, Richards T et al (2011) High throughput determination of TGFβ1/SMAD3 targets in A549 lung epithelial cells. PLoS ONE 6:e20319CrossRefPubMedPubMedCentral
31.
go back to reference Wang SE, Xiang B, Guix M, Olivares MG, Parker J, Chung CH et al (2008) Transforming growth factor β engages TACE and ErbB3 to activate phosphatidylinositol-3 kinase/Akt in ErbB2-overexpressing breast cancer and desensitizes cells to trastuzumab. Mol Cell Biol 28:5605–5620CrossRefPubMedPubMedCentral Wang SE, Xiang B, Guix M, Olivares MG, Parker J, Chung CH et al (2008) Transforming growth factor β engages TACE and ErbB3 to activate phosphatidylinositol-3 kinase/Akt in ErbB2-overexpressing breast cancer and desensitizes cells to trastuzumab. Mol Cell Biol 28:5605–5620CrossRefPubMedPubMedCentral
32.
go back to reference Jeruss JS, Sturgis CD, Rademaker AW, Woodruff TK (2003) Down-regulation of activin, activin receptors, and Smads in high-grade breast cancer. Cancer Res 63:3783–3790PubMed Jeruss JS, Sturgis CD, Rademaker AW, Woodruff TK (2003) Down-regulation of activin, activin receptors, and Smads in high-grade breast cancer. Cancer Res 63:3783–3790PubMed
33.
go back to reference Tanner M, Kapanen AI, Junttila T, Raheem O, Grenman S, Elo J et al (2004) Characterization of a novel cell line established from a patient with Herceptin-resistant breast cancer. Mol Cancer Ther 3:1585–1592PubMed Tanner M, Kapanen AI, Junttila T, Raheem O, Grenman S, Elo J et al (2004) Characterization of a novel cell line established from a patient with Herceptin-resistant breast cancer. Mol Cancer Ther 3:1585–1592PubMed
34.
go back to reference Narayan M, Wilken JA, Harris LN, Baron AT, Kimbler KD, Maihle NJ (2009) Trastuzumab-induced HER reprogramming in “resistant” breast carcinoma cells. Cancer Res 69:2191–2194CrossRefPubMed Narayan M, Wilken JA, Harris LN, Baron AT, Kimbler KD, Maihle NJ (2009) Trastuzumab-induced HER reprogramming in “resistant” breast carcinoma cells. Cancer Res 69:2191–2194CrossRefPubMed
35.
go back to reference Zawel L, Dai JL, Buckhaults P, Zhou S, Kinzler KW, Vogelstein B et al (1998) Human Smad3 and Smad4 are sequence-specific transcription activators. Mol Cell 1:611–617CrossRefPubMed Zawel L, Dai JL, Buckhaults P, Zhou S, Kinzler KW, Vogelstein B et al (1998) Human Smad3 and Smad4 are sequence-specific transcription activators. Mol Cell 1:611–617CrossRefPubMed
36.
go back to reference Liang K, Esteva FJ, Albarracin C, Stemke-Hale K, Lu Y, Bianchini G et al (2010) Recombinant human erythropoietin antagonizes trastuzumab treatment of breast cancer cells via Jak2-mediated Src activation and PTEN inactivation. Cancer Cell 18:423–435CrossRefPubMedPubMedCentral Liang K, Esteva FJ, Albarracin C, Stemke-Hale K, Lu Y, Bianchini G et al (2010) Recombinant human erythropoietin antagonizes trastuzumab treatment of breast cancer cells via Jak2-mediated Src activation and PTEN inactivation. Cancer Cell 18:423–435CrossRefPubMedPubMedCentral
37.
go back to reference Kim JW, Kim DK, Min A, Lee KH, Nam HJ, Kim JH et al (2016) Amphiregulin confers trastuzumab resistance via AKT and ERK activation in HER2-positive breast cancer. J Cancer Res Clin Oncol 142:157–165CrossRefPubMed Kim JW, Kim DK, Min A, Lee KH, Nam HJ, Kim JH et al (2016) Amphiregulin confers trastuzumab resistance via AKT and ERK activation in HER2-positive breast cancer. J Cancer Res Clin Oncol 142:157–165CrossRefPubMed
38.
go back to reference Moody SE, Schinzel AC, Singh S, Izzo F, Strickland MR, Luo L et al (2015) PRKACA mediates resistance to HER2-targeted therapy in breast cancer cells and restores anti-apoptotic signaling. Oncogene 34:2061–2071CrossRefPubMed Moody SE, Schinzel AC, Singh S, Izzo F, Strickland MR, Luo L et al (2015) PRKACA mediates resistance to HER2-targeted therapy in breast cancer cells and restores anti-apoptotic signaling. Oncogene 34:2061–2071CrossRefPubMed
39.
go back to reference Collins DC, Cocchiglia S, Tibbitts P, Solon G, Bane FT, McBryan J et al (2015) Growth factor receptor/steroid receptor cross talk in trastuzumab-treated breast cancer. Oncogene 34:525–530CrossRefPubMed Collins DC, Cocchiglia S, Tibbitts P, Solon G, Bane FT, McBryan J et al (2015) Growth factor receptor/steroid receptor cross talk in trastuzumab-treated breast cancer. Oncogene 34:525–530CrossRefPubMed
40.
go back to reference Wu Y, Ginther C, Kim J, Mosher N, Chung S, Slamon D et al (2012) Expression of Wnt3 activates Wnt/β-catenin pathway and promotes EMT-like phenotype in trastuzumab-resistant HER2-overexpressing breast cancer cells. Mol Cancer Res 10:1597–1606CrossRefPubMedPubMedCentral Wu Y, Ginther C, Kim J, Mosher N, Chung S, Slamon D et al (2012) Expression of Wnt3 activates Wnt/β-catenin pathway and promotes EMT-like phenotype in trastuzumab-resistant HER2-overexpressing breast cancer cells. Mol Cancer Res 10:1597–1606CrossRefPubMedPubMedCentral
41.
go back to reference Lee KM, Nam K, Oh S, Lim J, Kim YP, Lee JW et al (2014) Extracellular matrix protein 1 regulates cell proliferation and trastuzumab resistance through activation of epidermal growth factor signaling. Breast Cancer Res 16:479CrossRefPubMedPubMedCentral Lee KM, Nam K, Oh S, Lim J, Kim YP, Lee JW et al (2014) Extracellular matrix protein 1 regulates cell proliferation and trastuzumab resistance through activation of epidermal growth factor signaling. Breast Cancer Res 16:479CrossRefPubMedPubMedCentral
42.
go back to reference Tabouret E, Bertucci F, Pierga JY, Petit T, Levy C, Ferrero JM et al (2016) MMP2 and MMP9 serum levels are associated with favorable outcome in patients with inflammatory breast cancer treated with bevacizumab-based neoadjuvant chemotherapy in the BEVERLY-2 study. Oncotarget 7:18531–18540CrossRefPubMedPubMedCentral Tabouret E, Bertucci F, Pierga JY, Petit T, Levy C, Ferrero JM et al (2016) MMP2 and MMP9 serum levels are associated with favorable outcome in patients with inflammatory breast cancer treated with bevacizumab-based neoadjuvant chemotherapy in the BEVERLY-2 study. Oncotarget 7:18531–18540CrossRefPubMedPubMedCentral
43.
go back to reference Pan D, Zhu Y, Zhou Z, Wang T, You H, Jiang C et al (2016) The CBM complex underwrites NF-κB activation to promote HER2-associated tumor malignancy. Mol Cancer Res 14:93–102CrossRefPubMed Pan D, Zhu Y, Zhou Z, Wang T, You H, Jiang C et al (2016) The CBM complex underwrites NF-κB activation to promote HER2-associated tumor malignancy. Mol Cancer Res 14:93–102CrossRefPubMed
44.
go back to reference Griseri P, Bourcier C, Hieblot C, Essafi-Benkhadir K, Chamorey E, Touriol C et al (2011) A synonymous polymorphism of the Tristetraprolin (TTP) gene, an AU-rich mRNA-binding protein, affects translation efficiency and response to Herceptin treatment in breast cancer patients. Hum Mol Genet 20:4556–4568CrossRefPubMed Griseri P, Bourcier C, Hieblot C, Essafi-Benkhadir K, Chamorey E, Touriol C et al (2011) A synonymous polymorphism of the Tristetraprolin (TTP) gene, an AU-rich mRNA-binding protein, affects translation efficiency and response to Herceptin treatment in breast cancer patients. Hum Mol Genet 20:4556–4568CrossRefPubMed
45.
go back to reference Timmermans-Sprang EP, Gracanin A, Mol JA (2015) High basal Wnt signaling is further induced by PI3K/mTor inhibition but sensitive to cSRC inhibition in mammary carcinoma cell lines with HER2/3 overexpression. BMC Cancer 15:545CrossRefPubMedPubMedCentral Timmermans-Sprang EP, Gracanin A, Mol JA (2015) High basal Wnt signaling is further induced by PI3K/mTor inhibition but sensitive to cSRC inhibition in mammary carcinoma cell lines with HER2/3 overexpression. BMC Cancer 15:545CrossRefPubMedPubMedCentral
46.
go back to reference Drabsch Y, ten Dijke P (2012) TGF-β signalling and its role in cancer progression and metastasis. Cancer Metastasis Rev 31:553–568CrossRefPubMed Drabsch Y, ten Dijke P (2012) TGF-β signalling and its role in cancer progression and metastasis. Cancer Metastasis Rev 31:553–568CrossRefPubMed
47.
go back to reference Xue J, Lin X, Chiu WT, Chen YH, Yu G, Liu M et al (2014) Sustained activation of SMAD3/SMAD4 by FOXM1 promotes TGF-β-dependent cancer metastasis. J Clin Invest 124:564–579CrossRefPubMedPubMedCentral Xue J, Lin X, Chiu WT, Chen YH, Yu G, Liu M et al (2014) Sustained activation of SMAD3/SMAD4 by FOXM1 promotes TGF-β-dependent cancer metastasis. J Clin Invest 124:564–579CrossRefPubMedPubMedCentral
48.
go back to reference Oliveras-Ferraros C, Corominas-Faja B, Cufi S, Vazquez-Martin A, Martin-Castillo B, Iglesias JM et al (2012) Epithelial-to-mesenchymal transition (EMT) confers primary resistance to trastuzumab (Herceptin). Cell Cycle 11:4020–4032CrossRefPubMedPubMedCentral Oliveras-Ferraros C, Corominas-Faja B, Cufi S, Vazquez-Martin A, Martin-Castillo B, Iglesias JM et al (2012) Epithelial-to-mesenchymal transition (EMT) confers primary resistance to trastuzumab (Herceptin). Cell Cycle 11:4020–4032CrossRefPubMedPubMedCentral
49.
go back to reference Lesniak D, Sabri S, Xu Y, Graham K, Bhatnagar P, Suresh M et al (2013) Spontaneous epithelial-mesenchymal transition and resistance to HER-2-targeted therapies in HER-2-positive luminal breast cancer. PLoS ONE 8:e71987CrossRefPubMedPubMedCentral Lesniak D, Sabri S, Xu Y, Graham K, Bhatnagar P, Suresh M et al (2013) Spontaneous epithelial-mesenchymal transition and resistance to HER-2-targeted therapies in HER-2-positive luminal breast cancer. PLoS ONE 8:e71987CrossRefPubMedPubMedCentral
51.
52.
go back to reference Xu L, Alarcon C, Col S, Massagué J (2003) Distinct domain utilization by Smad3 and Smad4 for nucleoporin interaction and nuclear import. J Biol Chem 278:42569–42577CrossRefPubMed Xu L, Alarcon C, Col S, Massagué J (2003) Distinct domain utilization by Smad3 and Smad4 for nucleoporin interaction and nuclear import. J Biol Chem 278:42569–42577CrossRefPubMed
53.
go back to reference Kim SH, Kim KH, Ahn S, Hyeon J, Park CK (2013) Smad3 and Smad3 phosphoisoforms are prognostic markers of gastric carcinoma. Dig Dis Sci 58:989–997CrossRefPubMed Kim SH, Kim KH, Ahn S, Hyeon J, Park CK (2013) Smad3 and Smad3 phosphoisoforms are prognostic markers of gastric carcinoma. Dig Dis Sci 58:989–997CrossRefPubMed
54.
55.
go back to reference Hajra KM, Ji X, Fearon ER (1999) Extinction of E-cadherin expression in breast cancer via a dominant repression pathway acting on proximal promoter elements. Oncogene 18:7274–7279CrossRefPubMed Hajra KM, Ji X, Fearon ER (1999) Extinction of E-cadherin expression in breast cancer via a dominant repression pathway acting on proximal promoter elements. Oncogene 18:7274–7279CrossRefPubMed
56.
go back to reference Bruna A, Greenwood W, Le Quesne J, Teschendorff A, Miranda-Saavedra D, Rueda OM et al (2012) TGFβ induces the formation of tumour-initiating cells in claudinlow breast cancer. Nat Commun 3:1055CrossRefPubMed Bruna A, Greenwood W, Le Quesne J, Teschendorff A, Miranda-Saavedra D, Rueda OM et al (2012) TGFβ induces the formation of tumour-initiating cells in claudinlow breast cancer. Nat Commun 3:1055CrossRefPubMed
Metadata
Title
A small-molecule inhibitor of SMAD3 attenuates resistance to anti-HER2 drugs in HER2-positive breast cancer cells
Authors
Yoko Chihara
Masafumi Shimoda
Ami Hori
Ako Ohara
Yasuto Naoi
Jun-ichiro Ikeda
Naofumi Kagara
Tomonori Tanei
Atsushi Shimomura
Kenzo Shimazu
Seung Jin Kim
Shinzaburo Noguchi
Publication date
01-11-2017
Publisher
Springer US
Published in
Breast Cancer Research and Treatment / Issue 1/2017
Print ISSN: 0167-6806
Electronic ISSN: 1573-7217
DOI
https://doi.org/10.1007/s10549-017-4382-6

Other articles of this Issue 1/2017

Breast Cancer Research and Treatment 1/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine