Skip to main content
Top
Published in: Breast Cancer Research and Treatment 1/2017

Open Access 01-07-2017 | Brief Report

DNA methylation age is elevated in breast tissue of healthy women

Authors: Mary E. Sehl, Jill E. Henry, Anna Maria Storniolo, Patricia A. Ganz, Steve Horvath

Published in: Breast Cancer Research and Treatment | Issue 1/2017

Login to get access

Abstract

Background

Limited evidence suggests that female breast tissue ages faster than other parts of the body according to an epigenetic biomarker of aging known as the “epigenetic clock.” However, it is unknown whether breast tissue samples from healthy women show a similar accelerated aging effect relative to other tissues, and what could drive this acceleration. The goal of this study is to validate our initial finding of advanced DNA methylation (DNAm) age in breast tissue, by directly comparing it to that of peripheral blood tissue from the same individuals, and to do a preliminary assessment of hormonal factors that could explain the difference.

Methods

We utilized n = 80 breast and 80 matching blood tissue samples collected from 40 healthy female participants of the Susan G. Komen Tissue Bank at the Indiana University Simon Cancer Center who donated these samples at two time points spaced at least a year apart. DNA methylation levels (Illumina 450K platform) were used to estimate the DNAm age.

Results

DNAm age was highly correlated with chronological age in both peripheral blood (r = 0.94, p < 0.0001) and breast tissues (r = 0.86, p < 0.0001). A measure of epigenetic age acceleration (age-adjusted DNAm Age) was substantially increased in breast relative to peripheral blood tissue (p = 1.6 × 10−11). The difference between DNAm age of breast and blood decreased with advancing chronologic age (r = −0.53, p = 4.4 × 10−4).

Conclusions

Our data clearly demonstrate that female breast tissue has a higher epigenetic age than blood collected from the same subject. We also observe that the degree of elevation in breast diminishes with advancing age. Future larger studies will be needed to examine associations between epigenetic age acceleration and cumulative hormone exposure.
Appendix
Available only for authorised users
Literature
2.
go back to reference Marioni RE, Shah S, McRae AF, Chen BH, Colicino E, Harris SE, Gibson J, Henders AK, Redmond P, Cox SR, Pattie A, Corley J, Murphy L, Martin NG, Montgomery GW, Feinberg AP, Fallin MD, Multhaup ML, Jaffe AE, Joehanes R, Schwartz J, Just AC, Lunetta KL, Murabito JM, Starr JM, Horvath S, Baccarelli AA, Levy D, Visscher PM, Wray NR, Deary IJ (2015) DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol 16:25. doi:10.1186/s13059-015-0584-6 CrossRefPubMedPubMedCentral Marioni RE, Shah S, McRae AF, Chen BH, Colicino E, Harris SE, Gibson J, Henders AK, Redmond P, Cox SR, Pattie A, Corley J, Murphy L, Martin NG, Montgomery GW, Feinberg AP, Fallin MD, Multhaup ML, Jaffe AE, Joehanes R, Schwartz J, Just AC, Lunetta KL, Murabito JM, Starr JM, Horvath S, Baccarelli AA, Levy D, Visscher PM, Wray NR, Deary IJ (2015) DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol 16:25. doi:10.​1186/​s13059-015-0584-6 CrossRefPubMedPubMedCentral
3.
go back to reference Christiansen L, Lenart A, Tan Q, Vaupel JW, Aviv A, McGue M, Christensen K (2016) DNA methylation age is associated with mortality in a longitudinal Danish twin study. Aging Cell 15(1):149–154. doi:10.1111/acel.12421 CrossRefPubMed Christiansen L, Lenart A, Tan Q, Vaupel JW, Aviv A, McGue M, Christensen K (2016) DNA methylation age is associated with mortality in a longitudinal Danish twin study. Aging Cell 15(1):149–154. doi:10.​1111/​acel.​12421 CrossRefPubMed
4.
go back to reference Perna L, Zhang Y, Mons U, Holleczek B, Saum K-U, Brenner H (2016) Epigenetic age acceleration predicts cancer, cardiovascular, and all-cause mortality in a German case cohort. Clin Epigenet 8(1):1–7. doi:10.1186/s13148-016-0228-z CrossRef Perna L, Zhang Y, Mons U, Holleczek B, Saum K-U, Brenner H (2016) Epigenetic age acceleration predicts cancer, cardiovascular, and all-cause mortality in a German case cohort. Clin Epigenet 8(1):1–7. doi:10.​1186/​s13148-016-0228-z CrossRef
5.
go back to reference Chen BH, Marioni RE, Colicino E, Peters MJ, Ward-Caviness CK, Tsai PC, Roetker NS, Just AC, Demerath EW, Guan W, Bressler J, Fornage M, Studenski S, Vandiver AR, Moore AZ, Tanaka T, Kiel DP, Liang L, Vokonas P, Schwartz J, Lunetta KL, Murabito JM, Bandinelli S, Hernandez DG, Melzer D, Nalls M, Pilling LC, Price TR, Singleton AB, Gieger C, Holle R, Kretschmer A, Kronenberg F, Kunze S, Linseisen J, Meisinger C, Rathmann W, Waldenberger M, Visscher PM, Shah S, Wray NR, McRae AF, Franco OH, Hofman A, Uitterlinden AG, Absher D, Assimes T, Levine ME, Lu AT, Tsao PS, Hou L, Manson JE, Carty CL, LaCroix AZ, Reiner AP, Spector TD, Feinberg AP, Levy D, Baccarelli A, van Meurs J, Bell JT, Peters A, Deary IJ, Pankow JS, Ferrucci L, Horvath S (2016) DNA methylation-based measures of biological age: meta-analysis predicting time to death. Aging (Albany NY) 8(9):1844–1865. doi:10.18632/aging.101020 CrossRef Chen BH, Marioni RE, Colicino E, Peters MJ, Ward-Caviness CK, Tsai PC, Roetker NS, Just AC, Demerath EW, Guan W, Bressler J, Fornage M, Studenski S, Vandiver AR, Moore AZ, Tanaka T, Kiel DP, Liang L, Vokonas P, Schwartz J, Lunetta KL, Murabito JM, Bandinelli S, Hernandez DG, Melzer D, Nalls M, Pilling LC, Price TR, Singleton AB, Gieger C, Holle R, Kretschmer A, Kronenberg F, Kunze S, Linseisen J, Meisinger C, Rathmann W, Waldenberger M, Visscher PM, Shah S, Wray NR, McRae AF, Franco OH, Hofman A, Uitterlinden AG, Absher D, Assimes T, Levine ME, Lu AT, Tsao PS, Hou L, Manson JE, Carty CL, LaCroix AZ, Reiner AP, Spector TD, Feinberg AP, Levy D, Baccarelli A, van Meurs J, Bell JT, Peters A, Deary IJ, Pankow JS, Ferrucci L, Horvath S (2016) DNA methylation-based measures of biological age: meta-analysis predicting time to death. Aging (Albany NY) 8(9):1844–1865. doi:10.​18632/​aging.​101020 CrossRef
6.
go back to reference Horvath S, Erhart W, Brosch M, Ammerpohl O, von Schonfels W, Ahrens M, Heits N, Bell JT, Tsai PC, Spector TD, Deloukas P, Siebert R, Sipos B, Becker T, Rocken C, Schafmayer C, Hampe J (2014) Obesity accelerates epigenetic aging of human liver. Proc Natl Acad Sci USA 111(43):15538–15543. doi:10.1073/pnas.1412759111 CrossRefPubMedPubMedCentral Horvath S, Erhart W, Brosch M, Ammerpohl O, von Schonfels W, Ahrens M, Heits N, Bell JT, Tsai PC, Spector TD, Deloukas P, Siebert R, Sipos B, Becker T, Rocken C, Schafmayer C, Hampe J (2014) Obesity accelerates epigenetic aging of human liver. Proc Natl Acad Sci USA 111(43):15538–15543. doi:10.​1073/​pnas.​1412759111 CrossRefPubMedPubMedCentral
7.
go back to reference Levine ME, Lu AT, Bennett DA, Horvath S (2015) Epigenetic age of the pre-frontal cortex is associated with neuritic plaques, amyloid load, and Alzheimer’s disease related cognitive functioning. Aging (Albany NY) 7(12):1198–1211. doi:10.18632/aging.100864 CrossRef Levine ME, Lu AT, Bennett DA, Horvath S (2015) Epigenetic age of the pre-frontal cortex is associated with neuritic plaques, amyloid load, and Alzheimer’s disease related cognitive functioning. Aging (Albany NY) 7(12):1198–1211. doi:10.​18632/​aging.​100864 CrossRef
12.
go back to reference Horvath S, Langfelder P, Kwak S, Aaronson J, Rosinski J, Vogt TF, Eszes M, Faull RL, Curtis MA, Waldvogel HJ, Choi OW, Tung S, Vinters HV, Coppola G, Yang XW (2016) Huntington’s disease accelerates epigenetic aging of human brain and disrupts DNA methylation levels. Aging (Albany NY) 8(7):1485–1512. doi:10.18632/aging.101005 CrossRef Horvath S, Langfelder P, Kwak S, Aaronson J, Rosinski J, Vogt TF, Eszes M, Faull RL, Curtis MA, Waldvogel HJ, Choi OW, Tung S, Vinters HV, Coppola G, Yang XW (2016) Huntington’s disease accelerates epigenetic aging of human brain and disrupts DNA methylation levels. Aging (Albany NY) 8(7):1485–1512. doi:10.​18632/​aging.​101005 CrossRef
13.
go back to reference Zannas A, Arloth J, Carrillo-Roa T, Iurato S, Roh S, Ressler K, Nemeroff C, Smith A, Bradley B, Heim C, Menke A, Lange J, Bruckl T, Ising M, Wray N, Erhardt A, Binder E, Mehta D (2015) Lifetime stress accelerates epigenetic aging in an urban, African American cohort: relevance of glucocorticoid signaling. Genome Biol 16(1):266CrossRefPubMedPubMedCentral Zannas A, Arloth J, Carrillo-Roa T, Iurato S, Roh S, Ressler K, Nemeroff C, Smith A, Bradley B, Heim C, Menke A, Lange J, Bruckl T, Ising M, Wray N, Erhardt A, Binder E, Mehta D (2015) Lifetime stress accelerates epigenetic aging in an urban, African American cohort: relevance of glucocorticoid signaling. Genome Biol 16(1):266CrossRefPubMedPubMedCentral
14.
go back to reference Levine ME, Lu AT, Chen BH, Hernandez DG, Singleton AB, Ferrucci L, Bandinelli S, Salfati E, Manson JE, Quach A, Kusters CD, Kuh D, Wong A, Teschendorff AE, Widschwendter M, Ritz BR, Absher D, Assimes TL, Horvath S (2016) Menopause accelerates biological aging. Proc Natl Acad Sci USA 113(33):9327–9332. doi:10.1073/pnas.1604558113 CrossRefPubMedPubMedCentral Levine ME, Lu AT, Chen BH, Hernandez DG, Singleton AB, Ferrucci L, Bandinelli S, Salfati E, Manson JE, Quach A, Kusters CD, Kuh D, Wong A, Teschendorff AE, Widschwendter M, Ritz BR, Absher D, Assimes TL, Horvath S (2016) Menopause accelerates biological aging. Proc Natl Acad Sci USA 113(33):9327–9332. doi:10.​1073/​pnas.​1604558113 CrossRefPubMedPubMedCentral
15.
go back to reference Horvath S, Mah V, Lu AT, Woo JS, Choi OW, Jasinska AJ, Riancho JA, Tung S, Coles NS, Braun J, Vinters HV, Coles LS (2015) The cerebellum ages slowly according to the epigenetic clock. Aging (Albany NY) 7(5):294–306CrossRef Horvath S, Mah V, Lu AT, Woo JS, Choi OW, Jasinska AJ, Riancho JA, Tung S, Coles NS, Braun J, Vinters HV, Coles LS (2015) The cerebellum ages slowly according to the epigenetic clock. Aging (Albany NY) 7(5):294–306CrossRef
16.
go back to reference Rakyan VK, Down TA, Maslau S, Andrew T, Yang TP, Beyan H, Whittaker P, McCann OT, Finer S, Valdes AM, Leslie RD, Deloukas P, Spector TD (2010) Human aging-associated DNA hypermethylation occurs preferentially at bivalent chromatin domains. Genome Res 20(4):434–439. doi:10.1101/gr.103101.109 CrossRefPubMedPubMedCentral Rakyan VK, Down TA, Maslau S, Andrew T, Yang TP, Beyan H, Whittaker P, McCann OT, Finer S, Valdes AM, Leslie RD, Deloukas P, Spector TD (2010) Human aging-associated DNA hypermethylation occurs preferentially at bivalent chromatin domains. Genome Res 20(4):434–439. doi:10.​1101/​gr.​103101.​109 CrossRefPubMedPubMedCentral
17.
go back to reference Horvath S, Gurven M, Levine ME, Trumble BC, Kaplan H, Allayee H, Ritz BR, Chen B, Lu AT, Rickabaugh TM, Jamieson BD, Sun D, Li S, Chen W, Quintana-Murci L, Fagny M, Kobor MS, Tsao PS, Reiner AP, Edlefsen KL, Absher D, Assimes TL (2016) An epigenetic clock analysis of race/ethnicity, sex, and coronary heart disease. Genome Biol 17(1):171. doi:10.1186/s13059-016-1030-0 CrossRefPubMedPubMedCentral Horvath S, Gurven M, Levine ME, Trumble BC, Kaplan H, Allayee H, Ritz BR, Chen B, Lu AT, Rickabaugh TM, Jamieson BD, Sun D, Li S, Chen W, Quintana-Murci L, Fagny M, Kobor MS, Tsao PS, Reiner AP, Edlefsen KL, Absher D, Assimes TL (2016) An epigenetic clock analysis of race/ethnicity, sex, and coronary heart disease. Genome Biol 17(1):171. doi:10.​1186/​s13059-016-1030-0 CrossRefPubMedPubMedCentral
18.
go back to reference Teschendorff AE, Menon U, Gentry-Maharaj A, Ramus SJ, Weisenberger DJ, Shen H, Campan M, Noushmehr H, Bell CG, Maxwell AP, Savage DA, Mueller-Holzner E, Marth C, Kocjan G, Gayther SA, Jones A, Beck S, Wagner W, Laird PW, Jacobs IJ, Widschwendter M (2010) Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer. Genome Res 20(4):440–446. doi:10.1101/gr.103606.109 CrossRefPubMedPubMedCentral Teschendorff AE, Menon U, Gentry-Maharaj A, Ramus SJ, Weisenberger DJ, Shen H, Campan M, Noushmehr H, Bell CG, Maxwell AP, Savage DA, Mueller-Holzner E, Marth C, Kocjan G, Gayther SA, Jones A, Beck S, Wagner W, Laird PW, Jacobs IJ, Widschwendter M (2010) Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer. Genome Res 20(4):440–446. doi:10.​1101/​gr.​103606.​109 CrossRefPubMedPubMedCentral
21.
go back to reference Henderson BE, Ross RK, Judd HL, Krailo MD, Pike MC (1985) Do regular ovulatory cycles increase breast cancer risk? Cancer 56(5):1206–1208CrossRefPubMed Henderson BE, Ross RK, Judd HL, Krailo MD, Pike MC (1985) Do regular ovulatory cycles increase breast cancer risk? Cancer 56(5):1206–1208CrossRefPubMed
22.
go back to reference Brinton LA, Schairer C, Hoover RN, Fraumeni JF Jr (1988) Menstrual factors and risk of breast cancer. Cancer Investig 6(3):245–254CrossRef Brinton LA, Schairer C, Hoover RN, Fraumeni JF Jr (1988) Menstrual factors and risk of breast cancer. Cancer Investig 6(3):245–254CrossRef
23.
go back to reference Kampert JB, Whittemore AS, Paffenbarger RS Jr (1988) Combined effect of childbearing, menstrual events, and body size on age-specific breast cancer risk. Am J Epidemiol 128(5):962–979CrossRefPubMed Kampert JB, Whittemore AS, Paffenbarger RS Jr (1988) Combined effect of childbearing, menstrual events, and body size on age-specific breast cancer risk. Am J Epidemiol 128(5):962–979CrossRefPubMed
24.
go back to reference Hsieh CC, Trichopoulos D, Katsouyanni K, Yuasa S (1990) Age at menarche, age at menopause, height and obesity as risk factors for breast cancer: associations and interactions in an international case-control study. Int J Cancer 46(5):796–800CrossRefPubMed Hsieh CC, Trichopoulos D, Katsouyanni K, Yuasa S (1990) Age at menarche, age at menopause, height and obesity as risk factors for breast cancer: associations and interactions in an international case-control study. Int J Cancer 46(5):796–800CrossRefPubMed
25.
go back to reference Bernstein L, Ross RK (1993) Endogenous hormones and breast cancer risk. Epidemiol Rev 15(1):48–65CrossRefPubMed Bernstein L, Ross RK (1993) Endogenous hormones and breast cancer risk. Epidemiol Rev 15(1):48–65CrossRefPubMed
26.
go back to reference Schairer C, Lubin J, Troisi R, Sturgeon S, Brinton L, Hoover R (2000) Menopausal estrogen and estrogen-progestin replacement therapy and breast cancer risk. JAMA 283(4):485–491CrossRefPubMed Schairer C, Lubin J, Troisi R, Sturgeon S, Brinton L, Hoover R (2000) Menopausal estrogen and estrogen-progestin replacement therapy and breast cancer risk. JAMA 283(4):485–491CrossRefPubMed
27.
go back to reference Hirose K, Tajima K, Hamajima N, Inoue M, Takezaki T, Kuroishi T, Yoshida M, Tokudome S (1995) A large-scale, hospital-based case-control study of risk factors of breast cancer according to menopausal status. Jpn J Cancer Res 86(2):146–154CrossRefPubMed Hirose K, Tajima K, Hamajima N, Inoue M, Takezaki T, Kuroishi T, Yoshida M, Tokudome S (1995) A large-scale, hospital-based case-control study of risk factors of breast cancer according to menopausal status. Jpn J Cancer Res 86(2):146–154CrossRefPubMed
28.
go back to reference Dolle JM, Daling JR, White E, Brinton LA, Doody DR, Porter PL, Malone KE (2009) Risk factors for triple-negative breast cancer in women under the age of 45 years. Cancer Epidemiol Biomark Prev 18(4):1157–1166. doi:10.1158/1055-9965.EPI-08-1005 CrossRef Dolle JM, Daling JR, White E, Brinton LA, Doody DR, Porter PL, Malone KE (2009) Risk factors for triple-negative breast cancer in women under the age of 45 years. Cancer Epidemiol Biomark Prev 18(4):1157–1166. doi:10.​1158/​1055-9965.​EPI-08-1005 CrossRef
29.
go back to reference Anderson E, Clarke RB, Howell A (1998) Estrogen responsiveness and control of normal human breast proliferation. J Mammary Gland Biol Neoplasia 3(1):23–35CrossRefPubMed Anderson E, Clarke RB, Howell A (1998) Estrogen responsiveness and control of normal human breast proliferation. J Mammary Gland Biol Neoplasia 3(1):23–35CrossRefPubMed
30.
go back to reference Clarke RB, Anderson E, Howell A, Potten CS (2003) Regulation of human breast epithelial stem cells. Cell Prolif 36(Suppl 1):45–58CrossRefPubMed Clarke RB, Anderson E, Howell A, Potten CS (2003) Regulation of human breast epithelial stem cells. Cell Prolif 36(Suppl 1):45–58CrossRefPubMed
32.
go back to reference Doisneau-Sixou SF, Sergio CM, Carroll JS, Hui R, Musgrove EA, Sutherland RL (2003) Estrogen and antiestrogen regulation of cell cycle progression in breast cancer cells. Endocr Relat Cancer 10(2):179–186CrossRefPubMed Doisneau-Sixou SF, Sergio CM, Carroll JS, Hui R, Musgrove EA, Sutherland RL (2003) Estrogen and antiestrogen regulation of cell cycle progression in breast cancer cells. Endocr Relat Cancer 10(2):179–186CrossRefPubMed
33.
go back to reference Anderson TJ, Ferguson DJ, Raab GM (1982) Cell turnover in the “resting” human breast: influence of parity, contraceptive pill, age and laterality. Br J Cancer 46(3):376–382CrossRefPubMedPubMedCentral Anderson TJ, Ferguson DJ, Raab GM (1982) Cell turnover in the “resting” human breast: influence of parity, contraceptive pill, age and laterality. Br J Cancer 46(3):376–382CrossRefPubMedPubMedCentral
34.
go back to reference Potten CS, Watson RJ, Williams GT, Tickle S, Roberts SA, Harris M, Howell A (1988) The effect of age and menstrual cycle upon proliferative activity of the normal human breast. Br J Cancer 58(2):163–170CrossRefPubMedPubMedCentral Potten CS, Watson RJ, Williams GT, Tickle S, Roberts SA, Harris M, Howell A (1988) The effect of age and menstrual cycle upon proliferative activity of the normal human breast. Br J Cancer 58(2):163–170CrossRefPubMedPubMedCentral
35.
go back to reference Pike MC, Spicer DV, Dahmoush L, Press MF (1993) Estrogens, progestogens, normal breast cell proliferation, and breast cancer risk. Epidemiol Rev 15(1):17–35CrossRefPubMed Pike MC, Spicer DV, Dahmoush L, Press MF (1993) Estrogens, progestogens, normal breast cell proliferation, and breast cancer risk. Epidemiol Rev 15(1):17–35CrossRefPubMed
36.
go back to reference Pike MC, Krailo MD, Henderson BE, Casagrande JT, Hoel DG (1983) ‘Hormonal’ risk factors, ‘breast tissue age’ and the age-incidence of breast cancer. Nature 303(5920):767–770CrossRefPubMed Pike MC, Krailo MD, Henderson BE, Casagrande JT, Hoel DG (1983) ‘Hormonal’ risk factors, ‘breast tissue age’ and the age-incidence of breast cancer. Nature 303(5920):767–770CrossRefPubMed
37.
go back to reference Rosner B, Colditz GA, Willett WC (1994) Reproductive risk factors in a prospective study of breast cancer: the Nurses’ Health Study. Am J Epidemiol 139(8):819–835CrossRefPubMed Rosner B, Colditz GA, Willett WC (1994) Reproductive risk factors in a prospective study of breast cancer: the Nurses’ Health Study. Am J Epidemiol 139(8):819–835CrossRefPubMed
38.
go back to reference Colditz GA, Rosner B (2000) Cumulative risk of breast cancer to age 70 years according to risk factor status: data from the Nurses’ Health Study. Am J Epidemiol 152(10):950–964CrossRefPubMed Colditz GA, Rosner B (2000) Cumulative risk of breast cancer to age 70 years according to risk factor status: data from the Nurses’ Health Study. Am J Epidemiol 152(10):950–964CrossRefPubMed
39.
go back to reference Berkey CS, Rosner B, Tamimi RM, Willett WC, Hickey M, Toriola A, Frazier AL, Colditz GA (2017) Body size from birth through adolescence in relation to risk of benign breast disease in young women. Breast Cancer Res Treat 162(1):139–149CrossRefPubMed Berkey CS, Rosner B, Tamimi RM, Willett WC, Hickey M, Toriola A, Frazier AL, Colditz GA (2017) Body size from birth through adolescence in relation to risk of benign breast disease in young women. Breast Cancer Res Treat 162(1):139–149CrossRefPubMed
40.
go back to reference Boyd NF, Lockwood GA, Byng JW, Tritchler DL, Yaffe MJ (1998) Mammographic densities and breast cancer risk. Cancer Epidemiol Biomark Prev 7(12):1133–1144 Boyd NF, Lockwood GA, Byng JW, Tritchler DL, Yaffe MJ (1998) Mammographic densities and breast cancer risk. Cancer Epidemiol Biomark Prev 7(12):1133–1144
41.
go back to reference Tice JA, Cummings SR, Ziv E, Kerlikowske K (2005) Mammographic breast density and the Gail model for breast cancer risk prediction in a screening population. Breast Cancer Res Treat 94(20):115–122CrossRefPubMed Tice JA, Cummings SR, Ziv E, Kerlikowske K (2005) Mammographic breast density and the Gail model for breast cancer risk prediction in a screening population. Breast Cancer Res Treat 94(20):115–122CrossRefPubMed
42.
go back to reference Warwick J, Pinney E, Warren RM, Duffy SW, Howell A, Wilson M, Cuzick J (2003) Breast density and breast cancer risk factors in a high-risk population. Breast 12(1):10–16CrossRefPubMed Warwick J, Pinney E, Warren RM, Duffy SW, Howell A, Wilson M, Cuzick J (2003) Breast density and breast cancer risk factors in a high-risk population. Breast 12(1):10–16CrossRefPubMed
43.
go back to reference McCormack VA, Perry NM, Vinnicombe SJ, Dos Santos Silva I (2010) Changes and tracking of mammographic density in relation to Pike’s model of breast tissue aging: a UK longitudinal study. Int J Cancer 127(2):452–461PubMed McCormack VA, Perry NM, Vinnicombe SJ, Dos Santos Silva I (2010) Changes and tracking of mammographic density in relation to Pike’s model of breast tissue aging: a UK longitudinal study. Int J Cancer 127(2):452–461PubMed
44.
go back to reference Yaghjyan L, Colditz GA, Rosner B, Bertrand KA, Tamimi RM (2016) Reproductive factors related to childbearing and mammographic breast density. Breast Cancer Res Treat 158(2):351–359CrossRefPubMed Yaghjyan L, Colditz GA, Rosner B, Bertrand KA, Tamimi RM (2016) Reproductive factors related to childbearing and mammographic breast density. Breast Cancer Res Treat 158(2):351–359CrossRefPubMed
Metadata
Title
DNA methylation age is elevated in breast tissue of healthy women
Authors
Mary E. Sehl
Jill E. Henry
Anna Maria Storniolo
Patricia A. Ganz
Steve Horvath
Publication date
01-07-2017
Publisher
Springer US
Published in
Breast Cancer Research and Treatment / Issue 1/2017
Print ISSN: 0167-6806
Electronic ISSN: 1573-7217
DOI
https://doi.org/10.1007/s10549-017-4218-4

Other articles of this Issue 1/2017

Breast Cancer Research and Treatment 1/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine