Skip to main content
Top
Published in: Breast Cancer Research and Treatment 1/2016

01-08-2016 | Preclinical study

Clinical and biological significance of RAD51 expression in breast cancer: a key DNA damage response protein

Authors: Alaa Tarig Alshareeda, Ola H. Negm, Mohammed A. Aleskandarany, Andrew R. Green, Christopher Nolan, Patrick J. TigHhe, Srinivasan Madhusudan, Ian O. Ellis, Emad A. Rakha

Published in: Breast Cancer Research and Treatment | Issue 1/2016

Login to get access

Abstract

Impaired DNA damage response (DDR) may play a fundamental role in the pathogenesis of breast cancer (BC). RAD51 is a key player in DNA double-strand break repair. In this study, we aimed to assess the biological and clinical significance of RAD51 expression with relevance to different molecular classes of BC and patients’ outcome. The expression of RAD51 was assessed immunohistochemically in a well-characterised annotated series (n = 1184) of early-stage invasive BC with long-term follow-up. A subset of cases of BC from patients with known BRCA1 germline mutations was included as a control group. The results were correlated with clinicopathological and molecular parameters and patients’ outcome. RAD51 protein expression level was also assayed in a panel of cell lines using reverse phase protein array (RPPA). RAD51 was expressed in the nuclei (N) and cytoplasm (C) of malignant cells. Subcellular co-localisation phenotypes of RAD51 were significantly associated with clinicopathological features and patient outcome. Cytoplasmic expression (RAD51C+) and lack of nuclear expression (RAD51 N) were associated with features of aggressive behaviour, including larger tumour size, high grade, lymph nodal metastasis, basal-like, and triple-negative phenotypes, together with aberrant expression of key DDR biomarkers including BRCA1. All BRCA1-mutated tumours had RAD51C+/N phenotype. RPPA confirmed IHC results and showed differential expression of RAD51 in cell lines based on ER expression and BRCA1 status. RAD51 N+ and RAD51C+ tumours were associated with longer and shorter breast cancer-specific survival (BCSS), respectively. The RAD51 N+ was an independent predictor of longer BCSS (P < 0.0001). Lack of RAD51 nuclear expression is associated with poor prognostic parameters and shorter survival in invasive BC patients. The significant associations between RAD51 subcellular localisation and clinicopathological features, molecular subtype and patients’ outcome suggest that the trafficking of DDR proteins between the nucleus and cytoplasm might play a role in the development and progression of BC.
Appendix
Available only for authorised users
Literature
1.
go back to reference Khanna KK, Jackson SP (2001) DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 27(3):247–254PubMedCrossRef Khanna KK, Jackson SP (2001) DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 27(3):247–254PubMedCrossRef
2.
go back to reference van Gent DC, Hoeijmakers JH, Kanaar R (2001) Chromosomal stability and the DNA double-stranded break connection. Nat Rev Genet 2(3):196–206PubMedCrossRef van Gent DC, Hoeijmakers JH, Kanaar R (2001) Chromosomal stability and the DNA double-stranded break connection. Nat Rev Genet 2(3):196–206PubMedCrossRef
3.
go back to reference Pierce AJ, Stark JM, Araujo FD, Moynahan ME, Berwick M, Jasin M (2001) Double-strand breaks and tumorigenesis. Trends Cell Biol 11(11):S52–S59CrossRefPubMed Pierce AJ, Stark JM, Araujo FD, Moynahan ME, Berwick M, Jasin M (2001) Double-strand breaks and tumorigenesis. Trends Cell Biol 11(11):S52–S59CrossRefPubMed
4.
go back to reference Powell SN, Kachnic LA (2003) Roles of BRCA1 and BRCA2 in homologous recombination, DNA replication fidelity and the cellular response to ionizing radiation. Oncogene 22(37):5784–5791PubMedCrossRef Powell SN, Kachnic LA (2003) Roles of BRCA1 and BRCA2 in homologous recombination, DNA replication fidelity and the cellular response to ionizing radiation. Oncogene 22(37):5784–5791PubMedCrossRef
5.
go back to reference Sung P (1994) Catalysis of ATP-dependent homologous DNA pairing and strand exchange by yeast RAD51 protein. Science 265(5176):1241–1243PubMedCrossRef Sung P (1994) Catalysis of ATP-dependent homologous DNA pairing and strand exchange by yeast RAD51 protein. Science 265(5176):1241–1243PubMedCrossRef
6.
go back to reference Baumann P, Benson FE, West SC (1996) Human Rad51 protein promotes ATP-dependent homologous pairing and strand transfer reactions in vitro. Cell 87(4):757–766PubMedCrossRef Baumann P, Benson FE, West SC (1996) Human Rad51 protein promotes ATP-dependent homologous pairing and strand transfer reactions in vitro. Cell 87(4):757–766PubMedCrossRef
7.
go back to reference Chen J, Silver DP, Walpita D, Cantor SB, Gazdar AF, Tomlinson G, Couch FJ, Weber BL, Ashley T, Livingston DM et al (1998) Stable interaction between the products of the BRCA1 and BRCA2 tumor suppressor genes in mitotic and meiotic cells. Mol Cell 2(3):317–328PubMedCrossRef Chen J, Silver DP, Walpita D, Cantor SB, Gazdar AF, Tomlinson G, Couch FJ, Weber BL, Ashley T, Livingston DM et al (1998) Stable interaction between the products of the BRCA1 and BRCA2 tumor suppressor genes in mitotic and meiotic cells. Mol Cell 2(3):317–328PubMedCrossRef
8.
go back to reference Scully R, Chen J, Plug A, Xiao Y, Weaver D, Feunteun J, Ashley T, Livingston DM (1997) Association of BRCA1 with Rad51 in mitotic and meiotic cells. Cell 88(2):265–275PubMedCrossRef Scully R, Chen J, Plug A, Xiao Y, Weaver D, Feunteun J, Ashley T, Livingston DM (1997) Association of BRCA1 with Rad51 in mitotic and meiotic cells. Cell 88(2):265–275PubMedCrossRef
9.
go back to reference Venkitaraman AR (2001) Functions of BRCA1 and BRCA2 in the biological response to DNA damage. J Cell Sci 114(Pt 20):3591–3598PubMed Venkitaraman AR (2001) Functions of BRCA1 and BRCA2 in the biological response to DNA damage. J Cell Sci 114(Pt 20):3591–3598PubMed
10.
go back to reference Moynahan ME, Chiu JW, Koller BH, Jasin M (1999) Brca1 controls homology-directed DNA repair. Mol Cell 4(4):511–518CrossRefPubMed Moynahan ME, Chiu JW, Koller BH, Jasin M (1999) Brca1 controls homology-directed DNA repair. Mol Cell 4(4):511–518CrossRefPubMed
11.
go back to reference Bau DT, Mau YC, Shen CY (2006) The role of BRCA1 in non-homologous end-joining. Cancer Lett 240(1):1–8PubMedCrossRef Bau DT, Mau YC, Shen CY (2006) The role of BRCA1 in non-homologous end-joining. Cancer Lett 240(1):1–8PubMedCrossRef
12.
go back to reference Klopfleisch R, Gruber AD (2009) Increased expression of BRCA2 and RAD51 in lymph node metastases of canine mammary adenocarcinomas. Vet Pathol 46(3):416–422PubMedCrossRef Klopfleisch R, Gruber AD (2009) Increased expression of BRCA2 and RAD51 in lymph node metastases of canine mammary adenocarcinomas. Vet Pathol 46(3):416–422PubMedCrossRef
13.
go back to reference Klopfleisch R, Schutze M, Gruber AD (2010) RAD51 protein expression is increased in canine mammary carcinomas. Vet Pathol 47(1):98–101PubMedCrossRef Klopfleisch R, Schutze M, Gruber AD (2010) RAD51 protein expression is increased in canine mammary carcinomas. Vet Pathol 47(1):98–101PubMedCrossRef
14.
go back to reference Wiegmans AP, Al-Ejeh F, Chee N, Yap PY, Gorski JJ, Da Silva L, Bolderson E, Chenevix-Trench G, Anderson R, Simpson PT et al (2014) Rad51 supports triple negative breast cancer metastasis. Oncotarget 5(10):3261–3272PubMedPubMedCentralCrossRef Wiegmans AP, Al-Ejeh F, Chee N, Yap PY, Gorski JJ, Da Silva L, Bolderson E, Chenevix-Trench G, Anderson R, Simpson PT et al (2014) Rad51 supports triple negative breast cancer metastasis. Oncotarget 5(10):3261–3272PubMedPubMedCentralCrossRef
16.
go back to reference Sosinska-Mielcarek K, Duchnowska R, Winczura P, Badzio A, Majewska H, Lakomy J, Peksa R, Pieczynska B, Radecka B, Debska S et al (2013) Immunohistochemical prediction of brain metastases in patients with advanced breast cancer: the role of Rad51. Breast 22(6):1178–1183PubMedCrossRef Sosinska-Mielcarek K, Duchnowska R, Winczura P, Badzio A, Majewska H, Lakomy J, Peksa R, Pieczynska B, Radecka B, Debska S et al (2013) Immunohistochemical prediction of brain metastases in patients with advanced breast cancer: the role of Rad51. Breast 22(6):1178–1183PubMedCrossRef
17.
go back to reference Asakawa H, Koizumi H, Koike A, Takahashi M, Wu W, Iwase H, Fukuda M, Ohta T (2010) Prediction of breast cancer sensitivity to neoadjuvant chemotherapy based on status of DNA damage repair proteins. Breast Cancer Res 12(2):R17PubMedCentralCrossRefPubMed Asakawa H, Koizumi H, Koike A, Takahashi M, Wu W, Iwase H, Fukuda M, Ohta T (2010) Prediction of breast cancer sensitivity to neoadjuvant chemotherapy based on status of DNA damage repair proteins. Breast Cancer Res 12(2):R17PubMedCentralCrossRefPubMed
18.
go back to reference Alshareeda AT, Negm OH, Albarakati N, Green AR, Nolan C, Sultana R, Madhusudan S, Benhasouna A, Tighe P, Ellis IO et al (2013) Clinicopathological significance of KU70/KU80, a key DNA damage repair protein in breast cancer. Breast Cancer Res Treat 139(2):301–310PubMedCrossRef Alshareeda AT, Negm OH, Albarakati N, Green AR, Nolan C, Sultana R, Madhusudan S, Benhasouna A, Tighe P, Ellis IO et al (2013) Clinicopathological significance of KU70/KU80, a key DNA damage repair protein in breast cancer. Breast Cancer Res Treat 139(2):301–310PubMedCrossRef
19.
go back to reference Rakha EA, Putti TC, Abd El-Rehim DM, Paish C, Green AR, Powe DG, Lee AH, Robertson JF, Ellis IO (2006) Morphological and immunophenotypic analysis of breast carcinomas with basal and myoepithelial differentiation. J Pathol 208(4):495–506PubMedCrossRef Rakha EA, Putti TC, Abd El-Rehim DM, Paish C, Green AR, Powe DG, Lee AH, Robertson JF, Ellis IO (2006) Morphological and immunophenotypic analysis of breast carcinomas with basal and myoepithelial differentiation. J Pathol 208(4):495–506PubMedCrossRef
20.
go back to reference Aleskandarany MA, Green AR, Benhasouna AA, Barros FF, Neal K, Reis-Filho JS, Ellis IO, Rakha EA (2012) Prognostic value of proliferation assay in the luminal, HER2-positive, and triple-negative biologic classes of breast cancer. Breast Cancer Res 14(1):R3CrossRefPubMedPubMedCentral Aleskandarany MA, Green AR, Benhasouna AA, Barros FF, Neal K, Reis-Filho JS, Ellis IO, Rakha EA (2012) Prognostic value of proliferation assay in the luminal, HER2-positive, and triple-negative biologic classes of breast cancer. Breast Cancer Res 14(1):R3CrossRefPubMedPubMedCentral
21.
go back to reference Rakha EA, Elsheikh SE, Aleskandarany MA, Habashi HO, Green AR, Powe DG, El-Sayed ME, Benhasouna A, Brunet JS, Akslen LA et al (2009) Triple-negative breast cancer: distinguishing between basal and nonbasal subtypes. Clin Cancer Res 15(7):2302–2310PubMedCrossRef Rakha EA, Elsheikh SE, Aleskandarany MA, Habashi HO, Green AR, Powe DG, El-Sayed ME, Benhasouna A, Brunet JS, Akslen LA et al (2009) Triple-negative breast cancer: distinguishing between basal and nonbasal subtypes. Clin Cancer Res 15(7):2302–2310PubMedCrossRef
22.
go back to reference Alshareeda AT, Rakha EA, Nolan CC, Ellis IO, Green AR (2012) Fatty acid binding protein 7 expression and its sub-cellular localization in breast cancer. Breast Cancer Res Treat 134(2):519–529CrossRefPubMed Alshareeda AT, Rakha EA, Nolan CC, Ellis IO, Green AR (2012) Fatty acid binding protein 7 expression and its sub-cellular localization in breast cancer. Breast Cancer Res Treat 134(2):519–529CrossRefPubMed
23.
go back to reference McCarty KS Jr, Miller LS, Cox EB et al (1985) Estrogen receptor analyses: correlation of biochemical and immunohistochemical methods using monoclonal antireceptor antibodies. Arch Pathol Lab Med 109:716–721PubMed McCarty KS Jr, Miller LS, Cox EB et al (1985) Estrogen receptor analyses: correlation of biochemical and immunohistochemical methods using monoclonal antireceptor antibodies. Arch Pathol Lab Med 109:716–721PubMed
24.
go back to reference Alshareeda AT, Negm OH, Green AR, Nolan C, Tighe P, Albarakati N, Sultana R, Madhusudan S, Ellis IO, Rakha EA (2014) SUMOylation proteins in breast cancer. Breast Cancer Res Treat 144(3):519–530CrossRefPubMed Alshareeda AT, Negm OH, Green AR, Nolan C, Tighe P, Albarakati N, Sultana R, Madhusudan S, Ellis IO, Rakha EA (2014) SUMOylation proteins in breast cancer. Breast Cancer Res Treat 144(3):519–530CrossRefPubMed
25.
go back to reference Negm OH, Mannsperger HA, McDermott EM, Drewe E, Powell RJ, Todd I, Fairclough LC, Tighe PJ (2014) A pro-inflammatory signalome is constitutively activated by C33Y mutant TNF receptor 1 in TNF receptor-associated periodic syndrome (TRAPS). Eur J Immunol 44(7):2096–2110PubMedCrossRefPubMedCentral Negm OH, Mannsperger HA, McDermott EM, Drewe E, Powell RJ, Todd I, Fairclough LC, Tighe PJ (2014) A pro-inflammatory signalome is constitutively activated by C33Y mutant TNF receptor 1 in TNF receptor-associated periodic syndrome (TRAPS). Eur J Immunol 44(7):2096–2110PubMedCrossRefPubMedCentral
26.
go back to reference Mannsperger HA, Gade S, Henjes F, Beissbarth T, Korf U (2010) RPPanalyzer: analysis of reverse-phase protein array data. Bioinformatics 26(17):2202–2203PubMedCrossRef Mannsperger HA, Gade S, Henjes F, Beissbarth T, Korf U (2010) RPPanalyzer: analysis of reverse-phase protein array data. Bioinformatics 26(17):2202–2203PubMedCrossRef
27.
go back to reference Camp RL, Dolled-Filhart M, Rimm DL (2004) X-tile: a new bio-informatics tool for biomarker assessment and outcome-based cut-point optimizatio. Clin Cancer Res 10:7252–7259CrossRefPubMed Camp RL, Dolled-Filhart M, Rimm DL (2004) X-tile: a new bio-informatics tool for biomarker assessment and outcome-based cut-point optimizatio. Clin Cancer Res 10:7252–7259CrossRefPubMed
29.
go back to reference Benson FE, Stasiak A, West SC (1994) Purification and characterization of the human Rad51 protein, an analogue of E. coli RecA. EMBO J 13(23):5764–5771PubMedCentralPubMed Benson FE, Stasiak A, West SC (1994) Purification and characterization of the human Rad51 protein, an analogue of E. coli RecA. EMBO J 13(23):5764–5771PubMedCentralPubMed
31.
go back to reference McIlwraith MJ, Van Dyck E, Masson JY, Stasiak AZ, Stasiak A, West SC (2000) Reconstitution of the strand invasion step of double-strand break repair using human Rad51 Rad52 and RPA proteins. J Mol Biol 304(2):151–164PubMedCrossRef McIlwraith MJ, Van Dyck E, Masson JY, Stasiak AZ, Stasiak A, West SC (2000) Reconstitution of the strand invasion step of double-strand break repair using human Rad51 Rad52 and RPA proteins. J Mol Biol 304(2):151–164PubMedCrossRef
32.
go back to reference Graeser M, McCarthy A, Lord CJ, Savage K, Hills M, Salter J, Orr N, Parton M, Smith IE, Reis-Filho JS et al (2010) A marker of homologous recombination predicts pathologic complete response to neoadjuvant chemotherapy in primary breast cancer. Clin Cancer Res 16(24):6159–6168PubMedCentralCrossRefPubMed Graeser M, McCarthy A, Lord CJ, Savage K, Hills M, Salter J, Orr N, Parton M, Smith IE, Reis-Filho JS et al (2010) A marker of homologous recombination predicts pathologic complete response to neoadjuvant chemotherapy in primary breast cancer. Clin Cancer Res 16(24):6159–6168PubMedCentralCrossRefPubMed
33.
go back to reference Barbano R, Copetti M, Perrone G, Pazienza V, Muscarella LA, Balsamo T, Storlazzi CT, Ripoli M, Rinaldi M, Valori VM (2011) High RAD51 mRNA expression characterize estrogen receptor-positive/progesteron receptor-negative breast cancer and is associated with patient’s outcome. Int J Cancer 129(3):536–545PubMedCrossRef Barbano R, Copetti M, Perrone G, Pazienza V, Muscarella LA, Balsamo T, Storlazzi CT, Ripoli M, Rinaldi M, Valori VM (2011) High RAD51 mRNA expression characterize estrogen receptor-positive/progesteron receptor-negative breast cancer and is associated with patient’s outcome. Int J Cancer 129(3):536–545PubMedCrossRef
34.
go back to reference Barbano R, Copetti M, Perrone G, Pazienza V, Anna Muscarella L, Balsamo T, Tiziana Storlazzi C, Ripoli M, Rinaldi M, Maria Valori V (2010) High RAD51 mRNA expression characterize estrogen receptor-positive/progesteron receptor-negative breast cancer and is associated with patient’s outcome. Int J Cancer 129(3):536–545PubMedCrossRef Barbano R, Copetti M, Perrone G, Pazienza V, Anna Muscarella L, Balsamo T, Tiziana Storlazzi C, Ripoli M, Rinaldi M, Maria Valori V (2010) High RAD51 mRNA expression characterize estrogen receptor-positive/progesteron receptor-negative breast cancer and is associated with patient’s outcome. Int J Cancer 129(3):536–545PubMedCrossRef
35.
go back to reference Pedram A, Razandi M, Evinger AJ, Lee E, Levin ER (2009) Estrogen inhibits ATR signaling to cell cycle checkpoints and DNA repair. Mol Biol Cell 20(14):3374–3389PubMedCrossRefPubMedCentral Pedram A, Razandi M, Evinger AJ, Lee E, Levin ER (2009) Estrogen inhibits ATR signaling to cell cycle checkpoints and DNA repair. Mol Biol Cell 20(14):3374–3389PubMedCrossRefPubMedCentral
36.
go back to reference Arpino G, Weiss H, Lee AV, Schiff R, De Placido S, Osborne CK, Elledge RM (2005) Estrogen receptor–positive, progesterone receptor–negative breast cancer: association with growth factor receptor expression and tamoxifen resistance. J Natl Cancer Inst 97(17):1254–1261PubMedCrossRef Arpino G, Weiss H, Lee AV, Schiff R, De Placido S, Osborne CK, Elledge RM (2005) Estrogen receptor–positive, progesterone receptor–negative breast cancer: association with growth factor receptor expression and tamoxifen resistance. J Natl Cancer Inst 97(17):1254–1261PubMedCrossRef
37.
go back to reference Yamamori T, Meike S, Nagane M, Yasui H, Inanami O (2013) ER stress suppresses DNA double-strand break repair and sensitizes tumor cells to ionizing radiation by stimulating proteasomal degradation of Rad51. FEBS Lett 587(20):3348–3353CrossRefPubMed Yamamori T, Meike S, Nagane M, Yasui H, Inanami O (2013) ER stress suppresses DNA double-strand break repair and sensitizes tumor cells to ionizing radiation by stimulating proteasomal degradation of Rad51. FEBS Lett 587(20):3348–3353CrossRefPubMed
38.
go back to reference Mitra A, Jameson C, Barbachano Y, Sanchez L, Kote-Jarai Z, Peock S, Sodha N, Bancroft E, Fletcher A, Cooper C (2009) Overexpression of RAD51 occurs in aggressive prostatic cancer. Histopathology 55(6):696–704PubMedPubMedCentralCrossRef Mitra A, Jameson C, Barbachano Y, Sanchez L, Kote-Jarai Z, Peock S, Sodha N, Bancroft E, Fletcher A, Cooper C (2009) Overexpression of RAD51 occurs in aggressive prostatic cancer. Histopathology 55(6):696–704PubMedPubMedCentralCrossRef
39.
go back to reference Dubey A, Chouhan U (2011) Subcellular localization of proteins. Arch Appl Sci Res 3(6):392–401 Dubey A, Chouhan U (2011) Subcellular localization of proteins. Arch Appl Sci Res 3(6):392–401
40.
go back to reference Zannini L, Lecis D, Lisanti S, Benetti R, Buscemi G, Schneider C, Delia D (2003) Karyopherin-alpha2 protein interacts with Chk2 and contributes to its nuclear import. J Biol Chem 278(43):42346–42351PubMedCrossRef Zannini L, Lecis D, Lisanti S, Benetti R, Buscemi G, Schneider C, Delia D (2003) Karyopherin-alpha2 protein interacts with Chk2 and contributes to its nuclear import. J Biol Chem 278(43):42346–42351PubMedCrossRef
41.
go back to reference Huang L, Wang HY, Li JD, Wang JH, Zhou Y, Luo RZ, Yun JP, Zhang Y, Jia WH, Zheng M (2013) KPNA2 promotes cell proliferation and tumorigenicity in epithelial ovarian carcinoma through upregulation of c-Myc and downregulation of FOXO3a. Cell Death Dis 4:e745PubMedPubMedCentralCrossRef Huang L, Wang HY, Li JD, Wang JH, Zhou Y, Luo RZ, Yun JP, Zhang Y, Jia WH, Zheng M (2013) KPNA2 promotes cell proliferation and tumorigenicity in epithelial ovarian carcinoma through upregulation of c-Myc and downregulation of FOXO3a. Cell Death Dis 4:e745PubMedPubMedCentralCrossRef
43.
go back to reference Gildemeister OS, Sage JM, Knight KL (2009) Cellular redistribution of Rad51 in response to DNA damage: novel role for Rad51C. J Biol Chem 284(46):31945–31952PubMedPubMedCentralCrossRef Gildemeister OS, Sage JM, Knight KL (2009) Cellular redistribution of Rad51 in response to DNA damage: novel role for Rad51C. J Biol Chem 284(46):31945–31952PubMedPubMedCentralCrossRef
44.
go back to reference Stochaj U, Rassadi R, Chiu J (2000) Stress-mediated inhibition of the classical nuclear protein import pathway and nuclear accumulation of the small GTPase Gsp1p. FASEB J 14(14):2130–2132PubMed Stochaj U, Rassadi R, Chiu J (2000) Stress-mediated inhibition of the classical nuclear protein import pathway and nuclear accumulation of the small GTPase Gsp1p. FASEB J 14(14):2130–2132PubMed
45.
go back to reference Venkitaraman AR (2002) Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell 108(2):171–182PubMedCrossRef Venkitaraman AR (2002) Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell 108(2):171–182PubMedCrossRef
46.
go back to reference Shen WH, Balajee AS, Wang J, Wu H, Eng C, Pandolfi PP, Yin Y (2007) Essential role for nuclear PTEN in maintaining chromosomal integrity. Cell 128(1):157–170CrossRefPubMed Shen WH, Balajee AS, Wang J, Wu H, Eng C, Pandolfi PP, Yin Y (2007) Essential role for nuclear PTEN in maintaining chromosomal integrity. Cell 128(1):157–170CrossRefPubMed
47.
go back to reference Sorensen CS, Hansen LT, Dziegielewski J, Syljuasen RG, Lundin C, Bartek J, Helleday T (2005) The cell-cycle checkpoint kinase Chk1 is required for mammalian homologous recombination repair. Nat Cell Biol 7(2):195–201CrossRefPubMed Sorensen CS, Hansen LT, Dziegielewski J, Syljuasen RG, Lundin C, Bartek J, Helleday T (2005) The cell-cycle checkpoint kinase Chk1 is required for mammalian homologous recombination repair. Nat Cell Biol 7(2):195–201CrossRefPubMed
48.
go back to reference Ma CX, Janetka JW, Piwnica-Worms H (2011) Death by releasing the breaks: CHK1 inhibitors as cancer therapeutics. Trends Mol Med 17(2):88–96PubMedCrossRef Ma CX, Janetka JW, Piwnica-Worms H (2011) Death by releasing the breaks: CHK1 inhibitors as cancer therapeutics. Trends Mol Med 17(2):88–96PubMedCrossRef
49.
go back to reference Bahassi EM, Ovesen JL, Riesenberg AL, Bernstein WZ, Hasty PE, Stambrook PJ (2008) The checkpoint kinases Chk1 and Chk2 regulate the functional associations between hBRCA2 and Rad51 in response to DNA damage. Oncogene 27(28):3977–3985PubMedCrossRef Bahassi EM, Ovesen JL, Riesenberg AL, Bernstein WZ, Hasty PE, Stambrook PJ (2008) The checkpoint kinases Chk1 and Chk2 regulate the functional associations between hBRCA2 and Rad51 in response to DNA damage. Oncogene 27(28):3977–3985PubMedCrossRef
50.
go back to reference Rabik CA, Dolan ME (2007) Molecular mechanisms of resistance and toxicity associated with platinating agents. Cancer Treat Rev 33(1):9–23CrossRefPubMed Rabik CA, Dolan ME (2007) Molecular mechanisms of resistance and toxicity associated with platinating agents. Cancer Treat Rev 33(1):9–23CrossRefPubMed
51.
go back to reference Burma S, Chen BP, Chen DJ (2006) Role of non-homologous end joining (NHEJ) in maintaining genomic integrity. DNA Repair (Amst) 5(9–10):1042–1048CrossRef Burma S, Chen BP, Chen DJ (2006) Role of non-homologous end joining (NHEJ) in maintaining genomic integrity. DNA Repair (Amst) 5(9–10):1042–1048CrossRef
52.
53.
go back to reference Moynahan ME, Cui TY, Jasin M (2001) Homology-directed dna repair, mitomycin-c resistance, and chromosome stability is restored with correction of a Brca1 mutation. Cancer Res 61(12):4842–4850PubMed Moynahan ME, Cui TY, Jasin M (2001) Homology-directed dna repair, mitomycin-c resistance, and chromosome stability is restored with correction of a Brca1 mutation. Cancer Res 61(12):4842–4850PubMed
Metadata
Title
Clinical and biological significance of RAD51 expression in breast cancer: a key DNA damage response protein
Authors
Alaa Tarig Alshareeda
Ola H. Negm
Mohammed A. Aleskandarany
Andrew R. Green
Christopher Nolan
Patrick J. TigHhe
Srinivasan Madhusudan
Ian O. Ellis
Emad A. Rakha
Publication date
01-08-2016
Publisher
Springer US
Published in
Breast Cancer Research and Treatment / Issue 1/2016
Print ISSN: 0167-6806
Electronic ISSN: 1573-7217
DOI
https://doi.org/10.1007/s10549-016-3915-8

Other articles of this Issue 1/2016

Breast Cancer Research and Treatment 1/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine