Skip to main content
Top
Published in: Breast Cancer Research and Treatment 2/2016

01-07-2016 | Preclinical study

Sulforaphene inhibits triple negative breast cancer through activating tumor suppressor Egr1

Authors: Ming Yang, Wendi Teng, Yue Qu, Haiyong Wang, Qipeng Yuan

Published in: Breast Cancer Research and Treatment | Issue 2/2016

Login to get access

Abstract

Sulforaphene (SFE, 4-methylsufinyl-3-butenyl isothiocyanate) is a member of isothiocyanates, which is derived from radish seeds. It has shown that multiple isothiocyanates, such as sulforaphane, can effectively inhibit cancer cell proliferation in vitro and in vivo. However, it is still largely unknown if SFE could impact breast cancer. In this study, we investigated the anticancer effects of SFE on triple negative breast cancer (TNBC) via a series of in vitro and in vivo assays. We found that SFE can significantly inhibit cell proliferation in multiple TNBC cell lines through inducing G2/M phase arrest as well as cell apoptosis. Nude mice xenograft assays support the anti-TNBC role of SFE in vivo. Interestingly, SFE can repress expression of cyclinB1, Cdc2, and phosphorylated Cdc2, and, then, induced G2/M phase arrest of TNBC cells. To identify SFE target genes, we detected genome-wide gene expression changes through gene expression profiling and observed 27 upregulated and 18 downregulated genes in MDA-MB-453 cells treated with SFE. Among these genes, Egr1 was successfully validated as a consistently activated gene after SFE treatment in TNBC MDA-MB-453 and MDA-MB-436 cells. Egr1 overexpression inhibited proliferation of TNBC cells. However, Egr1 knockdown using siRNAs significantly promoted TNBC cell growth, indicating the tumor suppressor nature of Egr1. In sum, we for the first time found that SFE might be a potential anti-TNBC natural compound and its antiproliferation effects might be mediated by tumor suppressor Egr1.
Literature
1.
go back to reference Siegel RL, Miller KD, Jemal A (2015) Cancer statistics, 2015. Cancer J Clin 65:5–29CrossRef Siegel RL, Miller KD, Jemal A (2015) Cancer statistics, 2015. Cancer J Clin 65:5–29CrossRef
2.
go back to reference Scalia-Wilbur J, Colins BL, Penson RT, Dizon DS (2016) Breast cancer risk assessment: moving beyond BRCA1 and 2. Semin Radiat Oncol 26:3–8CrossRefPubMed Scalia-Wilbur J, Colins BL, Penson RT, Dizon DS (2016) Breast cancer risk assessment: moving beyond BRCA1 and 2. Semin Radiat Oncol 26:3–8CrossRefPubMed
3.
go back to reference Brenton JD, Carey LA, Ahmed AA, Caldas C (2005) Molecular classification and molecular forecasting of breast cancer: ready for clinical application. J Clin Oncol 23:7350–7360CrossRefPubMed Brenton JD, Carey LA, Ahmed AA, Caldas C (2005) Molecular classification and molecular forecasting of breast cancer: ready for clinical application. J Clin Oncol 23:7350–7360CrossRefPubMed
4.
go back to reference Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. Cancer J Clin 61:69–90CrossRef Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. Cancer J Clin 61:69–90CrossRef
5.
go back to reference Hsu YH, Yao J, Chan LC, Wu TJ, Hsu JL (2014) Definition of PKC-α, CDK6, and MET as therapeutic targets in triple-negative breast cancer. Cancer Res 74:4822–4835CrossRefPubMedPubMedCentral Hsu YH, Yao J, Chan LC, Wu TJ, Hsu JL (2014) Definition of PKC-α, CDK6, and MET as therapeutic targets in triple-negative breast cancer. Cancer Res 74:4822–4835CrossRefPubMedPubMedCentral
6.
go back to reference D’Amato NC, Rogers TJ, Gordon MA, Greene LI (2015) A TDO2-AhR signaling axis facilitates anoikis resistance and metastasis in triple-negative breast cancer. Cancer Res 75:4651–4664CrossRefPubMedPubMedCentral D’Amato NC, Rogers TJ, Gordon MA, Greene LI (2015) A TDO2-AhR signaling axis facilitates anoikis resistance and metastasis in triple-negative breast cancer. Cancer Res 75:4651–4664CrossRefPubMedPubMedCentral
7.
go back to reference Witherby S, Rizack T, Sakr BJ, Legare RD, Sikov WM (2016) Advances in medical management of early stage and advanced breast cancer: 2015. Semin Radiat Oncol 26:59–70CrossRefPubMed Witherby S, Rizack T, Sakr BJ, Legare RD, Sikov WM (2016) Advances in medical management of early stage and advanced breast cancer: 2015. Semin Radiat Oncol 26:59–70CrossRefPubMed
8.
go back to reference Verhoeven DT, Goldbohm RA, van Poppel G, Verhagen H, van den Brandt PA (1996) Epidemiological studies on brassica vegetables and cancer risk. Cancer Epidemiol Biomark Prev 5:733–748 Verhoeven DT, Goldbohm RA, van Poppel G, Verhagen H, van den Brandt PA (1996) Epidemiological studies on brassica vegetables and cancer risk. Cancer Epidemiol Biomark Prev 5:733–748
9.
go back to reference Kuang P, Song D, Yuan Q, Yi R, Lv X, Liang H (2013) Separation and purification of sulforaphene from radish seeds using macroporous resin and preparative high-performance liquid chromatography. Food Chem 136:342–347CrossRefPubMed Kuang P, Song D, Yuan Q, Yi R, Lv X, Liang H (2013) Separation and purification of sulforaphene from radish seeds using macroporous resin and preparative high-performance liquid chromatography. Food Chem 136:342–347CrossRefPubMed
10.
go back to reference Pocasap P, Weerapreeyakul N, Barusrux S (2013) Cancer preventive effect of Thai rat-tailed radish (Raphanus sativus L. var. caudatus Alef). J Funct Food 5:1372–1381CrossRef Pocasap P, Weerapreeyakul N, Barusrux S (2013) Cancer preventive effect of Thai rat-tailed radish (Raphanus sativus L. var. caudatus Alef). J Funct Food 5:1372–1381CrossRef
11.
go back to reference Papi A, Orlandi M, Bartolini G, Barillari J, Iori R, Paolini M, Ferroni F, Grazia Fumo M, Pedulli GF, Valgimigli L (2008) Cytotoxic and antioxidant activity of 4-methylthio-3-butenyl isothiocyanate from Raphanus sativus L. (Kaiware Daikon) sprouts. J Agric Food Chem 56:875–883CrossRefPubMed Papi A, Orlandi M, Bartolini G, Barillari J, Iori R, Paolini M, Ferroni F, Grazia Fumo M, Pedulli GF, Valgimigli L (2008) Cytotoxic and antioxidant activity of 4-methylthio-3-butenyl isothiocyanate from Raphanus sativus L. (Kaiware Daikon) sprouts. J Agric Food Chem 56:875–883CrossRefPubMed
12.
go back to reference Nastruzzi C, Cortesi R, Esposito E, Menegatti E, Leoni O, Iori R, Palmieri S (2000) In vitro antiproliferative activity of isothiocyanates and nitriles generated by myrosinase-mediated hydrolysis of glucosinolates from seeds of cruciferous vegetables. J Agric Food Chem 48:3572–3575CrossRefPubMed Nastruzzi C, Cortesi R, Esposito E, Menegatti E, Leoni O, Iori R, Palmieri S (2000) In vitro antiproliferative activity of isothiocyanates and nitriles generated by myrosinase-mediated hydrolysis of glucosinolates from seeds of cruciferous vegetables. J Agric Food Chem 48:3572–3575CrossRefPubMed
13.
go back to reference Ambrosone CB, McCann SE, Freudenheim JL, Marshall JR, Zhang Y, Shields PG (2004) Breast cancer risk in premenopausal women is inversely associated with consumption of broccoli, a source of isothiocyanates, but is not modified by GST genotype. J Nutr 134:1134–1138PubMed Ambrosone CB, McCann SE, Freudenheim JL, Marshall JR, Zhang Y, Shields PG (2004) Breast cancer risk in premenopausal women is inversely associated with consumption of broccoli, a source of isothiocyanates, but is not modified by GST genotype. J Nutr 134:1134–1138PubMed
14.
go back to reference Fowke JH, Chung FL, Jin F, Qi D, Cai Q, Conaway C, Cheng JR, Shu XO, Gao YT, Zheng W (2003) Urinary isothiocyanate levels, brassica, and human breast cancer. Cancer Res 63:3980–3986PubMed Fowke JH, Chung FL, Jin F, Qi D, Cai Q, Conaway C, Cheng JR, Shu XO, Gao YT, Zheng W (2003) Urinary isothiocyanate levels, brassica, and human breast cancer. Cancer Res 63:3980–3986PubMed
15.
go back to reference Terry P, Wolk A, Persson I, Magnusson C (2001) Brassica vegetables and breast cancer risk. J Am Med Assoc 285:2975–2977CrossRef Terry P, Wolk A, Persson I, Magnusson C (2001) Brassica vegetables and breast cancer risk. J Am Med Assoc 285:2975–2977CrossRef
16.
go back to reference Zhao C, Yue B, Liu H, Sun C, Li W, Qu X (2012) SL-01, an oral gemcitabine derivative, inhibited human cancer growth more potently than gemcitabine. Toxicol Appl Pharmacol 262:293–300CrossRefPubMed Zhao C, Yue B, Liu H, Sun C, Li W, Qu X (2012) SL-01, an oral gemcitabine derivative, inhibited human cancer growth more potently than gemcitabine. Toxicol Appl Pharmacol 262:293–300CrossRefPubMed
17.
go back to reference Bonnesen C, Eggleston IM, Hayes JD (2001) Dietary indoles and isothiocyanates that are generated from cruciferous vegetables can both stimulate apoptosis and confer protection against DNA damage in human colon cell lines. Cancer Res 61:6120–6130PubMed Bonnesen C, Eggleston IM, Hayes JD (2001) Dietary indoles and isothiocyanates that are generated from cruciferous vegetables can both stimulate apoptosis and confer protection against DNA damage in human colon cell lines. Cancer Res 61:6120–6130PubMed
18.
go back to reference Choi S, Lew KL, Xiao H, Herman-Antosiewicz A (2007) D, L-Sulforaphane-induced cell death in human prostate cancer cells is regulated by inhibitor of apoptosis family proteins and Apaf-1. Carcinogenesis 28:151–162CrossRefPubMed Choi S, Lew KL, Xiao H, Herman-Antosiewicz A (2007) D, L-Sulforaphane-induced cell death in human prostate cancer cells is regulated by inhibitor of apoptosis family proteins and Apaf-1. Carcinogenesis 28:151–162CrossRefPubMed
19.
go back to reference Gamet Payrastre L, Li P, Lumeau S, Cassar G, Dupont MA, Chevolleau S (2000) Sulforaphane, a naturally occurring isothiocyanate, induces cell cycle arrest and apoptosis in HT29 human colon cancer cells. Cancer Res 60:1426–1433PubMed Gamet Payrastre L, Li P, Lumeau S, Cassar G, Dupont MA, Chevolleau S (2000) Sulforaphane, a naturally occurring isothiocyanate, induces cell cycle arrest and apoptosis in HT29 human colon cancer cells. Cancer Res 60:1426–1433PubMed
20.
go back to reference Hu K, Qi YJ, Zhao J, Jiang HF, Chen X, Ren J (2013) Synthesis and biological evaluation of sulforaphane derivatives as potential antitumor agents. Eur J Med Chem 64:529–539CrossRefPubMed Hu K, Qi YJ, Zhao J, Jiang HF, Chen X, Ren J (2013) Synthesis and biological evaluation of sulforaphane derivatives as potential antitumor agents. Eur J Med Chem 64:529–539CrossRefPubMed
21.
go back to reference Chang CC, Hung CM, Yang YR, Lee MJ, Hsu YC (2013) Sulforaphane induced cell cycle arrest in the G2/M phase via the blockade of cyclin B1/CDC2 in human ovarian cancer cells. J Ovarian Res 6:41CrossRefPubMedPubMedCentral Chang CC, Hung CM, Yang YR, Lee MJ, Hsu YC (2013) Sulforaphane induced cell cycle arrest in the G2/M phase via the blockade of cyclin B1/CDC2 in human ovarian cancer cells. J Ovarian Res 6:41CrossRefPubMedPubMedCentral
22.
go back to reference Gould KA, Tochacek M, Schaffer BS, Reindl TM, Murrin CR, Lachel CM, VanderWoude EA, Pennington KL, Flood LA, Bynote KK et al (2004) Genetic determination of susceptibility to estrogen-induced mammary cancer in the ACI rat: mapping of Emca1 and Emca2 to chromosomes 5 and 18. Genetics 168:2113–2125CrossRefPubMedPubMedCentral Gould KA, Tochacek M, Schaffer BS, Reindl TM, Murrin CR, Lachel CM, VanderWoude EA, Pennington KL, Flood LA, Bynote KK et al (2004) Genetic determination of susceptibility to estrogen-induced mammary cancer in the ACI rat: mapping of Emca1 and Emca2 to chromosomes 5 and 18. Genetics 168:2113–2125CrossRefPubMedPubMedCentral
23.
go back to reference Ruetz S, Fabbro D, Zimmermann J, Meyer T, Gray N (2003) Chemical and biological profile of dual Cdk1 and Cdk2 inhibitors. Curr Med Chem Anti 3:1–14CrossRef Ruetz S, Fabbro D, Zimmermann J, Meyer T, Gray N (2003) Chemical and biological profile of dual Cdk1 and Cdk2 inhibitors. Curr Med Chem Anti 3:1–14CrossRef
25.
go back to reference Choi YH, Yoo YH (2012) Taxol-induced growth arrest and apoptosis is associated with the upregulation of the Cdk inhibitor, p21WAF1/CIP1, in human breast cancer cells. Oncol Rep 28:2163–2169PubMed Choi YH, Yoo YH (2012) Taxol-induced growth arrest and apoptosis is associated with the upregulation of the Cdk inhibitor, p21WAF1/CIP1, in human breast cancer cells. Oncol Rep 28:2163–2169PubMed
26.
go back to reference Han SJ, Conti M (2006) New pathways from PKA to the Cdc2/cyclin B complex in oocytes: wee1B as a potential PKA substrate. Cell Cycle 5:227–231CrossRefPubMed Han SJ, Conti M (2006) New pathways from PKA to the Cdc2/cyclin B complex in oocytes: wee1B as a potential PKA substrate. Cell Cycle 5:227–231CrossRefPubMed
27.
go back to reference Milbrandt J (1987) A nerve growth factor-induced gene encodes a possible transcriptional regulatory factor. Science 238:797–799CrossRefPubMed Milbrandt J (1987) A nerve growth factor-induced gene encodes a possible transcriptional regulatory factor. Science 238:797–799CrossRefPubMed
28.
go back to reference Bhattacharyya S, Fang F, Tourtellotte W, Varga J (2013) Egr1: new conductor for the tissue repair orchestra directs harmony (regeneration) or cacophony (fibrosis). Am J Pathol 229:286–297CrossRef Bhattacharyya S, Fang F, Tourtellotte W, Varga J (2013) Egr1: new conductor for the tissue repair orchestra directs harmony (regeneration) or cacophony (fibrosis). Am J Pathol 229:286–297CrossRef
29.
go back to reference Rong Y, Hu F, Huang RP, Mackman N, Horowitz JM, Jensen RL et al (2006) Early growth response gene-1 regulates hypoxia-induced expression of tissue factor in glioblastoma multiforme through hypoxia-inducible factor-1 – independent mechanisms. Cancer Res 66:7067–7074CrossRefPubMedPubMedCentral Rong Y, Hu F, Huang RP, Mackman N, Horowitz JM, Jensen RL et al (2006) Early growth response gene-1 regulates hypoxia-induced expression of tissue factor in glioblastoma multiforme through hypoxia-inducible factor-1 – independent mechanisms. Cancer Res 66:7067–7074CrossRefPubMedPubMedCentral
30.
go back to reference Thiel G, Cibelli G (2002) Regulation of life and death by the zinc finger transcription factor Egr1. J Cell Physiol 193:287–292CrossRefPubMed Thiel G, Cibelli G (2002) Regulation of life and death by the zinc finger transcription factor Egr1. J Cell Physiol 193:287–292CrossRefPubMed
31.
go back to reference Redmond KL, Crawford NT, Farmer H, D’Costa ZC, O’Brien GJ, Buckley NE (2010) T-box 2 represses NDRG1 through an Egr1-dependent mechanism to drive the proliferation of breast cancer cells. Oncogene 29:3252–3262CrossRefPubMed Redmond KL, Crawford NT, Farmer H, D’Costa ZC, O’Brien GJ, Buckley NE (2010) T-box 2 represses NDRG1 through an Egr1-dependent mechanism to drive the proliferation of breast cancer cells. Oncogene 29:3252–3262CrossRefPubMed
Metadata
Title
Sulforaphene inhibits triple negative breast cancer through activating tumor suppressor Egr1
Authors
Ming Yang
Wendi Teng
Yue Qu
Haiyong Wang
Qipeng Yuan
Publication date
01-07-2016
Publisher
Springer US
Published in
Breast Cancer Research and Treatment / Issue 2/2016
Print ISSN: 0167-6806
Electronic ISSN: 1573-7217
DOI
https://doi.org/10.1007/s10549-016-3888-7

Other articles of this Issue 2/2016

Breast Cancer Research and Treatment 2/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine