Skip to main content
Top
Published in: Breast Cancer Research and Treatment 3/2016

Open Access 01-04-2016 | Preclinical study

SEARCHBreast: a new resource to locate and share surplus archival material from breast cancer animal models to help address the 3Rs

Authors: Karen Blyth, Phil Carter, Bethny Morrissey, Claude Chelala, Louise Jones, Ingunn Holen, Valerie Speirs

Published in: Breast Cancer Research and Treatment | Issue 3/2016

Login to get access

Abstract

Animal models have contributed to our understanding of breast cancer, with publication of results in high-impact journals almost invariably requiring extensive in vivo experimentation. As such, many laboratories hold large collections of surplus animal material, with only a fraction being used in publications relating to the original projects. Despite being developed at considerable cost, this material is an invisible and hence an underutilised resource, which often ends up being discarded. Within the breast cancer research community there is both a need and desire to make this valuable material available for researchers. Lack of a coordinated system for visualisation and localisation of this has prevented progress. To fulfil this unmet need, we have developed a novel initiative called Sharing Experimental Animal Resources: Coordinating Holdings—Breast (SEARCHBreast) which facilitates sharing of archival tissue between researchers on a collaborative basis and, de facto will reduce overall usage of animal models in breast cancer research. A secure searchable database has been developed where researchers can find, share, or upload materials related to animal models of breast cancer, including genetic and transplant models. SEARCHBreast is a virtual compendium where the physical material remains with the original laboratory. A bioanalysis pipeline is being developed for the analysis of transcriptomics data associated with mouse models, allowing comparative study with human and cell line data. Additionally, SEARCHBreast is committed to promoting the use of humanised breast tissue models as replacement alternatives to animals. Access to this unique resource is freely available to all academic researchers following registration at https://​searchbreast.​org.
Literature
1.
go back to reference Jordan VC, Jaspan T (1976) Tamoxifen as an anti-tumour agent: oestrogen binding as a predictive test for tumour response. J Endocrinol 68:453–460CrossRefPubMed Jordan VC, Jaspan T (1976) Tamoxifen as an anti-tumour agent: oestrogen binding as a predictive test for tumour response. J Endocrinol 68:453–460CrossRefPubMed
2.
go back to reference Jordan VC, Koerner S (1975) Tamoxifen (ICI 46,474) and the human carcinoma 8S oestrogen receptor. Eur J Cancer 11:205–206CrossRefPubMed Jordan VC, Koerner S (1975) Tamoxifen (ICI 46,474) and the human carcinoma 8S oestrogen receptor. Eur J Cancer 11:205–206CrossRefPubMed
3.
go back to reference Jordan VC (1976) Effect of tamoxifen (ICI 46,474) on initiation and growth of DMBA-induced rat mammary carcinomata. Eur J Cancer 12:419–424CrossRefPubMed Jordan VC (1976) Effect of tamoxifen (ICI 46,474) on initiation and growth of DMBA-induced rat mammary carcinomata. Eur J Cancer 12:419–424CrossRefPubMed
5.
go back to reference Shepard HM, Lewis GD, Sarup JC, Fendly BM, Maneval D, Mordenti J, Figari I, Kotts CE, Palladino MA Jr, Ullrich A et al (1991) Monoclonal antibody therapy of human cancer: taking the HER2 protooncogene to the clinic. J Clin Immunol 11:117–127CrossRefPubMed Shepard HM, Lewis GD, Sarup JC, Fendly BM, Maneval D, Mordenti J, Figari I, Kotts CE, Palladino MA Jr, Ullrich A et al (1991) Monoclonal antibody therapy of human cancer: taking the HER2 protooncogene to the clinic. J Clin Immunol 11:117–127CrossRefPubMed
6.
go back to reference Carter P, Presta L, Gorman CM, Ridgway JB, Henner D, Wong WL, Rowland AM, Kotts C, Carver ME, Shepard HM (1992) Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc Natl Acad Sci USA 89:4285–4289CrossRefPubMedPubMedCentral Carter P, Presta L, Gorman CM, Ridgway JB, Henner D, Wong WL, Rowland AM, Kotts C, Carver ME, Shepard HM (1992) Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc Natl Acad Sci USA 89:4285–4289CrossRefPubMedPubMedCentral
9.
go back to reference Barrington RE, Subler MA, Rands E, Omer CA, Miller PJ, Hundley JE, Koester SK, Troyer DA, Bearss DJ, Conner MW, Gibbs JB, Hamilton K, Koblan KS, Mosser SD, O’Neill TJ, Schaber MD, Senderak ET, Windle JJ, Oliff A, Kohl NE (1998) A farnesyltransferase inhibitor induces tumor regression in transgenic mice harboring multiple oncogenic mutations by mediating alterations in both cell cycle control and apoptosis. Mol Cell Biol 18:85–92CrossRefPubMedPubMedCentral Barrington RE, Subler MA, Rands E, Omer CA, Miller PJ, Hundley JE, Koester SK, Troyer DA, Bearss DJ, Conner MW, Gibbs JB, Hamilton K, Koblan KS, Mosser SD, O’Neill TJ, Schaber MD, Senderak ET, Windle JJ, Oliff A, Kohl NE (1998) A farnesyltransferase inhibitor induces tumor regression in transgenic mice harboring multiple oncogenic mutations by mediating alterations in both cell cycle control and apoptosis. Mol Cell Biol 18:85–92CrossRefPubMedPubMedCentral
10.
go back to reference Sinn E, Muller W, Pattengale P, Tepler I, Wallace R, Leder P (1987) Coexpression of MMTV/v-Ha-ras and MMTV/c-myc genes in transgenic mice: synergistic action of oncogenes in vivo. Cell 49:465–475CrossRefPubMed Sinn E, Muller W, Pattengale P, Tepler I, Wallace R, Leder P (1987) Coexpression of MMTV/v-Ha-ras and MMTV/c-myc genes in transgenic mice: synergistic action of oncogenes in vivo. Cell 49:465–475CrossRefPubMed
11.
go back to reference Tremblay PJ, Pothier F, Hoang T, Tremblay G, Brownstein S, Liszauer A, Jolicoeur P (1989) Transgenic mice carrying the mouse mammary tumor virus ras fusion gene: distinct effects in various tissues. Mol Cell Biol 9:854–859CrossRefPubMedPubMedCentral Tremblay PJ, Pothier F, Hoang T, Tremblay G, Brownstein S, Liszauer A, Jolicoeur P (1989) Transgenic mice carrying the mouse mammary tumor virus ras fusion gene: distinct effects in various tissues. Mol Cell Biol 9:854–859CrossRefPubMedPubMedCentral
12.
13.
go back to reference Guy CT, Cardiff RD, Muller WJ (1992) Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol Cell Biol 12:954–961CrossRefPubMedPubMedCentral Guy CT, Cardiff RD, Muller WJ (1992) Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol Cell Biol 12:954–961CrossRefPubMedPubMedCentral
15.
go back to reference Russell WMS, Burch RL (1959) The principles of humane experimental technique. Methuen, London Russell WMS, Burch RL (1959) The principles of humane experimental technique. Methuen, London
25.
26.
go back to reference Morrissey B, Blyth K, Carter P, Chelala C, Holen I, Jones L, Speirs V (2015) SEARCHBreast Workshop Proceedings: 3D Modelling of Breast Cancer. Altern Lab Anim 43:367–3375PubMed Morrissey B, Blyth K, Carter P, Chelala C, Holen I, Jones L, Speirs V (2015) SEARCHBreast Workshop Proceedings: 3D Modelling of Breast Cancer. Altern Lab Anim 43:367–3375PubMed
Metadata
Title
SEARCHBreast: a new resource to locate and share surplus archival material from breast cancer animal models to help address the 3Rs
Authors
Karen Blyth
Phil Carter
Bethny Morrissey
Claude Chelala
Louise Jones
Ingunn Holen
Valerie Speirs
Publication date
01-04-2016
Publisher
Springer US
Published in
Breast Cancer Research and Treatment / Issue 3/2016
Print ISSN: 0167-6806
Electronic ISSN: 1573-7217
DOI
https://doi.org/10.1007/s10549-016-3785-0

Other articles of this Issue 3/2016

Breast Cancer Research and Treatment 3/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine