Skip to main content
Top
Published in: Breast Cancer Research and Treatment 1/2016

Open Access 01-02-2016 | Preclinical study

Tristetraprolin mediates the anti-proliferative effects of metformin in breast cancer cells

Authors: Indira Pandiri, Yingqing Chen, Yeonsoo Joe, Hyo Jeong Kim, Jeongmin Park, Hun Taeg Chung, Jeong Woo Park

Published in: Breast Cancer Research and Treatment | Issue 1/2016

Login to get access

Abstract

Metformin, which is a drug commonly prescribed to treat type 2 diabetes, has anti-proliferative effects in cancer cells; however, the molecular mechanisms underlying this effect remain largely unknown. The aim is to investigate the role of tristetraprolin (TTP), an AU-rich element-binding protein, in anti-proliferative effects of metformin in cancer cells. p53 wild-type and p53 mutant breast cancer cells were treated with metformin, and expression of TTP and c-Myc was analyzed by semi-quantitative RT-PCR, Western blots, and promoter activity assay. Breast cancer cells were transfected with siRNA against TTP to inhibit TTP expression or c-Myc and, after metformin treatment, analyzed for cell proliferation by MTS assay. Metformin induces the expression of tristetraprolin (TTP) in breast cancer cells in a p53-independent manner. Importantly, inhibition of TTP abrogated the anti-proliferation effect of metformin. We observed that metformin decreased c-Myc levels, and ectopic expression of c-Myc blocked the effect of metformin on TTP expression and cell proliferation. Our data indicate that metformin induces TTP expression by reducing the expression of c-Myc, suggesting a new model whereby TTP acts as a mediator of metformin’s anti-proliferative activity in cancer cells.
Literature
2.
go back to reference Kourelis TV, Siegel RD (2012) Metformin and cancer: new applications for an old drug. Med Oncol 29:1314–1327CrossRefPubMed Kourelis TV, Siegel RD (2012) Metformin and cancer: new applications for an old drug. Med Oncol 29:1314–1327CrossRefPubMed
3.
go back to reference Jiralerspong S, Palla SL, Giordano SH et al (2009) Metformin and pathologic complete responses to neoadjuvant chemotherapy in diabetic patients with breast cancer. J Clin Oncol 27:3297–3302CrossRefPubMedPubMedCentral Jiralerspong S, Palla SL, Giordano SH et al (2009) Metformin and pathologic complete responses to neoadjuvant chemotherapy in diabetic patients with breast cancer. J Clin Oncol 27:3297–3302CrossRefPubMedPubMedCentral
4.
go back to reference Quinn BJ, Kitagawa H, Memmott RM, Gills JJ, Dennis PA (2013) Repositioning metformin for cancer prevention and treatment. Trends Endocrinol Metab 24:469–480CrossRefPubMed Quinn BJ, Kitagawa H, Memmott RM, Gills JJ, Dennis PA (2013) Repositioning metformin for cancer prevention and treatment. Trends Endocrinol Metab 24:469–480CrossRefPubMed
6.
go back to reference Javeshghani S, Zakikhani M, Austin S et al (2012) Carbon source and myc expression influence the antiproliferative actions of metformin. Cancer Res 72:6257–6267CrossRefPubMed Javeshghani S, Zakikhani M, Austin S et al (2012) Carbon source and myc expression influence the antiproliferative actions of metformin. Cancer Res 72:6257–6267CrossRefPubMed
7.
go back to reference Russo GL, Russo M, Ungaro P (2013) AMP-activated protein kinase: a target for old drugs against diabetes and cancer. Biochem Pharmacol 86:339–350CrossRefPubMed Russo GL, Russo M, Ungaro P (2013) AMP-activated protein kinase: a target for old drugs against diabetes and cancer. Biochem Pharmacol 86:339–350CrossRefPubMed
8.
go back to reference Vazquez-Martin A, Oliveras-Ferraros C, Del Barco S, Martin-Castillo B, Menendez JA (2009) If mammalian target of metformin indirectly is mammalian target of rapamycin, then the insulin-like growth factor-1 receptor axis will audit the efficacy of metformin in cancer clinical trials. J Clin Oncol 27:e207–209CrossRefPubMed Vazquez-Martin A, Oliveras-Ferraros C, Del Barco S, Martin-Castillo B, Menendez JA (2009) If mammalian target of metformin indirectly is mammalian target of rapamycin, then the insulin-like growth factor-1 receptor axis will audit the efficacy of metformin in cancer clinical trials. J Clin Oncol 27:e207–209CrossRefPubMed
9.
go back to reference Vincent EE, Coelho PP, Blagih J, Griss T, Viollet B, Jones RG (2015) Differential effects of AMPK agonists on cell growth and metabolism. Oncogene 34:3627–3639CrossRefPubMed Vincent EE, Coelho PP, Blagih J, Griss T, Viollet B, Jones RG (2015) Differential effects of AMPK agonists on cell growth and metabolism. Oncogene 34:3627–3639CrossRefPubMed
10.
go back to reference Cufi S, Corominas-Faja B, Vazquez-Martin A et al (2012) Metformin-induced preferential killing of breast cancer initiating CD44+ CD24−/low cells is sufficient to overcome primary resistance to trastuzumab in HER2+ human breast cancer xenografts. Oncotarget 3:395–398CrossRefPubMedPubMedCentral Cufi S, Corominas-Faja B, Vazquez-Martin A et al (2012) Metformin-induced preferential killing of breast cancer initiating CD44+ CD24−/low cells is sufficient to overcome primary resistance to trastuzumab in HER2+ human breast cancer xenografts. Oncotarget 3:395–398CrossRefPubMedPubMedCentral
11.
go back to reference Hirsch HA, Iliopoulos D, Tsichlis PN, Struhl K (2009) Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res 69:7507–7511CrossRefPubMedPubMedCentral Hirsch HA, Iliopoulos D, Tsichlis PN, Struhl K (2009) Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res 69:7507–7511CrossRefPubMedPubMedCentral
12.
go back to reference Wurth R, Pattarozzi A, Gatti M et al (2013) Metformin selectively affects human glioblastoma tumor-initiating cell viability: a role for metformin-induced inhibition of Akt. Cell Cycle 12:145–156CrossRefPubMedPubMedCentral Wurth R, Pattarozzi A, Gatti M et al (2013) Metformin selectively affects human glioblastoma tumor-initiating cell viability: a role for metformin-induced inhibition of Akt. Cell Cycle 12:145–156CrossRefPubMedPubMedCentral
13.
go back to reference Sato A, Sunayama J, Okada M et al (2012) Glioma-initiating cell elimination by metformin activation of FOXO3 via AMPK. Stem Cells Transl Med 1:811–824CrossRefPubMedPubMedCentral Sato A, Sunayama J, Okada M et al (2012) Glioma-initiating cell elimination by metformin activation of FOXO3 via AMPK. Stem Cells Transl Med 1:811–824CrossRefPubMedPubMedCentral
14.
go back to reference Memmott RM, Mercado JR, Maier CR, Kawabata S, Fox SD, Dennis PA (2010) Metformin prevents tobacco carcinogen–induced lung tumorigenesis. Cancer Prev Res (Phila) 3:1066–1076CrossRef Memmott RM, Mercado JR, Maier CR, Kawabata S, Fox SD, Dennis PA (2010) Metformin prevents tobacco carcinogen–induced lung tumorigenesis. Cancer Prev Res (Phila) 3:1066–1076CrossRef
15.
go back to reference Liu X, Chhipa RR, Pooya S et al (2014) Discrete mechanisms of mTOR and cell cycle regulation by AMPK agonists independent of AMPK. Proc Natl Acad Sci USA 111:E435–444CrossRefPubMedPubMedCentral Liu X, Chhipa RR, Pooya S et al (2014) Discrete mechanisms of mTOR and cell cycle regulation by AMPK agonists independent of AMPK. Proc Natl Acad Sci USA 111:E435–444CrossRefPubMedPubMedCentral
16.
go back to reference Liu B, Fan Z, Edgerton SM, Yang X, Lind SE, Thor AD (2011) Potent anti-proliferative effects of metformin on trastuzumab-resistant breast cancer cells via inhibition of erbB2/IGF-1 receptor interactions. Cell Cycle 10:2959–2966CrossRefPubMed Liu B, Fan Z, Edgerton SM, Yang X, Lind SE, Thor AD (2011) Potent anti-proliferative effects of metformin on trastuzumab-resistant breast cancer cells via inhibition of erbB2/IGF-1 receptor interactions. Cell Cycle 10:2959–2966CrossRefPubMed
17.
go back to reference Martin-Castillo B, Vazquez-Martin A, Oliveras-Ferraros C, Menendez JA (2010) Metformin and cancer: doses, mechanisms and the dandelion and hormetic phenomena. Cell Cycle 9:1057–1064CrossRefPubMed Martin-Castillo B, Vazquez-Martin A, Oliveras-Ferraros C, Menendez JA (2010) Metformin and cancer: doses, mechanisms and the dandelion and hormetic phenomena. Cell Cycle 9:1057–1064CrossRefPubMed
19.
go back to reference Deng XS, Wang S, Deng A et al (2012) Metformin targets Stat3 to inhibit cell growth and induce apoptosis in triple-negative breast cancers. Cell Cycle 11:367–376CrossRefPubMed Deng XS, Wang S, Deng A et al (2012) Metformin targets Stat3 to inhibit cell growth and induce apoptosis in triple-negative breast cancers. Cell Cycle 11:367–376CrossRefPubMed
20.
go back to reference Cufi S, Corominas-Faja B, Lopez-Bonet E et al (2013) Dietary restriction-resistant human tumors harboring the PIK3CA-activating mutation H1047R are sensitive to metformin. Oncotarget 4:1484–1495CrossRefPubMedPubMedCentral Cufi S, Corominas-Faja B, Lopez-Bonet E et al (2013) Dietary restriction-resistant human tumors harboring the PIK3CA-activating mutation H1047R are sensitive to metformin. Oncotarget 4:1484–1495CrossRefPubMedPubMedCentral
21.
go back to reference Shaw G, Kamen R (1986) A conserved AU sequence from the 3′ untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 46:659–667CrossRefPubMed Shaw G, Kamen R (1986) A conserved AU sequence from the 3′ untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 46:659–667CrossRefPubMed
22.
go back to reference Shyu AB, Wilkinson MF (2000) The double lives of shuttling mRNA binding proteins. Cell 102:135–138CrossRefPubMed Shyu AB, Wilkinson MF (2000) The double lives of shuttling mRNA binding proteins. Cell 102:135–138CrossRefPubMed
23.
go back to reference Carballo E, Lai WS, Blackshear PJ (1998) Feedback inhibition of macrophage tumor necrosis factor-alpha production by tristetraprolin. Science 281:1001–1005CrossRefPubMed Carballo E, Lai WS, Blackshear PJ (1998) Feedback inhibition of macrophage tumor necrosis factor-alpha production by tristetraprolin. Science 281:1001–1005CrossRefPubMed
24.
go back to reference Brooks SA, Blackshear PJ (2013) Tristetraprolin (TTP): interactions with mRNA and proteins, and current thoughts on mechanisms of action. Biochim Biophys Acta 1829:666–679CrossRefPubMedPubMedCentral Brooks SA, Blackshear PJ (2013) Tristetraprolin (TTP): interactions with mRNA and proteins, and current thoughts on mechanisms of action. Biochim Biophys Acta 1829:666–679CrossRefPubMedPubMedCentral
25.
go back to reference Brennan SE, Kuwano Y, Alkharouf N, Blackshear PJ, Gorospe M, Wilson GM (2009) The mRNA-destabilizing protein tristetraprolin is suppressed in many cancers, altering tumorigenic phenotypes and patient prognosis. Cancer Res 69:5168–5176CrossRefPubMedPubMedCentral Brennan SE, Kuwano Y, Alkharouf N, Blackshear PJ, Gorospe M, Wilson GM (2009) The mRNA-destabilizing protein tristetraprolin is suppressed in many cancers, altering tumorigenic phenotypes and patient prognosis. Cancer Res 69:5168–5176CrossRefPubMedPubMedCentral
26.
go back to reference Lee HH, Son YJ, Lee WH et al (2010) Tristetraprolin regulates expression of VEGF and tumorigenesis in human colon cancer. Int J Cancer 126:1817–1827PubMed Lee HH, Son YJ, Lee WH et al (2010) Tristetraprolin regulates expression of VEGF and tumorigenesis in human colon cancer. Int J Cancer 126:1817–1827PubMed
27.
go back to reference Marderosian M, Sharma A, Funk AP et al (2006) Tristetraprolin regulates Cyclin D1 and c-Myc mRNA stability in response to rapamycin in an Akt-dependent manner via p38 MAPK signaling. Oncogene 25:6277–6290CrossRefPubMed Marderosian M, Sharma A, Funk AP et al (2006) Tristetraprolin regulates Cyclin D1 and c-Myc mRNA stability in response to rapamycin in an Akt-dependent manner via p38 MAPK signaling. Oncogene 25:6277–6290CrossRefPubMed
28.
go back to reference Young LE, Sanduja S, Bemis-Standoli K, Pena EA, Price RL, Dixon DA (2009) The mRNA binding proteins HuR and tristetraprolin regulate cyclooxygenase 2 expression during colon carcinogenesis. Gastroenterology 136:1669–1679CrossRefPubMedPubMedCentral Young LE, Sanduja S, Bemis-Standoli K, Pena EA, Price RL, Dixon DA (2009) The mRNA binding proteins HuR and tristetraprolin regulate cyclooxygenase 2 expression during colon carcinogenesis. Gastroenterology 136:1669–1679CrossRefPubMedPubMedCentral
29.
go back to reference Lee JY, Kim HJ, Yoon NA et al (2013) Tumor suppressor p53 plays a key role in induction of both tristetraprolin and let-7 in human cancer cells. Nucleic Acids Res 41:5614–5625CrossRefPubMedPubMedCentral Lee JY, Kim HJ, Yoon NA et al (2013) Tumor suppressor p53 plays a key role in induction of both tristetraprolin and let-7 in human cancer cells. Nucleic Acids Res 41:5614–5625CrossRefPubMedPubMedCentral
30.
31.
go back to reference Soussi T, Beroud C (2001) Assessing TP53 status in human tumours to evaluate clinical outcome. Nat Rev Cancer 1:233–240CrossRefPubMed Soussi T, Beroud C (2001) Assessing TP53 status in human tumours to evaluate clinical outcome. Nat Rev Cancer 1:233–240CrossRefPubMed
32.
go back to reference Cole MD (1986) The myc oncogene: its role in transformation and differentiation. Annu Rev Genet 20:361–384CrossRefPubMed Cole MD (1986) The myc oncogene: its role in transformation and differentiation. Annu Rev Genet 20:361–384CrossRefPubMed
33.
go back to reference Kim HK, Kim CW, Vo MT et al (2012) Expression of proviral integration site for Moloney murine leukemia virus 1 (Pim-1) is post-transcriptionally regulated by tristetraprolin in cancer cells. J Biol Chem 287:28770–28778CrossRefPubMedPubMedCentral Kim HK, Kim CW, Vo MT et al (2012) Expression of proviral integration site for Moloney murine leukemia virus 1 (Pim-1) is post-transcriptionally regulated by tristetraprolin in cancer cells. J Biol Chem 287:28770–28778CrossRefPubMedPubMedCentral
34.
go back to reference Joe Y, Kim HJ, Kim S et al (2011) Tristetraprolin mediates anti-inflammatory effects of nicotine in lipopolysaccharide-stimulated macrophages. J Biol Chem 286:24735–24742CrossRefPubMedPubMedCentral Joe Y, Kim HJ, Kim S et al (2011) Tristetraprolin mediates anti-inflammatory effects of nicotine in lipopolysaccharide-stimulated macrophages. J Biol Chem 286:24735–24742CrossRefPubMedPubMedCentral
35.
go back to reference Lykke-Andersen J, Wagner E (2005) Recruitment and activation of mRNA decay enzymes by two ARE-mediated decay activation domains in the proteins TTP and BRF-1. Genes Dev 19:351–361CrossRefPubMedPubMedCentral Lykke-Andersen J, Wagner E (2005) Recruitment and activation of mRNA decay enzymes by two ARE-mediated decay activation domains in the proteins TTP and BRF-1. Genes Dev 19:351–361CrossRefPubMedPubMedCentral
36.
go back to reference Kim CW, Vo MT, Kim HK et al (2012) Ectopic over-expression of tristetraprolin in human cancer cells promotes biogenesis of let-7 by down-regulation of Lin28. Nucleic Acids Res 40:3856–3869CrossRefPubMedPubMedCentral Kim CW, Vo MT, Kim HK et al (2012) Ectopic over-expression of tristetraprolin in human cancer cells promotes biogenesis of let-7 by down-regulation of Lin28. Nucleic Acids Res 40:3856–3869CrossRefPubMedPubMedCentral
37.
go back to reference He G, Zhang YW, Lee JH et al (2014) AMP-activated protein kinase induces p53 by phosphorylating MDMX and inhibiting its activity. Mol Cell Biol 34:148–157CrossRefPubMedPubMedCentral He G, Zhang YW, Lee JH et al (2014) AMP-activated protein kinase induces p53 by phosphorylating MDMX and inhibiting its activity. Mol Cell Biol 34:148–157CrossRefPubMedPubMedCentral
Metadata
Title
Tristetraprolin mediates the anti-proliferative effects of metformin in breast cancer cells
Authors
Indira Pandiri
Yingqing Chen
Yeonsoo Joe
Hyo Jeong Kim
Jeongmin Park
Hun Taeg Chung
Jeong Woo Park
Publication date
01-02-2016
Publisher
Springer US
Published in
Breast Cancer Research and Treatment / Issue 1/2016
Print ISSN: 0167-6806
Electronic ISSN: 1573-7217
DOI
https://doi.org/10.1007/s10549-016-3742-y

Other articles of this Issue 1/2016

Breast Cancer Research and Treatment 1/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine