Skip to main content
Top
Published in: Breast Cancer Research and Treatment 3/2015

Open Access 01-08-2015 | Brief Report

Gene signature model for breast cancer risk prediction for women with sclerosing adenosis

Authors: Amy C. Degnim, Aziza Nassar, Melody Stallings-Mann, S. Keith Anderson, Ann L. Oberg, Robert A. Vierkant, Ryan D. Frank, Chen Wang, Stacey J. Winham, Marlene H. Frost, Lynn C. Hartmann, Daniel W. Visscher, Derek C. Radisky

Published in: Breast Cancer Research and Treatment | Issue 3/2015

Login to get access

Abstract

Benign breast disease (BBD) is diagnosed in 1–2 million women/year in the US, and while these patients are known to be at substantially increased risk for subsequent development of breast cancer, existing models for risk assessment perform poorly at the individual level. Here, we describe a DNA-microarray-based transcriptional model for breast cancer risk prediction for patients with sclerosing adenosis (SA), which represent ¼ of all BBD patients. A training set was developed from 86 patients diagnosed with SA, of which 27 subsequently developed cancer within 10 years (cases) and 59 remained cancer-free at 10 years (controls). An diagonal linear discriminate analysis-prediction model for prediction of cancer within 10 years (SA TTC10) was generated from transcriptional profiles of FFPE biopsy-derived RNA. This model was tested on a separate validation case–control set composed of 65 SA patients. The SA TTC10 gene signature model, composed of 35 gene features, achieved a clear and significant separation between case and control with receiver operating characteristic area under the curve of 0.913 in the training set and 0.836 in the validation set. Our results provide the first demonstration that benign breast tissue contains transcriptional alterations that indicate risk of breast cancer development, demonstrating that essential precursor biomarkers of malignancy are present many years prior to cancer development. Furthermore, the SA TTC10 gene signature model, which can be assessed on FFPE biopsies, constitutes a novel prognostic biomarker for patients with SA.
Appendix
Available only for authorised users
Literature
3.
go back to reference Rockhill B, Spiegelman D, Byrne C, Hunter DJ, Colditz GA (2001) Validation of the Gail et al. model of breast cancer risk prediction and implications for chemoprevention. J Natl Cancer Inst 93(5):358–366CrossRefPubMed Rockhill B, Spiegelman D, Byrne C, Hunter DJ, Colditz GA (2001) Validation of the Gail et al. model of breast cancer risk prediction and implications for chemoprevention. J Natl Cancer Inst 93(5):358–366CrossRefPubMed
4.
go back to reference Pankratz VS, Degnim AC, Frank RD, Frost MH, Visscher DW, Vierkant RA, Hieken TJ, Ghosh K, Tarabishy Y, Vachon CM, Radisky DC, Hartmann LC (2015) Model for individualized prediction of breast cancer risk after a benign breast biopsy. J Clin Oncol 33(8):923–929. doi:10.1200/JCO.2014.55.4865 CrossRefPubMed Pankratz VS, Degnim AC, Frank RD, Frost MH, Visscher DW, Vierkant RA, Hieken TJ, Ghosh K, Tarabishy Y, Vachon CM, Radisky DC, Hartmann LC (2015) Model for individualized prediction of breast cancer risk after a benign breast biopsy. J Clin Oncol 33(8):923–929. doi:10.​1200/​JCO.​2014.​55.​4865 CrossRefPubMed
5.
go back to reference Hartmann LC, Sellers TA, Frost MH, Lingle WL, Degnim AC, Ghosh K, Vierkant RA, Maloney SD, Pankratz VS, Hillman DW, Suman VJ, Johnson J, Blake C, Tlsty T, Vachon CM, Melton LJ 3rd, Visscher DW (2005) Benign breast disease and the risk of breast cancer. N Engl J Med 353(3):229–237. doi:10.1056/NEJMoa044383 CrossRefPubMed Hartmann LC, Sellers TA, Frost MH, Lingle WL, Degnim AC, Ghosh K, Vierkant RA, Maloney SD, Pankratz VS, Hillman DW, Suman VJ, Johnson J, Blake C, Tlsty T, Vachon CM, Melton LJ 3rd, Visscher DW (2005) Benign breast disease and the risk of breast cancer. N Engl J Med 353(3):229–237. doi:10.​1056/​NEJMoa044383 CrossRefPubMed
6.
go back to reference Allred DC, Mohsin SK, Fuqua SA (2001) Histological and biological evolution of human premalignant breast disease. Endocr Relat Cancer 8(1):47–61CrossRefPubMed Allred DC, Mohsin SK, Fuqua SA (2001) Histological and biological evolution of human premalignant breast disease. Endocr Relat Cancer 8(1):47–61CrossRefPubMed
8.
go back to reference Dupont WD, Parl FF, Hartmann WH, Brinton LA, Winfield AC, Worrell JA, Schuyler PA, Plummer WD (1993) Breast cancer risk associated with proliferative breast disease and atypical hyperplasia. Cancer 71(4):1258–1265CrossRefPubMed Dupont WD, Parl FF, Hartmann WH, Brinton LA, Winfield AC, Worrell JA, Schuyler PA, Plummer WD (1993) Breast cancer risk associated with proliferative breast disease and atypical hyperplasia. Cancer 71(4):1258–1265CrossRefPubMed
9.
go back to reference Milanese TR, Hartmann LC, Sellers TA, Frost MH, Vierkant RA, Maloney SD, Pankratz VS, Degnim AC, Vachon CM, Reynolds CA, Thompson RA, Melton LJ 3rd, Goode EL, Visscher DW (2006) Age-related lobular involution and risk of breast cancer. J Natl Cancer Inst 98(22):1600–1607. doi:10.1093/jnci/djj439 CrossRefPubMed Milanese TR, Hartmann LC, Sellers TA, Frost MH, Vierkant RA, Maloney SD, Pankratz VS, Degnim AC, Vachon CM, Reynolds CA, Thompson RA, Melton LJ 3rd, Goode EL, Visscher DW (2006) Age-related lobular involution and risk of breast cancer. J Natl Cancer Inst 98(22):1600–1607. doi:10.​1093/​jnci/​djj439 CrossRefPubMed
10.
go back to reference Jensen RA, Page DL, Dupont WD, Rogers LW (1989) Invasive breast cancer risk in women with sclerosing adenosis. Cancer 64(10):1977–1983CrossRefPubMed Jensen RA, Page DL, Dupont WD, Rogers LW (1989) Invasive breast cancer risk in women with sclerosing adenosis. Cancer 64(10):1977–1983CrossRefPubMed
15.
go back to reference Wang W, Li Y, Hong A, Wang J, Lin B, Li R (2009) NDRG3 is an androgen regulated and prostate enriched gene that promotes in vitro and in vivo prostate cancer cell growth. Int J Cancer 124(3):521–530. doi:10.1002/ijc.23961 CrossRefPubMed Wang W, Li Y, Hong A, Wang J, Lin B, Li R (2009) NDRG3 is an androgen regulated and prostate enriched gene that promotes in vitro and in vivo prostate cancer cell growth. Int J Cancer 124(3):521–530. doi:10.​1002/​ijc.​23961 CrossRefPubMed
16.
go back to reference Williams C, Edvardsson K, Lewandowski SA, Strom A, Gustafsson JA (2008) A genome-wide study of the repressive effects of estrogen receptor beta on estrogen receptor alpha signaling in breast cancer cells. Oncogene 27(7):1019–1032. doi:10.1038/sj.onc.1210712 CrossRefPubMed Williams C, Edvardsson K, Lewandowski SA, Strom A, Gustafsson JA (2008) A genome-wide study of the repressive effects of estrogen receptor beta on estrogen receptor alpha signaling in breast cancer cells. Oncogene 27(7):1019–1032. doi:10.​1038/​sj.​onc.​1210712 CrossRefPubMed
17.
18.
go back to reference Taylor IW, Linding R, Warde-Farley D, Liu Y, Pesquita C, Faria D, Bull S, Pawson T, Morris Q, Wrana JL (2009) Dynamic modularity in protein interaction networks predicts breast cancer outcome. Nat Biotechnol 27(2):199–204. doi:10.1038/nbt.1522 CrossRefPubMed Taylor IW, Linding R, Warde-Farley D, Liu Y, Pesquita C, Faria D, Bull S, Pawson T, Morris Q, Wrana JL (2009) Dynamic modularity in protein interaction networks predicts breast cancer outcome. Nat Biotechnol 27(2):199–204. doi:10.​1038/​nbt.​1522 CrossRefPubMed
20.
go back to reference Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y, Goodall GJ (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10(5):593–601. doi:10.1038/ncb1722 CrossRefPubMed Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y, Goodall GJ (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10(5):593–601. doi:10.​1038/​ncb1722 CrossRefPubMed
22.
go back to reference Lehtinen L, Ketola K, Makela R, Mpindi JP, Viitala M, Kallioniemi O, Iljin K (2013) High-throughput RNAi screening for novel modulators of vimentin expression identifies MTHFD2 as a regulator of breast cancer cell migration and invasion. Oncotarget 4(1):48–63PubMedCentralCrossRefPubMed Lehtinen L, Ketola K, Makela R, Mpindi JP, Viitala M, Kallioniemi O, Iljin K (2013) High-throughput RNAi screening for novel modulators of vimentin expression identifies MTHFD2 as a regulator of breast cancer cell migration and invasion. Oncotarget 4(1):48–63PubMedCentralCrossRefPubMed
24.
go back to reference Nilsson R, Jain M, Madhusudhan N, Sheppard NG, Strittmatter L, Kampf C, Huang J, Asplund A, Mootha VK (2014) Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer. Nat Commun 5:3128. doi:10.1038/ncomms4128 PubMedCentralPubMed Nilsson R, Jain M, Madhusudhan N, Sheppard NG, Strittmatter L, Kampf C, Huang J, Asplund A, Mootha VK (2014) Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer. Nat Commun 5:3128. doi:10.​1038/​ncomms4128 PubMedCentralPubMed
25.
go back to reference Selcuklu SD, Donoghue MT, Rehmet K, de Souza Gomes M, Fort A, Kovvuru P, Muniyappa MK, Kerin MJ, Enright AJ, Spillane C (2012) MicroRNA-9 inhibition of cell proliferation and identification of novel miR-9 targets by transcriptome profiling in breast cancer cells. J Biol Chem 287(35):29516–29528. doi:10.1074/jbc.M111.335943 PubMedCentralCrossRefPubMed Selcuklu SD, Donoghue MT, Rehmet K, de Souza Gomes M, Fort A, Kovvuru P, Muniyappa MK, Kerin MJ, Enright AJ, Spillane C (2012) MicroRNA-9 inhibition of cell proliferation and identification of novel miR-9 targets by transcriptome profiling in breast cancer cells. J Biol Chem 287(35):29516–29528. doi:10.​1074/​jbc.​M111.​335943 PubMedCentralCrossRefPubMed
26.
go back to reference Yoo HM, Kang SH, Kim JY, Lee JE, Seong MW, Lee SW, Ka SH, Sou YS, Komatsu M, Tanaka K, Lee ST, Noh DY, Baek SH, Jeon YJ, Chung CH (2014) Modification of ASC1 by UFM1 is crucial for ER alpha transactivation and breast cancer development. Mol Cell. doi:10.1016/j.molcel.2014.08.007 Yoo HM, Kang SH, Kim JY, Lee JE, Seong MW, Lee SW, Ka SH, Sou YS, Komatsu M, Tanaka K, Lee ST, Noh DY, Baek SH, Jeon YJ, Chung CH (2014) Modification of ASC1 by UFM1 is crucial for ER alpha transactivation and breast cancer development. Mol Cell. doi:10.​1016/​j.​molcel.​2014.​08.​007
Metadata
Title
Gene signature model for breast cancer risk prediction for women with sclerosing adenosis
Authors
Amy C. Degnim
Aziza Nassar
Melody Stallings-Mann
S. Keith Anderson
Ann L. Oberg
Robert A. Vierkant
Ryan D. Frank
Chen Wang
Stacey J. Winham
Marlene H. Frost
Lynn C. Hartmann
Daniel W. Visscher
Derek C. Radisky
Publication date
01-08-2015
Publisher
Springer US
Published in
Breast Cancer Research and Treatment / Issue 3/2015
Print ISSN: 0167-6806
Electronic ISSN: 1573-7217
DOI
https://doi.org/10.1007/s10549-015-3513-1

Other articles of this Issue 3/2015

Breast Cancer Research and Treatment 3/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine