Skip to main content
Top
Published in: Breast Cancer Research and Treatment 1/2012

01-05-2012 | Preclinical study

Physical activity and breast cancer survival: an epigenetic link through reduced methylation of a tumor suppressor gene L3MBTL1

Authors: Hongmei Zeng, Melinda L. Irwin, Lingeng Lu, Harvey Risch, Susan Mayne, Lina Mu, Qian Deng, Luca Scarampi, Marco Mitidieri, Dionyssios Katsaros, Herbert Yu

Published in: Breast Cancer Research and Treatment | Issue 1/2012

Login to get access

Abstract

The study was conducted to determine the effect of physical activity on DNA methylation and to predict the consequence of this effect concerning gene expression and breast cancer survival. Blood samples, collected from 12 breast cancer patients who participated in a randomized clinical trial of exercise, were examined for exercise-related changes in DNA methylation using a methylation microarray. Tumor samples of 348 breast cancer patients were analyzed with qRT-PCR and qMSP to determine gene expression and methylation identified in the microarray analysis. Cox regression models were developed to predict survival outcomes in association with gene expression and methylation. After 6 months of moderate-intensity aerobic exercise, changes in DNA methylation (P < 5 × 10−5) in peripheral blood leukocytes were detected in 43 genes from a panel of 14 495. Based on the list, we analyzed gene expression in association with overall survival in breast tumors and found three genes whose methylation was reduced after exercise were favorably in association with overall survival, i.e., higher expression associated with better survival. Of the three genes, L3MBTL1 was a putative tumor suppressor gene with known function to repress chromatin for transcription, which is activated mainly in germline stem cells. Further analyses of tumor features among patients indicated that high expression of L3MBTL1 was associated with low grade and hormone receptor–positive tumors, as well as low risk of disease recurrence and breast cancer death. In conclusion, the study suggests that increasing physical activity after a breast cancer diagnosis may affect epigenetic regulation of tumor suppressor genes, which have favorable impacts on survival outcomes of breast cancer patients.
Literature
1.
go back to reference Holick CN, Newcomb PA, Trentham-Dietz A, Titus-Ernstoff L, Bersch AJ, Stampfer MJ, Baron JA, Egan KM, Willett WC (2008) Physical activity and survival after diagnosis of invasive breast cancer. Cancer Epidemiol Biomarkers Prev 17(2):379–386PubMedCrossRef Holick CN, Newcomb PA, Trentham-Dietz A, Titus-Ernstoff L, Bersch AJ, Stampfer MJ, Baron JA, Egan KM, Willett WC (2008) Physical activity and survival after diagnosis of invasive breast cancer. Cancer Epidemiol Biomarkers Prev 17(2):379–386PubMedCrossRef
2.
go back to reference Holmes MD, Chen WY, Feskanich D, Kroenke CH, Colditz GA (2005) Physical activity and survival after breast cancer diagnosis. JAMA 293(20):2479–2486PubMedCrossRef Holmes MD, Chen WY, Feskanich D, Kroenke CH, Colditz GA (2005) Physical activity and survival after breast cancer diagnosis. JAMA 293(20):2479–2486PubMedCrossRef
3.
go back to reference Irwin ML, Smith AW, McTiernan A, Ballard-Barbash R, Cronin K, Gilliland FD, Baumgartner RN, Baumgartner KB, Bernstein L (2008) Influence of pre- and postdiagnosis physical activity on mortality in breast cancer survivors: the health, eating, activity, and lifestyle study. J Clin Oncol 26(24):3958–3964PubMedCrossRef Irwin ML, Smith AW, McTiernan A, Ballard-Barbash R, Cronin K, Gilliland FD, Baumgartner RN, Baumgartner KB, Bernstein L (2008) Influence of pre- and postdiagnosis physical activity on mortality in breast cancer survivors: the health, eating, activity, and lifestyle study. J Clin Oncol 26(24):3958–3964PubMedCrossRef
4.
go back to reference McTiernan A, Tworoger SS, Rajan KB, Yasui Y, Sorenson B, Ulrich CM, Chubak J, Stanczyk FZ, Bowen D, Irwin ML et al (2004) Effect of exercise on serum androgens in postmenopausal women: a 12-month randomized clinical trial. Cancer Epidemiol Biomarkers Prev 13(7):1099–1105PubMed McTiernan A, Tworoger SS, Rajan KB, Yasui Y, Sorenson B, Ulrich CM, Chubak J, Stanczyk FZ, Bowen D, Irwin ML et al (2004) Effect of exercise on serum androgens in postmenopausal women: a 12-month randomized clinical trial. Cancer Epidemiol Biomarkers Prev 13(7):1099–1105PubMed
5.
go back to reference McTiernan A, Tworoger SS, Ulrich CM, Yasui Y, Irwin ML, Rajan KB, Sorensen B, Rudolph RE, Bowen D, Stanczyk FZ et al (2004) Effect of exercise on serum estrogens in postmenopausal women: a 12-month randomized clinical trial. Cancer Res 64(8):2923–2928PubMedCrossRef McTiernan A, Tworoger SS, Ulrich CM, Yasui Y, Irwin ML, Rajan KB, Sorensen B, Rudolph RE, Bowen D, Stanczyk FZ et al (2004) Effect of exercise on serum estrogens in postmenopausal women: a 12-month randomized clinical trial. Cancer Res 64(8):2923–2928PubMedCrossRef
6.
go back to reference Goodwin PJ, Ennis M, Pritchard KI, Trudeau ME, Koo J, Madarnas Y, Hartwick W, Hoffman B, Hood N (2002) Fasting insulin and outcome in early-stage breast cancer: results of a prospective cohort study. J Clin Oncol 20(1):42–51PubMedCrossRef Goodwin PJ, Ennis M, Pritchard KI, Trudeau ME, Koo J, Madarnas Y, Hartwick W, Hoffman B, Hood N (2002) Fasting insulin and outcome in early-stage breast cancer: results of a prospective cohort study. J Clin Oncol 20(1):42–51PubMedCrossRef
7.
go back to reference Neilson HK, Friedenreich CM, Brockton NT, Millikan RC (2009) Physical activity and postmenopausal breast cancer: proposed biologic mechanisms and areas for future research. Cancer Epidemiol Biomarkers Prev 18(1):11–27PubMedCrossRef Neilson HK, Friedenreich CM, Brockton NT, Millikan RC (2009) Physical activity and postmenopausal breast cancer: proposed biologic mechanisms and areas for future research. Cancer Epidemiol Biomarkers Prev 18(1):11–27PubMedCrossRef
8.
go back to reference Ligibel JA, Campbell N, Partridge A, Chen WY, Salinardi T, Chen H, Adloff K, Keshaviah A, Winer EP (2008) Impact of a mixed strength and endurance exercise intervention on insulin levels in breast cancer survivors. J Clin Oncol 26(6):907–912PubMedCrossRef Ligibel JA, Campbell N, Partridge A, Chen WY, Salinardi T, Chen H, Adloff K, Keshaviah A, Winer EP (2008) Impact of a mixed strength and endurance exercise intervention on insulin levels in breast cancer survivors. J Clin Oncol 26(6):907–912PubMedCrossRef
9.
go back to reference Goodwin PJ, Ennis M, Pritchard KI, Trudeau ME, Koo J, Hartwick W, Hoffma B, Hood N (2002) Insulin-like growth factor binding proteins 1 and 3 and breast cancer outcomes. Breast Cancer Res Treat 74(1):65–76PubMedCrossRef Goodwin PJ, Ennis M, Pritchard KI, Trudeau ME, Koo J, Hartwick W, Hoffma B, Hood N (2002) Insulin-like growth factor binding proteins 1 and 3 and breast cancer outcomes. Breast Cancer Res Treat 74(1):65–76PubMedCrossRef
10.
go back to reference Irwin ML, Varma K, Alvarez-Reeves M, Cadmus L, Wiley A, Chung GG, Dipietro L, Mayne ST, Yu H (2009) Randomized controlled trial of aerobic exercise on insulin and insulin-like growth factors in breast cancer survivors: the Yale Exercise and Survivorship study. Cancer Epidemiol Biomarkers Prev 18(1):306–313PubMedCrossRef Irwin ML, Varma K, Alvarez-Reeves M, Cadmus L, Wiley A, Chung GG, Dipietro L, Mayne ST, Yu H (2009) Randomized controlled trial of aerobic exercise on insulin and insulin-like growth factors in breast cancer survivors: the Yale Exercise and Survivorship study. Cancer Epidemiol Biomarkers Prev 18(1):306–313PubMedCrossRef
11.
go back to reference Schmitz KH, Ahmed RL, Hannan PJ, Yee D (2005) Safety and efficacy of weight training in recent breast cancer survivors to alter body composition, insulin, and insulin-like growth factor axis proteins. Cancer Epidemiol Biomarkers Prev 14(7):1672–1680PubMedCrossRef Schmitz KH, Ahmed RL, Hannan PJ, Yee D (2005) Safety and efficacy of weight training in recent breast cancer survivors to alter body composition, insulin, and insulin-like growth factor axis proteins. Cancer Epidemiol Biomarkers Prev 14(7):1672–1680PubMedCrossRef
12.
go back to reference Fairey AS, Courneya KS, Field CJ, Bell GJ, Jones LW, Mackey JR (2003) Effects of exercise training on fasting insulin, insulin resistance, insulin-like growth factors, and insulin-like growth factor binding proteins in postmenopausal breast cancer survivors: a randomized controlled trial. Cancer Epidemiol Biomarkers Prev 12(8):721–727PubMed Fairey AS, Courneya KS, Field CJ, Bell GJ, Jones LW, Mackey JR (2003) Effects of exercise training on fasting insulin, insulin resistance, insulin-like growth factors, and insulin-like growth factor binding proteins in postmenopausal breast cancer survivors: a randomized controlled trial. Cancer Epidemiol Biomarkers Prev 12(8):721–727PubMed
13.
go back to reference Coyle YM, Xie XJ, Lewis CM, Bu D, Milchgrub S, Euhus DM (2007) Role of physical activity in modulating breast cancer risk as defined by APC and RASSF1A promoter hypermethylation in nonmalignant breast tissue. Cancer Epidemiol Biomarkers Prev 16(2):192–196PubMedCrossRef Coyle YM, Xie XJ, Lewis CM, Bu D, Milchgrub S, Euhus DM (2007) Role of physical activity in modulating breast cancer risk as defined by APC and RASSF1A promoter hypermethylation in nonmalignant breast tissue. Cancer Epidemiol Biomarkers Prev 16(2):192–196PubMedCrossRef
14.
go back to reference Yuasa Y, Nagasaki H, Akiyama Y, Hashimoto Y, Takizawa T, Kojima K, Kawano T, Sugihara K, Imai K, Nakachi K (2009) DNA methylation status is inversely correlated with green tea intake and physical activity in gastric cancer patients. Int J Cancer 124(11):2677–2682PubMedCrossRef Yuasa Y, Nagasaki H, Akiyama Y, Hashimoto Y, Takizawa T, Kojima K, Kawano T, Sugihara K, Imai K, Nakachi K (2009) DNA methylation status is inversely correlated with green tea intake and physical activity in gastric cancer patients. Int J Cancer 124(11):2677–2682PubMedCrossRef
15.
go back to reference Irwin ML, Cadmus L, Alvarez-Reeves M, O’Neil M, Mierzejewski E, Latka R, Yu H, Dipietro L, Jones B, Knobf MT et al (2008) Recruiting and retaining breast cancer survivors into a randomized controlled exercise trial: the Yale Exercise and Survivorship Study. Cancer 112(11 Suppl):2593–2606PubMedCrossRef Irwin ML, Cadmus L, Alvarez-Reeves M, O’Neil M, Mierzejewski E, Latka R, Yu H, Dipietro L, Jones B, Knobf MT et al (2008) Recruiting and retaining breast cancer survivors into a randomized controlled exercise trial: the Yale Exercise and Survivorship Study. Cancer 112(11 Suppl):2593–2606PubMedCrossRef
16.
go back to reference Mu L, Katsaros D, Lu L, Preti M, Durando A, Arisio R, Yu H (2008) TGF-beta1 genotype and phenotype in breast cancer and their associations with IGFs and patient survival. Br J Cancer 99(8):1357–1363PubMedCrossRef Mu L, Katsaros D, Lu L, Preti M, Durando A, Arisio R, Yu H (2008) TGF-beta1 genotype and phenotype in breast cancer and their associations with IGFs and patient survival. Br J Cancer 99(8):1357–1363PubMedCrossRef
17.
go back to reference Ainsworth BE, Haskell WL, Whitt MC, Irwin ML, Swartz AM, Strath SJ, O’Brien WL, Bassett DR Jr, Schmitz KH, Emplaincourt PO et al (2000) Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sports Exerc 32(9 Suppl):S498–S504PubMed Ainsworth BE, Haskell WL, Whitt MC, Irwin ML, Swartz AM, Strath SJ, O’Brien WL, Bassett DR Jr, Schmitz KH, Emplaincourt PO et al (2000) Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sports Exerc 32(9 Suppl):S498–S504PubMed
18.
go back to reference Lu L, Katsaros D, de la Longrais IA, Sochirca O, Yu H (2007) Hypermethylation of let-7a–3 in epithelial ovarian cancer is associated with low insulin-like growth factor-II expression and favorable prognosis. Cancer Res 67(21):10117–10122PubMedCrossRef Lu L, Katsaros D, de la Longrais IA, Sochirca O, Yu H (2007) Hypermethylation of let-7a–3 in epithelial ovarian cancer is associated with low insulin-like growth factor-II expression and favorable prognosis. Cancer Res 67(21):10117–10122PubMedCrossRef
19.
go back to reference Plaitakis A, Zaganas I (2001) Regulation of human glutamate dehydrogenases: implications for glutamate, ammonia and energy metabolism in brain. J Neurosci Res 66(5):899–908PubMedCrossRef Plaitakis A, Zaganas I (2001) Regulation of human glutamate dehydrogenases: implications for glutamate, ammonia and energy metabolism in brain. J Neurosci Res 66(5):899–908PubMedCrossRef
20.
go back to reference Bonasio R, Lecona E, Reinberg D (2010) MBT domain proteins in development and disease. Semin Cell Dev Biol 21(2):221–223PubMedCrossRef Bonasio R, Lecona E, Reinberg D (2010) MBT domain proteins in development and disease. Semin Cell Dev Biol 21(2):221–223PubMedCrossRef
21.
go back to reference Satoh K, Ginsburg E, Vonderhaar BK (2004) Msx-1 and Msx-2 in mammary gland development. J Mammary Gland Biol Neoplasia 9(2):195–205PubMedCrossRef Satoh K, Ginsburg E, Vonderhaar BK (2004) Msx-1 and Msx-2 in mammary gland development. J Mammary Gland Biol Neoplasia 9(2):195–205PubMedCrossRef
22.
go back to reference Nakajima K, Takeoka M, Mori M, Hashimoto S, Sakurai A, Nose H, Higuchi K, Itano N, Shiohara M, Oh T et al (2010) Exercise effects on methylation of ASC gene. Int J Sports Med 31(9):671–675PubMedCrossRef Nakajima K, Takeoka M, Mori M, Hashimoto S, Sakurai A, Nose H, Higuchi K, Itano N, Shiohara M, Oh T et al (2010) Exercise effects on methylation of ASC gene. Int J Sports Med 31(9):671–675PubMedCrossRef
23.
go back to reference DeNardo DG, Coussens LM (2007) Inflammation and breast cancer. Balancing immune response: crosstalk between adaptive and innate immune cells during breast cancer progression. Breast Cancer Res 9(4):212PubMedCrossRef DeNardo DG, Coussens LM (2007) Inflammation and breast cancer. Balancing immune response: crosstalk between adaptive and innate immune cells during breast cancer progression. Breast Cancer Res 9(4):212PubMedCrossRef
24.
go back to reference Allavena P, Sica A, Solinas G, Porta C, Mantovani A (2008) The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Crit Rev Oncol Hematol 66(1):1–9PubMedCrossRef Allavena P, Sica A, Solinas G, Porta C, Mantovani A (2008) The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Crit Rev Oncol Hematol 66(1):1–9PubMedCrossRef
25.
go back to reference Boccuni P, MacGrogan D, Scandura JM, Nimer SD (2003) The human L(3)MBT polycomb group protein is a transcriptional repressor and interacts physically and functionally with TEL (ETV6). J Biol Chem 278(17):15412–15420PubMedCrossRef Boccuni P, MacGrogan D, Scandura JM, Nimer SD (2003) The human L(3)MBT polycomb group protein is a transcriptional repressor and interacts physically and functionally with TEL (ETV6). J Biol Chem 278(17):15412–15420PubMedCrossRef
26.
go back to reference Bench AJ, Li J, Huntly BJ, Delabesse E, Fourouclas N, Hunt AR, Deloukas P, Green AR (2004) Characterization of the imprinted polycomb gene L3MBTL, a candidate 20q tumour suppressor gene, in patients with myeloid malignancies. Br J Haematol 127(5):509–518PubMedCrossRef Bench AJ, Li J, Huntly BJ, Delabesse E, Fourouclas N, Hunt AR, Deloukas P, Green AR (2004) Characterization of the imprinted polycomb gene L3MBTL, a candidate 20q tumour suppressor gene, in patients with myeloid malignancies. Br J Haematol 127(5):509–518PubMedCrossRef
27.
go back to reference Northcott PA, Nakahara Y, Wu X, Feuk L, Ellison DW, Croul S, Mack S, Kongkham PN, Peacock J, Dubuc A et al (2009) Multiple recurrent genetic events converge on control of histone lysine methylation in medulloblastoma. Nat Genet 41(4):465–472PubMedCrossRef Northcott PA, Nakahara Y, Wu X, Feuk L, Ellison DW, Croul S, Mack S, Kongkham PN, Peacock J, Dubuc A et al (2009) Multiple recurrent genetic events converge on control of histone lysine methylation in medulloblastoma. Nat Genet 41(4):465–472PubMedCrossRef
28.
go back to reference Addou-Klouche L, Adelaide J, Finetti P, Cervera N, Ferrari A, Bekhouche I, Sircoulomb F, Sotiriou C, Viens P, Moulessehoul S et al (2010) Loss, mutation and deregulation of L3MBTL4 in breast cancers. Mol Cancer 9:213PubMedCrossRef Addou-Klouche L, Adelaide J, Finetti P, Cervera N, Ferrari A, Bekhouche I, Sircoulomb F, Sotiriou C, Viens P, Moulessehoul S et al (2010) Loss, mutation and deregulation of L3MBTL4 in breast cancers. Mol Cancer 9:213PubMedCrossRef
29.
go back to reference Janic A, Mendizabal L, Llamazares S, Rossell D, Gonzalez C (2010) Ectopic expression of germline genes drives malignant brain tumor growth in Drosophila. Science 330(6012):1824–1827PubMedCrossRef Janic A, Mendizabal L, Llamazares S, Rossell D, Gonzalez C (2010) Ectopic expression of germline genes drives malignant brain tumor growth in Drosophila. Science 330(6012):1824–1827PubMedCrossRef
30.
go back to reference Buehlmeyer K, Doering F, Daniel H, Kindermann B, Schulz T, Michna H (2008) Alteration of gene expression in rat colon mucosa after exercise. Ann Anat 190(1):71–80PubMedCrossRef Buehlmeyer K, Doering F, Daniel H, Kindermann B, Schulz T, Michna H (2008) Alteration of gene expression in rat colon mucosa after exercise. Ann Anat 190(1):71–80PubMedCrossRef
31.
go back to reference Luster AD, Jhanwar SC, Chaganti RS, Kersey JH, Ravetch JV (1987) Interferon-inducible gene maps to a chromosomal band associated with a (4;11) translocation in acute leukemia cells. Proc Natl Acad Sci USA 84(9):2868–2871PubMedCrossRef Luster AD, Jhanwar SC, Chaganti RS, Kersey JH, Ravetch JV (1987) Interferon-inducible gene maps to a chromosomal band associated with a (4;11) translocation in acute leukemia cells. Proc Natl Acad Sci USA 84(9):2868–2871PubMedCrossRef
32.
go back to reference O’Donovan N, Galvin M, Morgan JG (1999) Physical mapping of the CXC chemokine locus on human chromosome 4. Cytogenet Cell Genet 84(1–2):39–42PubMedCrossRef O’Donovan N, Galvin M, Morgan JG (1999) Physical mapping of the CXC chemokine locus on human chromosome 4. Cytogenet Cell Genet 84(1–2):39–42PubMedCrossRef
33.
go back to reference Ueda K, Clark DP, Chen CJ, Roninson IB, Gottesman MM, Pastan I (1987) The human multidrug resistance (mdr1) gene. cDNA cloning and transcription initiation. J Biol Chem 262(2):505–508PubMed Ueda K, Clark DP, Chen CJ, Roninson IB, Gottesman MM, Pastan I (1987) The human multidrug resistance (mdr1) gene. cDNA cloning and transcription initiation. J Biol Chem 262(2):505–508PubMed
34.
go back to reference Wong WT, Kraus MH, Carlomagno F, Zelano A, Druck T, Croce CM, Huebner K, Di Fiore PP (1994) The human eps15 gene, encoding a tyrosine kinase substrate, is conserved in evolution and maps to 1p31–p32. Oncogene 9(6):1591–1597PubMed Wong WT, Kraus MH, Carlomagno F, Zelano A, Druck T, Croce CM, Huebner K, Di Fiore PP (1994) The human eps15 gene, encoding a tyrosine kinase substrate, is conserved in evolution and maps to 1p31–p32. Oncogene 9(6):1591–1597PubMed
Metadata
Title
Physical activity and breast cancer survival: an epigenetic link through reduced methylation of a tumor suppressor gene L3MBTL1
Authors
Hongmei Zeng
Melinda L. Irwin
Lingeng Lu
Harvey Risch
Susan Mayne
Lina Mu
Qian Deng
Luca Scarampi
Marco Mitidieri
Dionyssios Katsaros
Herbert Yu
Publication date
01-05-2012
Publisher
Springer US
Published in
Breast Cancer Research and Treatment / Issue 1/2012
Print ISSN: 0167-6806
Electronic ISSN: 1573-7217
DOI
https://doi.org/10.1007/s10549-011-1716-7

Other articles of this Issue 1/2012

Breast Cancer Research and Treatment 1/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine