Skip to main content
Top
Published in: Breast Cancer Research and Treatment 3/2011

01-12-2011 | Epidemiology

Further evidence for the contribution of the RAD51C gene in hereditary breast and ovarian cancer susceptibility

Authors: Mikko Vuorela, Katri Pylkäs, Jaana M. Hartikainen, Karin Sundfeldt, Annika Lindblom, Anna von Wachenfeldt Wäppling, Maria Haanpää, Ulla Puistola, Annika Rosengren, Maarit Anttila, Veli-Matti Kosma, Arto Mannermaa, Robert Winqvist

Published in: Breast Cancer Research and Treatment | Issue 3/2011

Login to get access

Abstract

RAD51C, a RAD51 paralogue involved in homologous recombination, is a recently established Fanconi anemia and breast cancer predisposing factor. In the initial report, RAD51C mutations were shown to confer a high risk for both breast and ovarian tumors, but most of the replication studies published so far have failed to identify any additional susceptibility alleles. Here, we report a full mutation screening of the RAD51C gene in 147 Finnish familial breast cancer cases and in 232 unselected ovarian cancer cases originating from Finland and Sweden. In addition, in order to resolve whether common RAD51C SNPs are risk factors for breast cancer, we genotyped five tagging single nucleotide polymorphisms, rs12946522, rs304270, rs304283, rs17222691, and rs28363312, all located within the gene, from 993 Finnish breast cancer cases and 871 controls for cancer associated variants. Whereas, none of the studied common SNPs associated with breast cancer susceptibility, mutation analysis revealed two clearly pathogenic alterations. RAD51C c.-13_14del27 was observed in one familial breast cancer case and c.774delT in one unselected ovarian cancer case, thus confirming that RAD51C mutations are implicated in breast and ovarian cancer predisposition, although their overall frequency seems to be low. Independent identification of the very recently reported RAD51C c.774delT mutation in yet another patient originating from Sweden suggests that it might be a recurrent mutation in that population and should be studied further. The reliable estimation of the clinical implications of carrying a defective RAD51C allele still requires the identification of additional mutation positive families.
Literature
1.
go back to reference Antoniou AC, Pharoah PD, McMullan G, Day NE, Stratton MR, Peto J, Ponder BJ, Easton DF (2002) A comprehensive model for familial breast cancer incorporating BRCA1, BRCA2 and other genes. Br J Cancer 86:76–83PubMedCrossRef Antoniou AC, Pharoah PD, McMullan G, Day NE, Stratton MR, Peto J, Ponder BJ, Easton DF (2002) A comprehensive model for familial breast cancer incorporating BRCA1, BRCA2 and other genes. Br J Cancer 86:76–83PubMedCrossRef
2.
go back to reference Erkko H, Xia B, Nikkilä J, Schleutker J, Syrjäkoski K, Mannermaa A, Kallioniemi A, Pylkäs K, Karppinen SM, Rapakko K, Miron A, Sheng Q, Li G, Mattila H, Bell DW, Haber DA, Grip M, Reiman M, Jukkola-Vuorinen A, Mustonen A, Kere J, Aaltonen LA, Kosma VM, Kataja V, Soini Y, Drapkin RI, Livingston DM, Winqvist R (2007) A recurrent mutation in PALB2 in Finnish cancer families. Nature 446:316–319PubMedCrossRef Erkko H, Xia B, Nikkilä J, Schleutker J, Syrjäkoski K, Mannermaa A, Kallioniemi A, Pylkäs K, Karppinen SM, Rapakko K, Miron A, Sheng Q, Li G, Mattila H, Bell DW, Haber DA, Grip M, Reiman M, Jukkola-Vuorinen A, Mustonen A, Kere J, Aaltonen LA, Kosma VM, Kataja V, Soini Y, Drapkin RI, Livingston DM, Winqvist R (2007) A recurrent mutation in PALB2 in Finnish cancer families. Nature 446:316–319PubMedCrossRef
4.
go back to reference Howlett NG, Taniguchi T, Olson S, Ox B, Waisfisz Q, De Die-Smulders C, Persky N, Grompe M, Joenje H, Pals G, Ikeda H, Fox EA, D’Andrea AD (2002) Biallelic inactivation of BRCA2 in Fanconi anemia. Science 297:606–609PubMedCrossRef Howlett NG, Taniguchi T, Olson S, Ox B, Waisfisz Q, De Die-Smulders C, Persky N, Grompe M, Joenje H, Pals G, Ikeda H, Fox EA, D’Andrea AD (2002) Biallelic inactivation of BRCA2 in Fanconi anemia. Science 297:606–609PubMedCrossRef
5.
go back to reference Levy-Lahad E (2010) Fanconi anemia and breast cancer susceptibility meet again. Nat Genet 42:368–369PubMedCrossRef Levy-Lahad E (2010) Fanconi anemia and breast cancer susceptibility meet again. Nat Genet 42:368–369PubMedCrossRef
6.
go back to reference Vaz F, Hanenberg H, Schuster B, Barker K, Wiek C, Erven V, Neveling K, Endt D, Kesterton I, Autore F, Fraternali F, Freund M, Hartmann L, Grimwade D, Roberts RG, Schaal H, Mohammed S, Rahman N, Schindler D, Mathew CG (2010) Mutation of the RAD51C gene in a Fanconi anemia-like disorder. Nat Genet 42:406–409PubMedCrossRef Vaz F, Hanenberg H, Schuster B, Barker K, Wiek C, Erven V, Neveling K, Endt D, Kesterton I, Autore F, Fraternali F, Freund M, Hartmann L, Grimwade D, Roberts RG, Schaal H, Mohammed S, Rahman N, Schindler D, Mathew CG (2010) Mutation of the RAD51C gene in a Fanconi anemia-like disorder. Nat Genet 42:406–409PubMedCrossRef
7.
go back to reference Meindl A, Hellebrand H, Wiek C, Erven V, Wappenschmidt B, Niederacher D, Freund M, Lichtner P, Hartmann L, Schaal H, Ramser J, Honisch E, Kubisch C, Wichmann HE, Kast K, Deissler H, Engel C, Muller-Myhsok B, Neveling K, Kiechle M, Mathew CG, Schindler D, Schmutzler RK, Hanenberg H (2010) Germline mutations in breast and ovarian cancer pedigrees establish RAD51C as a human cancer susceptibility gene. Nat Genet 42:410–414PubMedCrossRef Meindl A, Hellebrand H, Wiek C, Erven V, Wappenschmidt B, Niederacher D, Freund M, Lichtner P, Hartmann L, Schaal H, Ramser J, Honisch E, Kubisch C, Wichmann HE, Kast K, Deissler H, Engel C, Muller-Myhsok B, Neveling K, Kiechle M, Mathew CG, Schindler D, Schmutzler RK, Hanenberg H (2010) Germline mutations in breast and ovarian cancer pedigrees establish RAD51C as a human cancer susceptibility gene. Nat Genet 42:410–414PubMedCrossRef
8.
go back to reference Masson JY, Stasiak AZ, Stasiak A, Benson FE, West SC (2001) Complex formation by the human RAD51C and XRCC3 recombination repair proteins. Proc Natl Acad Sci USA 98:8440–8446PubMedCrossRef Masson JY, Stasiak AZ, Stasiak A, Benson FE, West SC (2001) Complex formation by the human RAD51C and XRCC3 recombination repair proteins. Proc Natl Acad Sci USA 98:8440–8446PubMedCrossRef
9.
go back to reference Masson JY, Tarsounas MC, Stasiak AZ, Stasiak A, Shah R, McIlwraith MJ, Benson FE, West SC (2001) Identification and purification of two distinct complexes containing the five RAD51 paralogs. Genes Dev 15:3296–3307PubMedCrossRef Masson JY, Tarsounas MC, Stasiak AZ, Stasiak A, Shah R, McIlwraith MJ, Benson FE, West SC (2001) Identification and purification of two distinct complexes containing the five RAD51 paralogs. Genes Dev 15:3296–3307PubMedCrossRef
10.
go back to reference Liu Y, Masson JY, Shah R, O’Regan P, West SC (2004) RAD51C is required for Holliday junction processing in mammalian cells. Science 303:243–246PubMedCrossRef Liu Y, Masson JY, Shah R, O’Regan P, West SC (2004) RAD51C is required for Holliday junction processing in mammalian cells. Science 303:243–246PubMedCrossRef
11.
go back to reference Moldovan GL, D’Andrea AD (2009) How the Fanconi anemia pathway guards the genome. Annu Rev Genet 43:223–249PubMedCrossRef Moldovan GL, D’Andrea AD (2009) How the Fanconi anemia pathway guards the genome. Annu Rev Genet 43:223–249PubMedCrossRef
12.
go back to reference Seal S, Thompson D, Renwick A, Elliott A, Kelly P, Barfoot R, Chagtai T, Jayatilake H, Ahmed M, Spanova K, North B, McGuffog L, Evans DG, Eccles D, Breast Cancer Susceptibility Collaboration (UK), Easton DF, Stratton MR, Rahman N (2006) Truncating mutations in the Fanconi anemia J gene BRIP1 are low-penetrance breast cancer susceptibility alleles. Nat Genet 38:1239–1241PubMedCrossRef Seal S, Thompson D, Renwick A, Elliott A, Kelly P, Barfoot R, Chagtai T, Jayatilake H, Ahmed M, Spanova K, North B, McGuffog L, Evans DG, Eccles D, Breast Cancer Susceptibility Collaboration (UK), Easton DF, Stratton MR, Rahman N (2006) Truncating mutations in the Fanconi anemia J gene BRIP1 are low-penetrance breast cancer susceptibility alleles. Nat Genet 38:1239–1241PubMedCrossRef
13.
go back to reference Huusko P, Pääkkönen K, Launonen V, Pöyhönen M, Blanco G, Kauppila A, Puistola U, Kiviniemi H, Kujala M, Leisti J, Winqvist R (1998) Evidence of founder mutations in Finnish BRCA1 and BRCA2 families. Am J Hum Genet 62:1544–1548PubMedCrossRef Huusko P, Pääkkönen K, Launonen V, Pöyhönen M, Blanco G, Kauppila A, Puistola U, Kiviniemi H, Kujala M, Leisti J, Winqvist R (1998) Evidence of founder mutations in Finnish BRCA1 and BRCA2 families. Am J Hum Genet 62:1544–1548PubMedCrossRef
14.
go back to reference Hartikainen JM, Tuhkanen H, Kataja V, Eskelinen M, Uusitupa M, Kosma VM, Mannermaa A (2006) Refinement of the 22q12–q13 breast cancer-associated region: evidence of TMPRSS6 as a candidate gene in an eastern Finnish population. Clin Cancer Res 12:1454–1462PubMedCrossRef Hartikainen JM, Tuhkanen H, Kataja V, Eskelinen M, Uusitupa M, Kosma VM, Mannermaa A (2006) Refinement of the 22q12–q13 breast cancer-associated region: evidence of TMPRSS6 as a candidate gene in an eastern Finnish population. Clin Cancer Res 12:1454–1462PubMedCrossRef
15.
go back to reference Kumar S, Nei M, Dudley J, Tamura K (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9:299–306PubMedCrossRef Kumar S, Nei M, Dudley J, Tamura K (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9:299–306PubMedCrossRef
16.
go back to reference Shih HA, Nathanson KL, Seal S, Collins N, Stratton MR, Rebbeck TR, Weber BL (2000) BRCA1 and BRCA2 mutations in breast cancer families with multiple primary cancers. Clin Cancer Res 6:4259–4264PubMed Shih HA, Nathanson KL, Seal S, Collins N, Stratton MR, Rebbeck TR, Weber BL (2000) BRCA1 and BRCA2 mutations in breast cancer families with multiple primary cancers. Clin Cancer Res 6:4259–4264PubMed
17.
go back to reference Akbari MR, Tonin P, Foulkes WD, Ghadirian P, Tischkowitz M, Narod SA (2010) RAD51C germline mutations in breast and ovarian cancer patients. Breast Cancer Res 12:404PubMedCrossRef Akbari MR, Tonin P, Foulkes WD, Ghadirian P, Tischkowitz M, Narod SA (2010) RAD51C germline mutations in breast and ovarian cancer patients. Breast Cancer Res 12:404PubMedCrossRef
18.
go back to reference Zheng Y, Zhang J, Hope K, Niu Q, Huo D, Olopade OI (2010) Screening RAD51C nucleotide alterations in patients with a family history of breast and ovarian cancer. Breast Cancer Res Treat 124:857–861 Zheng Y, Zhang J, Hope K, Niu Q, Huo D, Olopade OI (2010) Screening RAD51C nucleotide alterations in patients with a family history of breast and ovarian cancer. Breast Cancer Res Treat 124:857–861
19.
go back to reference Silvestri V, Rizzolo P, Falchetti M, Zanna I, Masala G, Palli D, Ottini L (2011) Mutation screening of RAD51C in male breast cancer patients. Breast Cancer Res 13:404PubMed Silvestri V, Rizzolo P, Falchetti M, Zanna I, Masala G, Palli D, Ottini L (2011) Mutation screening of RAD51C in male breast cancer patients. Breast Cancer Res 13:404PubMed
20.
go back to reference Wong MW, Nordfors C, Mossman D Pecenpetelovska G, Avery-Kiejda KA, Talseth-Palmer B, Bowden NA, Scott RJ (2011) BRIP1, PALB2, and RAD51C mutation analysis reveals their relative importance as genetic susceptibility factors for breast cancer. Breast Cancer Res Treat 127:853–859 Wong MW, Nordfors C, Mossman D Pecenpetelovska G, Avery-Kiejda KA, Talseth-Palmer B, Bowden NA, Scott RJ (2011) BRIP1, PALB2, and RAD51C mutation analysis reveals their relative importance as genetic susceptibility factors for breast cancer. Breast Cancer Res Treat 127:853–859
21.
go back to reference Pang Z, Yao L, Zhang J, Ouyang T, Li J, Wang T, Fan Z, Fan T, Lin B, Xie Y (2011) RAD51C germline mutations in Chinese women with familial breast cancer. Breast Cancer Res Treat [Epub ahead of print] Pang Z, Yao L, Zhang J, Ouyang T, Li J, Wang T, Fan Z, Fan T, Lin B, Xie Y (2011) RAD51C germline mutations in Chinese women with familial breast cancer. Breast Cancer Res Treat [Epub ahead of print]
22.
go back to reference Romero A, Perez-Segura P, Tosar A Garcia-Saenz JA, Diaz-Rubio E, Caldes T, de la Hoya M (2011) A HRM-based screening method detects RAD51C germ-line deleterious mutations in Spanish breast and ovarian cancer families. Breast Cancer Res Treat [Epub ahead of print] Romero A, Perez-Segura P, Tosar A Garcia-Saenz JA, Diaz-Rubio E, Caldes T, de la Hoya M (2011) A HRM-based screening method detects RAD51C germ-line deleterious mutations in Spanish breast and ovarian cancer families. Breast Cancer Res Treat [Epub ahead of print]
23.
go back to reference French CA, Tambini CE, Thacker J (2003) Identification of functional domains in the RAD51L2 (RAD51C) protein and its requirement for gene conversion. J Biol Chem 278:45445–45450PubMedCrossRef French CA, Tambini CE, Thacker J (2003) Identification of functional domains in the RAD51L2 (RAD51C) protein and its requirement for gene conversion. J Biol Chem 278:45445–45450PubMedCrossRef
Metadata
Title
Further evidence for the contribution of the RAD51C gene in hereditary breast and ovarian cancer susceptibility
Authors
Mikko Vuorela
Katri Pylkäs
Jaana M. Hartikainen
Karin Sundfeldt
Annika Lindblom
Anna von Wachenfeldt Wäppling
Maria Haanpää
Ulla Puistola
Annika Rosengren
Maarit Anttila
Veli-Matti Kosma
Arto Mannermaa
Robert Winqvist
Publication date
01-12-2011
Publisher
Springer US
Published in
Breast Cancer Research and Treatment / Issue 3/2011
Print ISSN: 0167-6806
Electronic ISSN: 1573-7217
DOI
https://doi.org/10.1007/s10549-011-1677-x

Other articles of this Issue 3/2011

Breast Cancer Research and Treatment 3/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine