Skip to main content
Top
Published in: Breast Cancer Research and Treatment 3/2011

01-10-2011 | Preclinical study

Mitochondrial amplification selectively increases doxorubicin sensitivity in breast cancer cells with acquired antiestrogen resistance

Authors: Andrew Skildum, Kenneth Dornfeld, Kendall Wallace

Published in: Breast Cancer Research and Treatment | Issue 3/2011

Login to get access

Abstract

The metabolic phenotype of cancer, characterized by uncoupled mitochondrial respiration and increased mitochondrial oxidative stress, is an attractive pharmacological target for sensitizing cancer cells to therapies that rely on oxidative stress for their tumor specific cytotoxicity. The identification of specific cancer sub-types for which metabolic priming of tumors prior to chemotherapy is beneficial is critical, particularly in heterogeneous diseases such as breast cancer. The effects of the thiazolidinedione drug troglitazone were examined in normal mammary epithelial cells and cancer cell lines representing three clinically relevant breast cancer phenotypes. Endpoints measured were PGC1α mRNA expression, proliferation, cell cycle phase distribution, mitochondrial capacity and superoxide generation, and sensitivity to the chemotherapy drug doxorubicin. Troglitazone increases expression of PGC1α, a key mediator of mitochondrial biogenesis, in normal mammary epithelial cells and in breast cancer cell lines. The induction of PGC1α mRNA is at least partially dependent on PPARγ activation. In estrogen receptor negative cells and cells with acquired antiestrogen resistance, troglitazone treatment increased mitochondrial superoxide production and mitochondrial capacity. At pharmacologically achievable doses, troglitazone pretreatment significantly enhanced the sensitivity of cancer cells to the chemotherapy agent doxorubicin. This effect was most dramatic in estrogen receptor positive cells with acquired antiestrogen resistance, in which troglitazone and doxorubicin combined had superadditive effects compared to treatment with either agent alone. In contrast, troglitazone treatment did not appreciably sensitize non-malignant mammary epithelial cells to doxorubicin induced cytotoxicity, despite increasing PGC1α mRNA. These data suggest that troglitazone or a similarly acting compound could be used to selectively prime tumor cells to the cytotoxic effects of anticancer agents such as doxorubicin and ionizing radiation. This novel treatment strategy may be most effective in women with antiestrogen insensitive tumors, a patient population with historically poor response to traditional therapies.
Literature
1.
go back to reference Warburg O (1956) On respiratory impairment in cancer cells. Science 124(3215):269–270PubMed Warburg O (1956) On respiratory impairment in cancer cells. Science 124(3215):269–270PubMed
3.
go back to reference Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324(5930):1029–1033PubMedCrossRef Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324(5930):1029–1033PubMedCrossRef
4.
5.
go back to reference Brandon M, Baldi P, Wallace DC (2006) Mitochondrial mutations in cancer. Oncogene 25(34):4647–4662PubMedCrossRef Brandon M, Baldi P, Wallace DC (2006) Mitochondrial mutations in cancer. Oncogene 25(34):4647–4662PubMedCrossRef
6.
go back to reference Chatterjee A, Mambo E, Sidransky D (2006) Mitochondrial DNA mutations in human cancer. Oncogene 25(34):4663–4674PubMedCrossRef Chatterjee A, Mambo E, Sidransky D (2006) Mitochondrial DNA mutations in human cancer. Oncogene 25(34):4663–4674PubMedCrossRef
8.
9.
go back to reference Weinberg F et al (2010) Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci USA 107(19):8788–8793PubMedCrossRef Weinberg F et al (2010) Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci USA 107(19):8788–8793PubMedCrossRef
10.
go back to reference Harrington KJ et al (2000) Pegylated liposome-encapsulated doxorubicin and cisplatin enhance the effect of radiotherapy in a tumor xenograft model. Clin Cancer Res 6(12):4939–4949PubMed Harrington KJ et al (2000) Pegylated liposome-encapsulated doxorubicin and cisplatin enhance the effect of radiotherapy in a tumor xenograft model. Clin Cancer Res 6(12):4939–4949PubMed
11.
go back to reference Pisters PW et al (2003) Phase I trial of preoperative concurrent doxorubicin and radiation therapy, surgical resection, and intraoperative electron-beam radiation therapy for patients with localized retroperitoneal sarcoma. J Clin Oncol 21(16):3092–3097PubMedCrossRef Pisters PW et al (2003) Phase I trial of preoperative concurrent doxorubicin and radiation therapy, surgical resection, and intraoperative electron-beam radiation therapy for patients with localized retroperitoneal sarcoma. J Clin Oncol 21(16):3092–3097PubMedCrossRef
12.
go back to reference Pisters PW et al (2004) Phase I trial of preoperative doxorubicin-based concurrent chemoradiation and surgical resection for localized extremity and body wall soft tissue sarcomas. J Clin Oncol 22(16):3375–3380PubMedCrossRef Pisters PW et al (2004) Phase I trial of preoperative doxorubicin-based concurrent chemoradiation and surgical resection for localized extremity and body wall soft tissue sarcomas. J Clin Oncol 22(16):3375–3380PubMedCrossRef
13.
go back to reference Zaytseva YY et al (2008) Down-regulation of PPARgamma1 suppresses cell growth and induces apoptosis in MCF-7 breast cancer cells. Mol Cancer 7:90PubMedCrossRef Zaytseva YY et al (2008) Down-regulation of PPARgamma1 suppresses cell growth and induces apoptosis in MCF-7 breast cancer cells. Mol Cancer 7:90PubMedCrossRef
14.
go back to reference Patel J, Anderson RJ, Rappaport EB (1999) Rosiglitazone monotherapy improves glycaemic control in patients with type 2 diabetes: a twelve-week randomized, placebo-controlled study. Diabetes Obes Metab 1(3):165–172PubMedCrossRef Patel J, Anderson RJ, Rappaport EB (1999) Rosiglitazone monotherapy improves glycaemic control in patients with type 2 diabetes: a twelve-week randomized, placebo-controlled study. Diabetes Obes Metab 1(3):165–172PubMedCrossRef
15.
go back to reference Suter SL et al (1992) Metabolic effects of new oral hypoglycemic agent CS-045 in NIDDM subjects. Diabetes Care 15(2):193–203PubMedCrossRef Suter SL et al (1992) Metabolic effects of new oral hypoglycemic agent CS-045 in NIDDM subjects. Diabetes Care 15(2):193–203PubMedCrossRef
16.
go back to reference Puigserver P, Spiegelman BM (2003) Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr Rev 24(1):78–90PubMedCrossRef Puigserver P, Spiegelman BM (2003) Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr Rev 24(1):78–90PubMedCrossRef
17.
go back to reference Schreiber SN et al (2004) The estrogen-related receptor alpha (ERRalpha) functions in PPARgamma coactivator 1alpha (PGC-1alpha)-induced mitochondrial biogenesis. Proc Natl Acad Sci USA 101(17):6472–6477PubMedCrossRef Schreiber SN et al (2004) The estrogen-related receptor alpha (ERRalpha) functions in PPARgamma coactivator 1alpha (PGC-1alpha)-induced mitochondrial biogenesis. Proc Natl Acad Sci USA 101(17):6472–6477PubMedCrossRef
18.
go back to reference Puigserver P et al (1998) A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92(6):829–839PubMedCrossRef Puigserver P et al (1998) A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92(6):829–839PubMedCrossRef
19.
go back to reference Osborne CK, Schiff R (2005) Estrogen-receptor biology: continuing progress and therapeutic implications. J Clin Oncol 23(8):1616–1622PubMedCrossRef Osborne CK, Schiff R (2005) Estrogen-receptor biology: continuing progress and therapeutic implications. J Clin Oncol 23(8):1616–1622PubMedCrossRef
20.
go back to reference Clarke R et al (2003) Antiestrogen resistance in breast cancer and the role of estrogen receptor signaling. Oncogene 22(47):7316–7339PubMedCrossRef Clarke R et al (2003) Antiestrogen resistance in breast cancer and the role of estrogen receptor signaling. Oncogene 22(47):7316–7339PubMedCrossRef
21.
go back to reference Yu HN et al (2008) Troglitazone enhances tamoxifen-induced growth inhibitory activity of MCF-7 cells. Biochem Biophys Res Commun 377(1):242–247PubMedCrossRef Yu HN et al (2008) Troglitazone enhances tamoxifen-induced growth inhibitory activity of MCF-7 cells. Biochem Biophys Res Commun 377(1):242–247PubMedCrossRef
22.
go back to reference Suzuki T et al (2006) Peroxisome proliferator-activated receptor gamma in human breast carcinoma: a modulator of estrogenic actions. Endocr Relat Cancer 13(1):233–250PubMedCrossRef Suzuki T et al (2006) Peroxisome proliferator-activated receptor gamma in human breast carcinoma: a modulator of estrogenic actions. Endocr Relat Cancer 13(1):233–250PubMedCrossRef
23.
go back to reference Talbert DR et al (2008) Transactivation of ERalpha by Rosiglitazone induces proliferation in breast cancer cells. Breast Cancer Res Treat 108(1):23–33PubMedCrossRef Talbert DR et al (2008) Transactivation of ERalpha by Rosiglitazone induces proliferation in breast cancer cells. Breast Cancer Res Treat 108(1):23–33PubMedCrossRef
24.
go back to reference Wang X, Kilgore MW (2002) Signal cross-talk between estrogen receptor alpha and beta and the peroxisome proliferator-activated receptor gamma1 in MDA-MB-231 and MCF-7 breast cancer cells. Mol Cell Endocrinol 194(1–2):123–133PubMedCrossRef Wang X, Kilgore MW (2002) Signal cross-talk between estrogen receptor alpha and beta and the peroxisome proliferator-activated receptor gamma1 in MDA-MB-231 and MCF-7 breast cancer cells. Mol Cell Endocrinol 194(1–2):123–133PubMedCrossRef
25.
go back to reference Yin Y et al (2009) Inhibition of peroxisome proliferator-activated receptor gamma increases estrogen receptor-dependent tumor specification. Cancer Res 69(2):687–694PubMedCrossRef Yin Y et al (2009) Inhibition of peroxisome proliferator-activated receptor gamma increases estrogen receptor-dependent tumor specification. Cancer Res 69(2):687–694PubMedCrossRef
26.
go back to reference Llopis J et al (2000) Ligand-dependent interactions of coactivators steroid receptor coactivator-1 and peroxisome proliferator-activated receptor binding protein with nuclear hormone receptors can be imaged in live cells and are required for transcription. Proc Natl Acad Sci USA 97(8):4363–4368PubMedCrossRef Llopis J et al (2000) Ligand-dependent interactions of coactivators steroid receptor coactivator-1 and peroxisome proliferator-activated receptor binding protein with nuclear hormone receptors can be imaged in live cells and are required for transcription. Proc Natl Acad Sci USA 97(8):4363–4368PubMedCrossRef
27.
go back to reference Gardner OS et al (2003) Dependence of peroxisome proliferator-activated receptor ligand-induced mitogen-activated protein kinase signaling on epidermal growth factor receptor transactivation. J Biol Chem 278(47):46261–46269PubMedCrossRef Gardner OS et al (2003) Dependence of peroxisome proliferator-activated receptor ligand-induced mitogen-activated protein kinase signaling on epidermal growth factor receptor transactivation. J Biol Chem 278(47):46261–46269PubMedCrossRef
28.
go back to reference Skildum A, Faivre E, Lange CA (2005) Progesterone receptors induce cell cycle progression via activation of mitogen-activated protein kinases. Mol Endocrinol 19(2):327–339PubMedCrossRef Skildum A, Faivre E, Lange CA (2005) Progesterone receptors induce cell cycle progression via activation of mitogen-activated protein kinases. Mol Endocrinol 19(2):327–339PubMedCrossRef
29.
go back to reference Stampfer MR, Bartley JC (1985) Induction of transformation and continuous cell lines from normal human mammary epithelial cells after exposure to benzo[a]pyrene. Proc Natl Acad Sci USA 82(8):2394–2398PubMedCrossRef Stampfer MR, Bartley JC (1985) Induction of transformation and continuous cell lines from normal human mammary epithelial cells after exposure to benzo[a]pyrene. Proc Natl Acad Sci USA 82(8):2394–2398PubMedCrossRef
30.
go back to reference Brunner N et al (1997) MCF7/LCC9: an antiestrogen-resistant MCF-7 variant in which acquired resistance to the steroidal antiestrogen ICI 182,780 confers an early cross-resistance to the nonsteroidal antiestrogen tamoxifen. Cancer Res 57(16):3486–3493PubMed Brunner N et al (1997) MCF7/LCC9: an antiestrogen-resistant MCF-7 variant in which acquired resistance to the steroidal antiestrogen ICI 182,780 confers an early cross-resistance to the nonsteroidal antiestrogen tamoxifen. Cancer Res 57(16):3486–3493PubMed
31.
go back to reference Brooks SC, Locke ER, Soule HD (1973) Estrogen receptor in a human cell line (MCF-7) from breast carcinoma. J Biol Chem 248(17):6251–6253PubMed Brooks SC, Locke ER, Soule HD (1973) Estrogen receptor in a human cell line (MCF-7) from breast carcinoma. J Biol Chem 248(17):6251–6253PubMed
32.
go back to reference Cailleau R, Olive M, Cruciger QV (1978) Long-term human breast carcinoma cell lines of metastatic origin: preliminary characterization. In Vitro 14(11):911–915PubMedCrossRef Cailleau R, Olive M, Cruciger QV (1978) Long-term human breast carcinoma cell lines of metastatic origin: preliminary characterization. In Vitro 14(11):911–915PubMedCrossRef
33.
go back to reference Osborne CK, Wakeling A, Nicholson RI (2004) Fulvestrant: an oestrogen receptor antagonist with a novel mechanism of action. Br J Cancer 90(1):S2–S6PubMedCrossRef Osborne CK, Wakeling A, Nicholson RI (2004) Fulvestrant: an oestrogen receptor antagonist with a novel mechanism of action. Br J Cancer 90(1):S2–S6PubMedCrossRef
34.
go back to reference Pagel-Langenickel I et al (2008) PGC-1alpha integrates insulin signaling, mitochondrial regulation, and bioenergetic function in skeletal muscle. J Biol Chem 283(33):22464–22472PubMedCrossRef Pagel-Langenickel I et al (2008) PGC-1alpha integrates insulin signaling, mitochondrial regulation, and bioenergetic function in skeletal muscle. J Biol Chem 283(33):22464–22472PubMedCrossRef
35.
go back to reference Young PW et al (1998) Identification of high-affinity binding sites for the insulin sensitizer rosiglitazone (BRL-49653) in rodent and human adipocytes using a radioiodinated ligand for peroxisomal proliferator-activated receptor gamma. J Pharmacol Exp Ther 284(2):751–759PubMed Young PW et al (1998) Identification of high-affinity binding sites for the insulin sensitizer rosiglitazone (BRL-49653) in rodent and human adipocytes using a radioiodinated ligand for peroxisomal proliferator-activated receptor gamma. J Pharmacol Exp Ther 284(2):751–759PubMed
36.
go back to reference Li X et al (2009) Troglitazone inhibits cell proliferation by attenuation of epidermal growth factor receptor signaling independent of peroxisome proliferator-activated receptor gamma. Cell Res 19(6):720–732PubMedCrossRef Li X et al (2009) Troglitazone inhibits cell proliferation by attenuation of epidermal growth factor receptor signaling independent of peroxisome proliferator-activated receptor gamma. Cell Res 19(6):720–732PubMedCrossRef
37.
go back to reference Turturro F et al (2004) Troglitazone acts on cellular pH and DNA synthesis through a peroxisome proliferator-activated receptor gamma-independent mechanism in breast cancer-derived cell lines. Clin Cancer Res 10(20):7022–7030PubMedCrossRef Turturro F et al (2004) Troglitazone acts on cellular pH and DNA synthesis through a peroxisome proliferator-activated receptor gamma-independent mechanism in breast cancer-derived cell lines. Clin Cancer Res 10(20):7022–7030PubMedCrossRef
38.
go back to reference Yang CC et al (2007) Peroxisome proliferator-activated receptor gamma-independent suppression of androgen receptor expression by troglitazone mechanism and pharmacologic exploitation. Cancer Res 67(7):3229–3238PubMedCrossRef Yang CC et al (2007) Peroxisome proliferator-activated receptor gamma-independent suppression of androgen receptor expression by troglitazone mechanism and pharmacologic exploitation. Cancer Res 67(7):3229–3238PubMedCrossRef
39.
go back to reference Leesnitzer LM et al (2002) Functional consequences of cysteine modification in the ligand binding sites of peroxisome proliferator activated receptors by GW9662. Biochemistry 41(21):6640–6650PubMedCrossRef Leesnitzer LM et al (2002) Functional consequences of cysteine modification in the ligand binding sites of peroxisome proliferator activated receptors by GW9662. Biochemistry 41(21):6640–6650PubMedCrossRef
40.
go back to reference Berthiaume JM, Wallace KB (2007) Adriamycin-induced oxidative mitochondrial cardiotoxicity. Cell Biol Toxicol 23(1):15–25PubMedCrossRef Berthiaume JM, Wallace KB (2007) Adriamycin-induced oxidative mitochondrial cardiotoxicity. Cell Biol Toxicol 23(1):15–25PubMedCrossRef
41.
go back to reference Tallarida RJ (2006) An overview of drug combination analysis with isobolograms. J Pharmacol Exp Ther 319(1):1–7PubMedCrossRef Tallarida RJ (2006) An overview of drug combination analysis with isobolograms. J Pharmacol Exp Ther 319(1):1–7PubMedCrossRef
42.
go back to reference Vander Heiden MG et al (2010) Evidence for an alternative glycolytic pathway in rapidly proliferating cells. Science 329(5998):1492–1499PubMedCrossRef Vander Heiden MG et al (2010) Evidence for an alternative glycolytic pathway in rapidly proliferating cells. Science 329(5998):1492–1499PubMedCrossRef
43.
go back to reference Burstein HJ et al (2003) Use of the peroxisome proliferator-activated receptor (PPAR) gamma ligand troglitazone as treatment for refractory breast cancer: a phase II study. Breast Cancer Res Treat 79(3):391–397PubMedCrossRef Burstein HJ et al (2003) Use of the peroxisome proliferator-activated receptor (PPAR) gamma ligand troglitazone as treatment for refractory breast cancer: a phase II study. Breast Cancer Res Treat 79(3):391–397PubMedCrossRef
44.
go back to reference Davies GF, Juurlink BH, Harkness TA (2009) Troglitazone reverses the multiple drug resistance phenotype in cancer cells. Drug Des Dev Ther 3:79–88 Davies GF, Juurlink BH, Harkness TA (2009) Troglitazone reverses the multiple drug resistance phenotype in cancer cells. Drug Des Dev Ther 3:79–88
45.
go back to reference Wei S, Kulp SK, Chen CS (2010) Energy restriction as an antitumor target of thiazolidinediones. J Biol Chem 285(13):9780–9791PubMedCrossRef Wei S, Kulp SK, Chen CS (2010) Energy restriction as an antitumor target of thiazolidinediones. J Biol Chem 285(13):9780–9791PubMedCrossRef
46.
go back to reference Yan J et al (2010) Autophagy augmented by troglitazone is independent of EGFR transactivation and correlated with AMP-activated protein kinase signaling. Autophagy 6(1):67–73PubMedCrossRef Yan J et al (2010) Autophagy augmented by troglitazone is independent of EGFR transactivation and correlated with AMP-activated protein kinase signaling. Autophagy 6(1):67–73PubMedCrossRef
47.
go back to reference Yin F et al (2001) Troglitazone inhibits growth of MCF-7 breast carcinoma cells by targeting G1 cell cycle regulators. Biochem Biophys Res Commun 286(5):916–922PubMedCrossRef Yin F et al (2001) Troglitazone inhibits growth of MCF-7 breast carcinoma cells by targeting G1 cell cycle regulators. Biochem Biophys Res Commun 286(5):916–922PubMedCrossRef
48.
go back to reference Wang Y, Fang F, Wong CW Troglitazone is an estrogen-related receptor alpha and gamma inverse agonist. Biochem Pharmacol 80(1):80–85 Wang Y, Fang F, Wong CW Troglitazone is an estrogen-related receptor alpha and gamma inverse agonist. Biochem Pharmacol 80(1):80–85
49.
go back to reference Madsen KG et al (2008) Electrochemical oxidation of troglitazone: identification and characterization of the major reactive metabolite in liver microsomes. Chem Res Toxicol 21(10):2035–2041PubMedCrossRef Madsen KG et al (2008) Electrochemical oxidation of troglitazone: identification and characterization of the major reactive metabolite in liver microsomes. Chem Res Toxicol 21(10):2035–2041PubMedCrossRef
50.
51.
go back to reference Loi CM et al (1997) Lack of effect of type II diabetes on the pharmacokinetics of troglitazone in a multiple-dose study. J Clin Pharmacol 37(12):1114–1120PubMed Loi CM et al (1997) Lack of effect of type II diabetes on the pharmacokinetics of troglitazone in a multiple-dose study. J Clin Pharmacol 37(12):1114–1120PubMed
52.
go back to reference Lee YM et al (2008) Mechanisms of 2-methoxyestradiol-induced apoptosis and G2/M cell-cycle arrest of nasopharyngeal carcinoma cells. Cancer Lett 268(2):295–307PubMedCrossRef Lee YM et al (2008) Mechanisms of 2-methoxyestradiol-induced apoptosis and G2/M cell-cycle arrest of nasopharyngeal carcinoma cells. Cancer Lett 268(2):295–307PubMedCrossRef
53.
go back to reference Russo T et al (1995) A p53-independent pathway for activation of WAF1/CIP1 expression following oxidative stress. J Biol Chem 270(49):29386–29391PubMedCrossRef Russo T et al (1995) A p53-independent pathway for activation of WAF1/CIP1 expression following oxidative stress. J Biol Chem 270(49):29386–29391PubMedCrossRef
54.
go back to reference Hsu CW et al (2010) Mitochondrial DNA content as a potential marker to predict response to anthracycline in breast cancer patients. Breast J 16(3):264–270 Hsu CW et al (2010) Mitochondrial DNA content as a potential marker to predict response to anthracycline in breast cancer patients. Breast J 16(3):264–270
55.
go back to reference Fujisawa K et al (2009) TZDs reduce mitochondrial ROS production and enhance mitochondrial biogenesis. Biochem Biophys Res Commun 379(1):43–48PubMedCrossRef Fujisawa K et al (2009) TZDs reduce mitochondrial ROS production and enhance mitochondrial biogenesis. Biochem Biophys Res Commun 379(1):43–48PubMedCrossRef
56.
go back to reference Kukidome D et al (2006) Activation of AMP-activated protein kinase reduces hyperglycemia-induced mitochondrial reactive oxygen species production and promotes mitochondrial biogenesis in human umbilical vein endothelial cells. Diabetes 55(1):120–127PubMedCrossRef Kukidome D et al (2006) Activation of AMP-activated protein kinase reduces hyperglycemia-induced mitochondrial reactive oxygen species production and promotes mitochondrial biogenesis in human umbilical vein endothelial cells. Diabetes 55(1):120–127PubMedCrossRef
57.
go back to reference Fukano M et al (2000) Subacute hepatic failure associated with a new antidiabetic agent, troglitazone: a case report with autopsy examination. Hum Pathol 31(2):250–253PubMedCrossRef Fukano M et al (2000) Subacute hepatic failure associated with a new antidiabetic agent, troglitazone: a case report with autopsy examination. Hum Pathol 31(2):250–253PubMedCrossRef
58.
go back to reference Watkins PB, Whitcomb RW (1998) Hepatic dysfunction associated with troglitazone. N Engl J Med 338(13):916–917PubMedCrossRef Watkins PB, Whitcomb RW (1998) Hepatic dysfunction associated with troglitazone. N Engl J Med 338(13):916–917PubMedCrossRef
59.
go back to reference Ong MM, Latchoumycandane C, Boelsterli UA (2007) Troglitazone-induced hepatic necrosis in an animal model of silent genetic mitochondrial abnormalities. Toxicol Sci 97(1):205–213PubMedCrossRef Ong MM, Latchoumycandane C, Boelsterli UA (2007) Troglitazone-induced hepatic necrosis in an animal model of silent genetic mitochondrial abnormalities. Toxicol Sci 97(1):205–213PubMedCrossRef
60.
go back to reference Henney JE (2000) Withdrawal of Troglitazone and Cisapride. JAMA 283 Henney JE (2000) Withdrawal of Troglitazone and Cisapride. JAMA 283
61.
go back to reference Lipscombe LL et al (2007) Thiazolidinediones and cardiovascular outcomes in older patients with diabetes. JAMA 298(22):2634–2643PubMedCrossRef Lipscombe LL et al (2007) Thiazolidinediones and cardiovascular outcomes in older patients with diabetes. JAMA 298(22):2634–2643PubMedCrossRef
Metadata
Title
Mitochondrial amplification selectively increases doxorubicin sensitivity in breast cancer cells with acquired antiestrogen resistance
Authors
Andrew Skildum
Kenneth Dornfeld
Kendall Wallace
Publication date
01-10-2011
Publisher
Springer US
Published in
Breast Cancer Research and Treatment / Issue 3/2011
Print ISSN: 0167-6806
Electronic ISSN: 1573-7217
DOI
https://doi.org/10.1007/s10549-010-1268-2

Other articles of this Issue 3/2011

Breast Cancer Research and Treatment 3/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine