Skip to main content
Top
Published in: Breast Cancer Research and Treatment 3/2010

01-06-2010 | Brief Report

Density of tumour stroma is correlated to outcome after adoptive transfer of CD4+ and CD8+ T cells in a murine mammary carcinoma model

Authors: Michele L. Martin, Erika M. Wall, Emily Sandwith, Adam Girardin, Katy Milne, Peter H. Watson, Brad H. Nelson

Published in: Breast Cancer Research and Treatment | Issue 3/2010

Login to get access

Abstract

Adoptive immunotherapy shows promise for the treatment of cancer; however, partial or mixed responses remain common outcomes due to the heterogeneity of tumours. We studied three murine mammary tumour lines that express an ovalbumin-tagged version of HER-2/neu and reproducibly undergo complete regression (CR), partial regression (PR), or progressive disease (PD) after adoptive transfer of ovalbumin-specific CD8+ (OT-I) and CD4+ (OT-II) T cells. The three tumour lines were implanted in immunocompetent C57Bl/6 host mice, and established tumours were treated by adoptive transfer of naive OT-I and OT-II T cells. Tumours of the CR and PR classes triggered almost indistinguishable T cell responses in terms of activation, proliferation, trafficking to the tumour site, infiltration of tumour stroma, and intratumoural T cell proliferation; however, tumours of the PR class showed reduced infiltration of tumour epithelium by donor T cells. PD responses were associated with early impairment of T cell activation and proliferation in draining lymph node, followed by negligible infiltration of tumour tissue by donor T cells. Histopathological determinants of outcome were investigated through an unsupervised analysis of 64 untreated tumours representing the three response classes. Tumours of the CR class had proportionately more stroma, which had a looser, more collagen-rich histological appearance. Thus, the amount and composition of tumour stroma distinguished successfully (CR) from unsuccessful (PR or PD) outcomes after adoptive T cell transfer, a finding that might facilitate the design of immunotherapy trials for human breast cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ, Topalian SL, Sherry R, Restifo NP, Hubicki AM et al (2002) Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298(5594):850–854CrossRefPubMed Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ, Topalian SL, Sherry R, Restifo NP, Hubicki AM et al (2002) Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298(5594):850–854CrossRefPubMed
2.
go back to reference Kawaoka T, Oka M, Takashima M, Ueno T, Yamamoto K, Yahara N, Yoshino S, Hazama S (2008) Adoptive immunotherapy for pancreatic cancer: cytotoxic T lymphocytes stimulated by the MUC1-expressing human pancreatic cancer cell line YPK-1. Oncol Rep 20(1):155–163PubMed Kawaoka T, Oka M, Takashima M, Ueno T, Yamamoto K, Yahara N, Yoshino S, Hazama S (2008) Adoptive immunotherapy for pancreatic cancer: cytotoxic T lymphocytes stimulated by the MUC1-expressing human pancreatic cancer cell line YPK-1. Oncol Rep 20(1):155–163PubMed
3.
go back to reference Kondo H, Hazama S, Kawaoka T, Yoshino S, Yoshida S, Tokuno K, Takashima M, Ueno T, Hinoda Y, Oka M (2008) Adoptive immunotherapy for pancreatic cancer using MUC1 peptide-pulsed dendritic cells and activated T lymphocytes. Anticancer Res 28(1B):379–387PubMed Kondo H, Hazama S, Kawaoka T, Yoshino S, Yoshida S, Tokuno K, Takashima M, Ueno T, Hinoda Y, Oka M (2008) Adoptive immunotherapy for pancreatic cancer using MUC1 peptide-pulsed dendritic cells and activated T lymphocytes. Anticancer Res 28(1B):379–387PubMed
4.
go back to reference Quintarelli C, Dotti G, De Angelis B, Hoyos V, Mims M, Luciano L, Heslop HE, Rooney CM, Pane F, Savoldo B (2008) Cytotoxic T lymphocytes directed to the preferentially expressed antigen of melanoma (PRAME) target chronic myeloid leukemia. Blood 112(5):1876–1885CrossRefPubMed Quintarelli C, Dotti G, De Angelis B, Hoyos V, Mims M, Luciano L, Heslop HE, Rooney CM, Pane F, Savoldo B (2008) Cytotoxic T lymphocytes directed to the preferentially expressed antigen of melanoma (PRAME) target chronic myeloid leukemia. Blood 112(5):1876–1885CrossRefPubMed
5.
go back to reference Robbins PF, Dudley ME, Wunderlich J, El-Gamil M, Li YF, Zhou J, Huang J, Powell DJ Jr, Rosenberg SA (2004) Cutting edge: persistence of transferred lymphocyte clonotypes correlates with cancer regression in patients receiving cell transfer therapy. J Immunol 173(12):7125–7130PubMed Robbins PF, Dudley ME, Wunderlich J, El-Gamil M, Li YF, Zhou J, Huang J, Powell DJ Jr, Rosenberg SA (2004) Cutting edge: persistence of transferred lymphocyte clonotypes correlates with cancer regression in patients receiving cell transfer therapy. J Immunol 173(12):7125–7130PubMed
6.
7.
go back to reference Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME (2008) Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer 8(4):299–308CrossRefPubMed Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME (2008) Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer 8(4):299–308CrossRefPubMed
8.
go back to reference Rosenberg SA, Dudley ME (2004) Cancer regression in patients with metastatic melanoma after the transfer of autologous antitumor lymphocytes. Proc Natl Acad Sci U S A 101(Suppl 2):14639–14645CrossRefPubMed Rosenberg SA, Dudley ME (2004) Cancer regression in patients with metastatic melanoma after the transfer of autologous antitumor lymphocytes. Proc Natl Acad Sci U S A 101(Suppl 2):14639–14645CrossRefPubMed
9.
go back to reference Dudley ME, Wunderlich JR, Yang JC, Sherry RM, Topalian SL, Restifo NP, Royal RE, Kammula U, White DE, Mavroukakis SA et al (2005) Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol 23(10):2346–2357CrossRefPubMed Dudley ME, Wunderlich JR, Yang JC, Sherry RM, Topalian SL, Restifo NP, Royal RE, Kammula U, White DE, Mavroukakis SA et al (2005) Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol 23(10):2346–2357CrossRefPubMed
10.
go back to reference Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM, Royal RE, Topalian SL, Kammula US, Restifo NP et al (2006) Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314(5796):126–129CrossRefPubMed Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM, Royal RE, Topalian SL, Kammula US, Restifo NP et al (2006) Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314(5796):126–129CrossRefPubMed
11.
go back to reference Dudley ME, Yang JC, Sherry R, Hughes MS, Royal R, Kammula U, Robbins PF, Huang J, Citrin DE, Leitman SF et al (2008) Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J Clin Oncol 26(32):5233–5239CrossRefPubMed Dudley ME, Yang JC, Sherry R, Hughes MS, Royal R, Kammula U, Robbins PF, Huang J, Citrin DE, Leitman SF et al (2008) Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J Clin Oncol 26(32):5233–5239CrossRefPubMed
12.
go back to reference Gajewski TF (2007) Failure at the effector phase: immune barriers at the level of the melanoma tumor microenvironment. Clin Cancer Res 13(18 Pt 1):5256–5261CrossRefPubMed Gajewski TF (2007) Failure at the effector phase: immune barriers at the level of the melanoma tumor microenvironment. Clin Cancer Res 13(18 Pt 1):5256–5261CrossRefPubMed
13.
14.
go back to reference Nelson BH (2008) The impact of T-cell immunity on ovarian cancer outcomes. Immunol Rev 222:101–116CrossRefPubMed Nelson BH (2008) The impact of T-cell immunity on ovarian cancer outcomes. Immunol Rev 222:101–116CrossRefPubMed
15.
go back to reference Li X, Ye F, Chen H, Lu W, Wan X, Xie X (2007) Human ovarian carcinoma cells generate CD4(+)CD25(+) regulatory T cells from peripheral CD4(+)CD25(-) T cells through secreting TGF-beta. Cancer Lett 253(1):144–153 Li X, Ye F, Chen H, Lu W, Wan X, Xie X (2007) Human ovarian carcinoma cells generate CD4(+)CD25(+) regulatory T cells from peripheral CD4(+)CD25(-) T cells through secreting TGF-beta. Cancer Lett 253(1):144–153
16.
go back to reference Kobayashi H, Boelte KC, Lin PC (2007) Endothelial cell adhesion molecules and cancer progression. Curr Med Chem 14(4):377–386CrossRefPubMed Kobayashi H, Boelte KC, Lin PC (2007) Endothelial cell adhesion molecules and cancer progression. Curr Med Chem 14(4):377–386CrossRefPubMed
17.
go back to reference Wu TC (2007) The role of vascular cell adhesion molecule-1 in tumor immune evasion. Cancer Res 67(13):6003–6006CrossRefPubMed Wu TC (2007) The role of vascular cell adhesion molecule-1 in tumor immune evasion. Cancer Res 67(13):6003–6006CrossRefPubMed
18.
go back to reference Chen ML, Pittet MJ, Gorelik L, Flavell RA, Weissleder R, von Boehmer H, Khazaie K (2005) Regulatory T cells suppress tumor-specific CD8 T cell cytotoxicity through TGF-beta signals in vivo. Proc Natl Acad Sci U S A 102(2):419–424CrossRefPubMed Chen ML, Pittet MJ, Gorelik L, Flavell RA, Weissleder R, von Boehmer H, Khazaie K (2005) Regulatory T cells suppress tumor-specific CD8 T cell cytotoxicity through TGF-beta signals in vivo. Proc Natl Acad Sci U S A 102(2):419–424CrossRefPubMed
19.
go back to reference Mustea A, Konsgen D, Braicu EI, Pirvulescu C, Sun P, Sofroni D, Lichtenegger W, Sehouli J (2006) Expression of IL-10 in patients with ovarian carcinoma. Anticancer Res 26(2C):1715–1718PubMed Mustea A, Konsgen D, Braicu EI, Pirvulescu C, Sun P, Sofroni D, Lichtenegger W, Sehouli J (2006) Expression of IL-10 in patients with ovarian carcinoma. Anticancer Res 26(2C):1715–1718PubMed
20.
go back to reference Youn JI, Nagaraj S, Collazo M, Gabrilovich DI (2008) Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol 181(8):5791–5802PubMed Youn JI, Nagaraj S, Collazo M, Gabrilovich DI (2008) Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol 181(8):5791–5802PubMed
21.
go back to reference Le Floc’h A, Jalil A, Vergnon I, Le Maux Chansac B, Lazar V, Bismuth G, Chouaib S, Mami-Chouaib F (2007) Alpha E beta 7 integrin interaction with E-cadherin promotes antitumor CTL activity by triggering lytic granule polarization and exocytosis. J Exp Med 204(3):559–570CrossRefPubMed Le Floc’h A, Jalil A, Vergnon I, Le Maux Chansac B, Lazar V, Bismuth G, Chouaib S, Mami-Chouaib F (2007) Alpha E beta 7 integrin interaction with E-cadherin promotes antitumor CTL activity by triggering lytic granule polarization and exocytosis. J Exp Med 204(3):559–570CrossRefPubMed
22.
go back to reference Peggs KS, Quezada SA, Allison JP (2008) Cell intrinsic mechanisms of T-cell inhibition and application to cancer therapy. Immunol Rev 224:141–165CrossRefPubMed Peggs KS, Quezada SA, Allison JP (2008) Cell intrinsic mechanisms of T-cell inhibition and application to cancer therapy. Immunol Rev 224:141–165CrossRefPubMed
23.
go back to reference Cronin SJ, Penninger JM (2007) From T-cell activation signals to signaling control of anti-cancer immunity. Immunol Rev 220:151–168CrossRefPubMed Cronin SJ, Penninger JM (2007) From T-cell activation signals to signaling control of anti-cancer immunity. Immunol Rev 220:151–168CrossRefPubMed
24.
go back to reference Keilholz U (2008) CTLA-4: negative regulator of the immune response and a target for cancer therapy. J Immunother 31(5):431–439CrossRefPubMed Keilholz U (2008) CTLA-4: negative regulator of the immune response and a target for cancer therapy. J Immunother 31(5):431–439CrossRefPubMed
25.
go back to reference Basanta D, Strand DW, Lukner RB, Franco OE, Cliffel DE, Ayala GE, Hayward SW, Anderson AR (2009) The role of transforming growth factor-beta-mediated tumor-stroma interactions in prostate cancer progression: an integrative approach. Cancer Res 69(17):7111–7120CrossRefPubMed Basanta D, Strand DW, Lukner RB, Franco OE, Cliffel DE, Ayala GE, Hayward SW, Anderson AR (2009) The role of transforming growth factor-beta-mediated tumor-stroma interactions in prostate cancer progression: an integrative approach. Cancer Res 69(17):7111–7120CrossRefPubMed
26.
go back to reference Kischel P, Waltregny D, Dumont B, Turtoi A, Greffe Y, Kirsch S, De Pauw E, Castronovo V (2009) Versican overexpression in human breast cancer lesions: known and new isoforms for stromal tumor targeting. Int J Cancer. doi:10.1002/ijc.24812 Kischel P, Waltregny D, Dumont B, Turtoi A, Greffe Y, Kirsch S, De Pauw E, Castronovo V (2009) Versican overexpression in human breast cancer lesions: known and new isoforms for stromal tumor targeting. Int J Cancer. doi:10.​1002/​ijc.​24812
27.
go back to reference Eng C, Leone G, Orloff MS, Ostrowski MC (2009) Genomic alterations in tumor stroma. Cancer Res 69(17):6759–6764CrossRefPubMed Eng C, Leone G, Orloff MS, Ostrowski MC (2009) Genomic alterations in tumor stroma. Cancer Res 69(17):6759–6764CrossRefPubMed
28.
go back to reference Zhang B, Bowerman NA, Salama JK, Schmidt H, Spiotto MT, Schietinger A, Yu P, Fu YX, Weichselbaum RR, Rowley DA et al (2007) Induced sensitization of tumor stroma leads to eradication of established cancer by T cells. J Exp Med 204(1):49–55CrossRefPubMed Zhang B, Bowerman NA, Salama JK, Schmidt H, Spiotto MT, Schietinger A, Yu P, Fu YX, Weichselbaum RR, Rowley DA et al (2007) Induced sensitization of tumor stroma leads to eradication of established cancer by T cells. J Exp Med 204(1):49–55CrossRefPubMed
29.
go back to reference Yu P, Rowley DA, Fu YX, Schreiber H (2006) The role of stroma in immune recognition and destruction of well-established solid tumors. Curr Opin Immunol 18(2):226–231CrossRefPubMed Yu P, Rowley DA, Fu YX, Schreiber H (2006) The role of stroma in immune recognition and destruction of well-established solid tumors. Curr Opin Immunol 18(2):226–231CrossRefPubMed
30.
go back to reference Spiotto MT, Schreiber H (2005) Rapid destruction of the tumor microenvironment by CTLs recognizing cancer-specific antigens cross-presented by stromal cells. Cancer Immun 5:8PubMed Spiotto MT, Schreiber H (2005) Rapid destruction of the tumor microenvironment by CTLs recognizing cancer-specific antigens cross-presented by stromal cells. Cancer Immun 5:8PubMed
31.
go back to reference Spiotto MT, Yu P, Rowley DA, Nishimura MI, Meredith SC, Gajewski TF, Fu YX, Schreiber H (2002) Increasing tumor antigen expression overcomes “ignorance” to solid tumors via crosspresentation by bone marrow-derived stromal cells. Immunity 17(6):737–747CrossRefPubMed Spiotto MT, Yu P, Rowley DA, Nishimura MI, Meredith SC, Gajewski TF, Fu YX, Schreiber H (2002) Increasing tumor antigen expression overcomes “ignorance” to solid tumors via crosspresentation by bone marrow-derived stromal cells. Immunity 17(6):737–747CrossRefPubMed
32.
go back to reference Zalatnai A (2006) Molecular aspects of stromal-parenchymal interactions in malignant neoplasms. Curr Mol Med 6(6):685–693CrossRefPubMed Zalatnai A (2006) Molecular aspects of stromal-parenchymal interactions in malignant neoplasms. Curr Mol Med 6(6):685–693CrossRefPubMed
33.
go back to reference Chung LW, Baseman A, Assikis V, Zhau HE (2005) Molecular insights into prostate cancer progression: the missing link of tumor microenvironment. J Urol 173(1):10–20PubMed Chung LW, Baseman A, Assikis V, Zhau HE (2005) Molecular insights into prostate cancer progression: the missing link of tumor microenvironment. J Urol 173(1):10–20PubMed
34.
go back to reference Leber MF, Efferth T (2009) Molecular principles of cancer invasion and metastasis (review). Int J Oncol 34(4):881–895PubMed Leber MF, Efferth T (2009) Molecular principles of cancer invasion and metastasis (review). Int J Oncol 34(4):881–895PubMed
35.
go back to reference Morrissey C, Vessella RL (2007) The role of tumor microenvironment in prostate cancer bone metastasis. J Cell Biochem 101(4):873–886CrossRefPubMed Morrissey C, Vessella RL (2007) The role of tumor microenvironment in prostate cancer bone metastasis. J Cell Biochem 101(4):873–886CrossRefPubMed
36.
go back to reference Radisky ES, Radisky DC (2007) Stromal induction of breast cancer: inflammation and invasion. Rev Endocr Metab Disord 8(3):279–287CrossRefPubMed Radisky ES, Radisky DC (2007) Stromal induction of breast cancer: inflammation and invasion. Rev Endocr Metab Disord 8(3):279–287CrossRefPubMed
37.
go back to reference Wall EM, Milne K, Martin ML, Watson PH, Theiss P, Nelson BH (2007) Spontaneous mammary tumors differ widely in their inherent sensitivity to adoptively transferred T cells. Cancer Res 67(13):6442–6450CrossRefPubMed Wall EM, Milne K, Martin ML, Watson PH, Theiss P, Nelson BH (2007) Spontaneous mammary tumors differ widely in their inherent sensitivity to adoptively transferred T cells. Cancer Res 67(13):6442–6450CrossRefPubMed
38.
go back to reference Hogquist KA, Jameson SC, Heath WR, Howard JL, Bevan MJ, Carbone FR (1994) T cell receptor antagonist peptides induce positive selection. Cell 76(1):17–27CrossRefPubMed Hogquist KA, Jameson SC, Heath WR, Howard JL, Bevan MJ, Carbone FR (1994) T cell receptor antagonist peptides induce positive selection. Cell 76(1):17–27CrossRefPubMed
39.
go back to reference Li B, Murphy KL, Laucirica R, Kittrell F, Medina D, Rosen JM (1998) A transgenic mouse model for mammary carcinogenesis. Oncogene 16:997–1007CrossRefPubMed Li B, Murphy KL, Laucirica R, Kittrell F, Medina D, Rosen JM (1998) A transgenic mouse model for mammary carcinogenesis. Oncogene 16:997–1007CrossRefPubMed
40.
go back to reference Yang T, Martin ML, Nielsen JS, Milne K, Wall EM, Lin W, Watson PH, Nelson BH (2009) Mammary tumors with diverse immunological phenotypes show differing sensitivity to adoptively transferred CD8+ T cells lacking the Cbl-b gene. Cancer Immunol Immunother 58(11):1867–1877CrossRef Yang T, Martin ML, Nielsen JS, Milne K, Wall EM, Lin W, Watson PH, Nelson BH (2009) Mammary tumors with diverse immunological phenotypes show differing sensitivity to adoptively transferred CD8+ T cells lacking the Cbl-b gene. Cancer Immunol Immunother 58(11):1867–1877CrossRef
41.
go back to reference Pinzon-Charry A, Maxwell T, Lopez JA (2005) Dendritic cell dysfunction in cancer: a mechanism for immunosuppression. Immunol Cell Biol 83(5):451–461CrossRefPubMed Pinzon-Charry A, Maxwell T, Lopez JA (2005) Dendritic cell dysfunction in cancer: a mechanism for immunosuppression. Immunol Cell Biol 83(5):451–461CrossRefPubMed
42.
go back to reference Dumitriu IE, Dunbar DR, Howie SE, Sethi T, Gregory CD (2009) Human dendritic cells produce TGF-beta 1 under the influence of lung carcinoma cells and prime the differentiation of CD4+CD25+Foxp3+ regulatory T cells. J Immunol 182(5):2795–2807CrossRefPubMed Dumitriu IE, Dunbar DR, Howie SE, Sethi T, Gregory CD (2009) Human dendritic cells produce TGF-beta 1 under the influence of lung carcinoma cells and prime the differentiation of CD4+CD25+Foxp3+ regulatory T cells. J Immunol 182(5):2795–2807CrossRefPubMed
43.
go back to reference Gabrilovich D (2004) Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol 4(12):941–952CrossRefPubMed Gabrilovich D (2004) Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol 4(12):941–952CrossRefPubMed
44.
go back to reference Lee SY, Choi HK, Lee KJ, Jung JY, Hur GY, Jung KH, Kim JH, Shin C, Shim JJ, In KH et al (2009) The immune tolerance of cancer is mediated by IDO that is inhibited by COX-2 inhibitors through regulatory T cells. J Immunother 32(1):22–28CrossRefPubMed Lee SY, Choi HK, Lee KJ, Jung JY, Hur GY, Jung KH, Kim JH, Shin C, Shim JJ, In KH et al (2009) The immune tolerance of cancer is mediated by IDO that is inhibited by COX-2 inhibitors through regulatory T cells. J Immunother 32(1):22–28CrossRefPubMed
45.
go back to reference Ahmadi M, Emery DC, Morgan DJ (2008) Prevention of both direct and cross-priming of antitumor CD8+ T-cell responses following overproduction of prostaglandin E2 by tumor cells in vivo. Cancer Res 68(18):7520–7529CrossRefPubMed Ahmadi M, Emery DC, Morgan DJ (2008) Prevention of both direct and cross-priming of antitumor CD8+ T-cell responses following overproduction of prostaglandin E2 by tumor cells in vivo. Cancer Res 68(18):7520–7529CrossRefPubMed
46.
go back to reference Chamoto K, Takeshima T, Wakita D, Ohkuri T, Ashino S, Omatsu T, Shirato H, Kitamura H, Togashi Y, Nishimura T (2009) Combination immunotherapy with radiation and CpG-based tumor vaccination for the eradication of radio- and immuno-resistant lung carcinoma cells. Cancer Sci 100(5):934–939CrossRefPubMed Chamoto K, Takeshima T, Wakita D, Ohkuri T, Ashino S, Omatsu T, Shirato H, Kitamura H, Togashi Y, Nishimura T (2009) Combination immunotherapy with radiation and CpG-based tumor vaccination for the eradication of radio- and immuno-resistant lung carcinoma cells. Cancer Sci 100(5):934–939CrossRefPubMed
47.
go back to reference Vollmer J, Krieg AM (2009) Immunotherapeutic applications of CpG oligodeoxynucleotide TLR9 agonists. Adv Drug Deliv Rev 61(3):195–204CrossRefPubMed Vollmer J, Krieg AM (2009) Immunotherapeutic applications of CpG oligodeoxynucleotide TLR9 agonists. Adv Drug Deliv Rev 61(3):195–204CrossRefPubMed
48.
go back to reference Jurk M, Vollmer J (2007) Therapeutic applications of synthetic CpG oligodeoxynucleotides as TLR9 agonists for immune modulation. BioDrugs 21(6):387–401CrossRefPubMed Jurk M, Vollmer J (2007) Therapeutic applications of synthetic CpG oligodeoxynucleotides as TLR9 agonists for immune modulation. BioDrugs 21(6):387–401CrossRefPubMed
49.
go back to reference Phan V, Disis ML (2008) Tumor stromal barriers to the success of adoptive T cell therapy. Cancer Immunol Immunother 57(2):281–283CrossRefPubMed Phan V, Disis ML (2008) Tumor stromal barriers to the success of adoptive T cell therapy. Cancer Immunol Immunother 57(2):281–283CrossRefPubMed
50.
go back to reference Quezada SA, Peggs KS, Simpson TR, Shen Y, Littman DR, Allison JP (2008) Limited tumor infiltration by activated T effector cells restricts the therapeutic activity of regulatory T cell depletion against established melanoma. J Exp Med 205(9):2125–2138CrossRefPubMed Quezada SA, Peggs KS, Simpson TR, Shen Y, Littman DR, Allison JP (2008) Limited tumor infiltration by activated T effector cells restricts the therapeutic activity of regulatory T cell depletion against established melanoma. J Exp Med 205(9):2125–2138CrossRefPubMed
51.
go back to reference Garbi N, Arnold B, Gordon S, Hammerling GJ, Ganss R (2004) CpG motifs as proinflammatory factors render autochthonous tumors permissive for infiltration and destruction. J Immunol 172(10):5861–5869PubMed Garbi N, Arnold B, Gordon S, Hammerling GJ, Ganss R (2004) CpG motifs as proinflammatory factors render autochthonous tumors permissive for infiltration and destruction. J Immunol 172(10):5861–5869PubMed
52.
go back to reference Boissonnas A, Fetler L, Zeelenberg IS, Hugues S, Amigorena S (2007) In vivo imaging of cytotoxic T cell infiltration and elimination of a solid tumor. J Exp Med 204(2):345–356CrossRefPubMed Boissonnas A, Fetler L, Zeelenberg IS, Hugues S, Amigorena S (2007) In vivo imaging of cytotoxic T cell infiltration and elimination of a solid tumor. J Exp Med 204(2):345–356CrossRefPubMed
53.
go back to reference Blankenstein T (2005) The role of tumor stroma in the interaction between tumor and immune system. Curr Opin Immunol 17(2):180–186CrossRefPubMed Blankenstein T (2005) The role of tumor stroma in the interaction between tumor and immune system. Curr Opin Immunol 17(2):180–186CrossRefPubMed
54.
go back to reference Mrass P, Kinjyo I, Ng LG, Reiner SL, Pure E, Weninger W (2008) CD44 mediates successful interstitial navigation by killer T cells and enables efficient antitumor immunity. Immunity 29(6):971–985CrossRefPubMed Mrass P, Kinjyo I, Ng LG, Reiner SL, Pure E, Weninger W (2008) CD44 mediates successful interstitial navigation by killer T cells and enables efficient antitumor immunity. Immunity 29(6):971–985CrossRefPubMed
55.
go back to reference Fisher DT, Chen Q, Appenheimer MM, Skitzki J, Wang WC, Odunsi K, Evans SS (2006) Hurdles to lymphocyte trafficking in the tumor microenvironment: implications for effective immunotherapy. Immunol Invest 35(3–4):251–277CrossRefPubMed Fisher DT, Chen Q, Appenheimer MM, Skitzki J, Wang WC, Odunsi K, Evans SS (2006) Hurdles to lymphocyte trafficking in the tumor microenvironment: implications for effective immunotherapy. Immunol Invest 35(3–4):251–277CrossRefPubMed
56.
go back to reference Lugade AA, Sorensen EW, Gerber SA, Moran JP, Frelinger JG, Lord EM (2008) Radiation-induced IFN-gamma production within the tumor microenvironment influences antitumor immunity. J Immunol 180(5):3132–3139PubMed Lugade AA, Sorensen EW, Gerber SA, Moran JP, Frelinger JG, Lord EM (2008) Radiation-induced IFN-gamma production within the tumor microenvironment influences antitumor immunity. J Immunol 180(5):3132–3139PubMed
57.
go back to reference Obeid M, Panaretakis T, Tesniere A, Joza N, Tufi R, Apetoh L, Ghiringhelli F, Zitvogel L, Kroemer G (2007) Leveraging the immune system during chemotherapy: moving calreticulin to the cell surface converts apoptotic death from “silent” to immunogenic. Cancer Res 67(17):7941–7944CrossRefPubMed Obeid M, Panaretakis T, Tesniere A, Joza N, Tufi R, Apetoh L, Ghiringhelli F, Zitvogel L, Kroemer G (2007) Leveraging the immune system during chemotherapy: moving calreticulin to the cell surface converts apoptotic death from “silent” to immunogenic. Cancer Res 67(17):7941–7944CrossRefPubMed
58.
go back to reference Zhang T, Herlyn D (2009) Combination of active specific immunotherapy or adoptive antibody or lymphocyte immunotherapy with chemotherapy in the treatment of cancer. Cancer Immunol Immunother 58(4):475–492CrossRefPubMed Zhang T, Herlyn D (2009) Combination of active specific immunotherapy or adoptive antibody or lymphocyte immunotherapy with chemotherapy in the treatment of cancer. Cancer Immunol Immunother 58(4):475–492CrossRefPubMed
59.
go back to reference Lake RA, Robinson BW (2005) Immunotherapy and chemotherapy–a practical partnership. Nat Rev Cancer 5(5):397–405CrossRefPubMed Lake RA, Robinson BW (2005) Immunotherapy and chemotherapy–a practical partnership. Nat Rev Cancer 5(5):397–405CrossRefPubMed
60.
go back to reference Emens LA (2008) Chemotherapy and tumor immunity: an unexpected collaboration. Front Biosci 13:249–257CrossRefPubMed Emens LA (2008) Chemotherapy and tumor immunity: an unexpected collaboration. Front Biosci 13:249–257CrossRefPubMed
61.
go back to reference Mothersill C, Seymour CB (2004) Radiation-induced bystander effects–implications for cancer. Nat Rev Cancer 4(2):158–164PubMed Mothersill C, Seymour CB (2004) Radiation-induced bystander effects–implications for cancer. Nat Rev Cancer 4(2):158–164PubMed
62.
go back to reference Hirtenlehner K, Pec M, Kubista E, Singer CF (2002) Influences of stroma-derived growth factors on the cytokine expression pattern of human breast cancer cell lines. Arch Gynecol Obstet 266(2):108–113CrossRefPubMed Hirtenlehner K, Pec M, Kubista E, Singer CF (2002) Influences of stroma-derived growth factors on the cytokine expression pattern of human breast cancer cell lines. Arch Gynecol Obstet 266(2):108–113CrossRefPubMed
63.
go back to reference Yoshida S, Harada T, Iwabe T, Taniguchi F, Fujii A, Sakamoto Y, Yamauchi N, Shiota G, Terakawa N (2002) Induction of hepatocyte growth factor in stromal cells by tumor-derived basic fibroblast growth factor enhances growth and invasion of endometrial cancer. J Clin Endocrinol Metab 87(5):2376–2383CrossRefPubMed Yoshida S, Harada T, Iwabe T, Taniguchi F, Fujii A, Sakamoto Y, Yamauchi N, Shiota G, Terakawa N (2002) Induction of hepatocyte growth factor in stromal cells by tumor-derived basic fibroblast growth factor enhances growth and invasion of endometrial cancer. J Clin Endocrinol Metab 87(5):2376–2383CrossRefPubMed
64.
go back to reference Augsten M, Hagglof C, Olsson E, Stolz C, Tsagozis P, Levchenko T, Frederick MJ, Borg A, Micke P, Egevad L et al (2009) CXCL14 is an autocrine growth factor for fibroblasts and acts as a multi-modal stimulator of prostate tumor growth. Proc Natl Acad Sci U S A 106(9):3414–3419CrossRefPubMed Augsten M, Hagglof C, Olsson E, Stolz C, Tsagozis P, Levchenko T, Frederick MJ, Borg A, Micke P, Egevad L et al (2009) CXCL14 is an autocrine growth factor for fibroblasts and acts as a multi-modal stimulator of prostate tumor growth. Proc Natl Acad Sci U S A 106(9):3414–3419CrossRefPubMed
65.
go back to reference Dong J, Grunstein J, Tejada M, Peale F, Frantz G, Liang WC, Bai W, Yu L, Kowalski J, Liang X et al (2004) VEGF-null cells require PDGFR alpha signaling-mediated stromal fibroblast recruitment for tumorigenesis. EMBO J 23(14):2800–2810CrossRefPubMed Dong J, Grunstein J, Tejada M, Peale F, Frantz G, Liang WC, Bai W, Yu L, Kowalski J, Liang X et al (2004) VEGF-null cells require PDGFR alpha signaling-mediated stromal fibroblast recruitment for tumorigenesis. EMBO J 23(14):2800–2810CrossRefPubMed
66.
go back to reference Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, Zhao H, Chen H, Omeroglu G, Meterissian S, Omeroglu A et al (2008) Stromal gene expression predicts clinical outcome in breast cancer. Nat Med 14(5):518–527CrossRefPubMed Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, Zhao H, Chen H, Omeroglu G, Meterissian S, Omeroglu A et al (2008) Stromal gene expression predicts clinical outcome in breast cancer. Nat Med 14(5):518–527CrossRefPubMed
Metadata
Title
Density of tumour stroma is correlated to outcome after adoptive transfer of CD4+ and CD8+ T cells in a murine mammary carcinoma model
Authors
Michele L. Martin
Erika M. Wall
Emily Sandwith
Adam Girardin
Katy Milne
Peter H. Watson
Brad H. Nelson
Publication date
01-06-2010
Publisher
Springer US
Published in
Breast Cancer Research and Treatment / Issue 3/2010
Print ISSN: 0167-6806
Electronic ISSN: 1573-7217
DOI
https://doi.org/10.1007/s10549-009-0559-y

Other articles of this Issue 3/2010

Breast Cancer Research and Treatment 3/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine