Skip to main content
Top
Published in: Breast Cancer Research and Treatment 3/2009

01-12-2009 | Preclinical Study

Meta-analysis of gene expression profiles related to relapse-free survival in 1,079 breast cancer patients

Authors: Balazs Györffy, Reinhold Schäfer

Published in: Breast Cancer Research and Treatment | Issue 3/2009

Login to get access

Abstract

The transcriptome of breast cancers have been extensively screened with microarrays and large sets of genes associated with clinical features have been established. The aim of this study was to validate original gene sets on a large cohort of raw breast cancer microarray data with known clinical follow-up. We recovered 20 publications and matched them to Affymetrix HGU133A annotations. Raw Affymetrix HGU133A microarray data were extracted from GEO and MAS5 normalized. For classifying patients using the selected gene sets, we applied prediction analysis of microarrays and constructed Kaplan–Meier plots. A new classification including all patients was generated using supervised principal components analysis. Seven studies including 1,470 patients were downloaded from GEO. Notably, we uncovered 641 microarrays representing 251 individual tumor specimens among them, which were repeatedly described under independent GEO identifiers. We excluded all redundant data and used the remaining 1,079 samples. Eight of the 20 gene sets were able to predict response at a significance of P < 0.05. The discrimination of good and poor prognosis groups exclusively relying on gene expression data resulted in high significance (P = 1.8E−12). A model including genes fitted by both gene expression and clinical covariates (lymph node status and grade) contains 44 genes and can predict response at P = 9.5E−7. The outcome provides a ranking of the gene lists regarding applicability on an independent dataset. We established a consensus predictor combining the available clinical and gene expression data. The database comprising expression profiles of 1,079 breast cancers can be used to classify individual patients.
Appendix
Available only for authorised users
Literature
3.
go back to reference Sotiriou C, Wirapati P, Loi S et al (2006) Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst 98:262–272PubMed Sotiriou C, Wirapati P, Loi S et al (2006) Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst 98:262–272PubMed
6.
go back to reference Petersen OW, Hoyer PE, van DB (1987) Frequency and distribution of estrogen receptor-positive cells in normal, nonlactating human breast tissue. Cancer Res 47:5748–5751PubMed Petersen OW, Hoyer PE, van DB (1987) Frequency and distribution of estrogen receptor-positive cells in normal, nonlactating human breast tissue. Cancer Res 47:5748–5751PubMed
7.
go back to reference Kuukasjarvi T, Kononen J, Helin H et al (1996) Loss of estrogen receptor in recurrent breast cancer is associated with poor response to endocrine therapy. J Clin Oncol 14:2584–2589PubMed Kuukasjarvi T, Kononen J, Helin H et al (1996) Loss of estrogen receptor in recurrent breast cancer is associated with poor response to endocrine therapy. J Clin Oncol 14:2584–2589PubMed
8.
go back to reference Gruvberger S, Ringner M, Chen Y et al (2001) Estrogen receptor status in breast cancer is associated with remarkably distinct gene expression patterns. Cancer Res 61:5979–5984PubMed Gruvberger S, Ringner M, Chen Y et al (2001) Estrogen receptor status in breast cancer is associated with remarkably distinct gene expression patterns. Cancer Res 61:5979–5984PubMed
14.
go back to reference Buyse M, Loi S, van’t Veer L et al (2006) Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J Natl Cancer Inst 98:1183–1192PubMed Buyse M, Loi S, van’t Veer L et al (2006) Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J Natl Cancer Inst 98:1183–1192PubMed
16.
go back to reference Ioannidis JP (2005) Microarrays and molecular research: noise discovery? Lancet 365:454–455PubMed Ioannidis JP (2005) Microarrays and molecular research: noise discovery? Lancet 365:454–455PubMed
21.
23.
go back to reference Simon R, Radmacher MD, Dobbin K et al (2003) Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification. J Natl Cancer Inst 95:14–18PubMedCrossRef Simon R, Radmacher MD, Dobbin K et al (2003) Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification. J Natl Cancer Inst 95:14–18PubMedCrossRef
25.
go back to reference Shi L, Reid LH, Jones WD et al (2006) The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat Biotechnol 24:1151–1161. doi:10.1038/nbt1239 CrossRefPubMed Shi L, Reid LH, Jones WD et al (2006) The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat Biotechnol 24:1151–1161. doi:10.​1038/​nbt1239 CrossRefPubMed
26.
go back to reference Pawitan Y, Bjohle J, Amler L et al (2005) Gene expression profiling spares early breast cancer patients from adjuvant therapy: derived and validated in two population-based cohorts. Breast Cancer Res 7:R953–R964. doi:10.1186/bcr1325 CrossRefPubMed Pawitan Y, Bjohle J, Amler L et al (2005) Gene expression profiling spares early breast cancer patients from adjuvant therapy: derived and validated in two population-based cohorts. Breast Cancer Res 7:R953–R964. doi:10.​1186/​bcr1325 CrossRefPubMed
27.
go back to reference Wang YX, Klijn JGM, Zhang Y et al (2005) Gene-expression pro-files to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365:671–679PubMed Wang YX, Klijn JGM, Zhang Y et al (2005) Gene-expression pro-files to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365:671–679PubMed
28.
go back to reference Miller LD, Smeds J, George J et al (2005) An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. Proc Natl Acad Sci USA 102:13550–13555. doi:10.1073/pnas.0506230102 CrossRefPubMed Miller LD, Smeds J, George J et al (2005) An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. Proc Natl Acad Sci USA 102:13550–13555. doi:10.​1073/​pnas.​0506230102 CrossRefPubMed
29.
go back to reference Desmedt C, Piette F, Loi S et al (2007) Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the TRANSBIG multicenter independent validation series. Clin Cancer Res 13:3207–3214. doi:10.1158/1078-0432.CCR-06-2765 CrossRefPubMed Desmedt C, Piette F, Loi S et al (2007) Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the TRANSBIG multicenter independent validation series. Clin Cancer Res 13:3207–3214. doi:10.​1158/​1078-0432.​CCR-06-2765 CrossRefPubMed
32.
39.
Metadata
Title
Meta-analysis of gene expression profiles related to relapse-free survival in 1,079 breast cancer patients
Authors
Balazs Györffy
Reinhold Schäfer
Publication date
01-12-2009
Publisher
Springer US
Published in
Breast Cancer Research and Treatment / Issue 3/2009
Print ISSN: 0167-6806
Electronic ISSN: 1573-7217
DOI
https://doi.org/10.1007/s10549-008-0242-8

Other articles of this Issue 3/2009

Breast Cancer Research and Treatment 3/2009 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine