Skip to main content
Top
Published in: Breast Cancer Research and Treatment 1/2009

01-11-2009 | Brief Report

Expression profile of microRNAs in c-Myc induced mouse mammary tumors

Authors: Yuan Sun, Jack Wu, Si-hung Wu, Archana Thakur, Aliccia Bollig, Yong Huang, D. Joshua Liao

Published in: Breast Cancer Research and Treatment | Issue 1/2009

Login to get access

Abstract

c-Myc is a transcription factor overexpression of which induces mammary cancer in transgenic mice. To explore whether certain microRNAs (mirRNA) mediate c-Myc induced mammary carcinogenesis, we studied mirRNA expression profile in mammary tumors developed from MMTV-c-myc transgenic mice, and found 50 and 59 mirRNAs showing increased and decreased expression, respectively, compared with lactating mammary glands of wild type mice. Twenty-four of these mirRNAs could be grouped into eight clusters because they had the same chromosomal localizations and might be processed from the same primary RNA transcripts. The increased expression of mir-20a, mir-20b, and mir-9 as well as decreased expression of mir-222 were verified by RT-PCR, real-time RT-PCR, and cDNA sequencing. Moreover, we fortuitously identified a novel non-coding RNA, the level of which was decreased in proliferating mammary glands of MMTV-c-myc mice was further decreased to undetectable level in the mammary tumors. Sequencing of this novel RNA revealed that it was transcribed from a region of mouse chromosome 19 that harbored the metastasis associated lung adenocarcinoma transcript-1 (Malat-1), a non-protein-coding gene. These results suggest that certain mirRNAs and the chromosome 19 derived non-coding RNAs may mediate c-myc induced mammary carcinogenesis.
Literature
1.
go back to reference Perez DS, Hoage TR, Pritchett JR, Ducharme-Smith AL, Halling ML, Ganapathiraju SC et al (2008) Long, abundantly expressed non-coding transcripts are altered in cancer. Hum Mol Genet 17:642–655. doi:10.1093/hmg/ddm336 CrossRefPubMed Perez DS, Hoage TR, Pritchett JR, Ducharme-Smith AL, Halling ML, Ganapathiraju SC et al (2008) Long, abundantly expressed non-coding transcripts are altered in cancer. Hum Mol Genet 17:642–655. doi:10.​1093/​hmg/​ddm336 CrossRefPubMed
7.
go back to reference Liu J, Rivas FV, Wohlschlegel J, Yates JRIII, Parker R, Hannon GJ (2005) A role for the P-body component GW182 in microRNA function. Nat Cell Biol 7:1261–1266PubMed Liu J, Rivas FV, Wohlschlegel J, Yates JRIII, Parker R, Hannon GJ (2005) A role for the P-body component GW182 in microRNA function. Nat Cell Biol 7:1261–1266PubMed
9.
go back to reference Lu J, Getz G, Miska EA, varez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838. doi:10.1038/nature03702 CrossRefPubMed Lu J, Getz G, Miska EA, varez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838. doi:10.​1038/​nature03702 CrossRefPubMed
10.
11.
14.
go back to reference Liao DJ, Thakur A, Wu J, Biliran H, Sarkar FH (2007) Perspectives on c-Myc, cyclin D1, and their interaction in cancer formation, progression, and response to chemotherapy. Crit Rev Oncog 13:93–158PubMed Liao DJ, Thakur A, Wu J, Biliran H, Sarkar FH (2007) Perspectives on c-Myc, cyclin D1, and their interaction in cancer formation, progression, and response to chemotherapy. Crit Rev Oncog 13:93–158PubMed
16.
go back to reference Liao JD, Adsay NV, Khannani F, Grignon D, Thakur A, Sarkar FH (2007) Histological complexities of pancreatic lesions from transgenic mouse models are consistent with biological and morphological heterogeneity of human pancreatic cancer. Histol Histopathol 22:661–676PubMed Liao JD, Adsay NV, Khannani F, Grignon D, Thakur A, Sarkar FH (2007) Histological complexities of pancreatic lesions from transgenic mouse models are consistent with biological and morphological heterogeneity of human pancreatic cancer. Histol Histopathol 22:661–676PubMed
18.
go back to reference Chung HJ, Levens D (2005) c-Myc expression: keep the noise down!. Mol Cells 20:157–166PubMed Chung HJ, Levens D (2005) c-Myc expression: keep the noise down!. Mol Cells 20:157–166PubMed
20.
go back to reference Zhang L, Huang J, Yang N, Greshock J, Megraw MS, Giannakakis A, O’brien-Jenkins A, Katsaros D, Hatzigeorgiou A, Gimotty PA, Weber BL, Coukos G et al (2006) MicroRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci USA 103:9136–9141. doi:10.1073/pnas.0508889103 CrossRefPubMed Zhang L, Huang J, Yang N, Greshock J, Megraw MS, Giannakakis A, O’brien-Jenkins A, Katsaros D, Hatzigeorgiou A, Gimotty PA, Weber BL, Coukos G et al (2006) MicroRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci USA 103:9136–9141. doi:10.​1073/​pnas.​0508889103 CrossRefPubMed
21.
go back to reference Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S et al (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101:2999–3004. doi:10.1073/pnas.0307323101 CrossRefPubMed Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S et al (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101:2999–3004. doi:10.​1073/​pnas.​0307323101 CrossRefPubMed
23.
25.
go back to reference Natrajan R, Williams RD, Hing SN, Mackay A, Reis-Filho JS, Fenwick K et al (2006) Array CGH profiling of favourable histology Wilms tumours reveals novel gains and losses associated with relapse. J Pathol 210:49–58. doi:10.1002/path.2021 CrossRefPubMed Natrajan R, Williams RD, Hing SN, Mackay A, Reis-Filho JS, Fenwick K et al (2006) Array CGH profiling of favourable histology Wilms tumours reveals novel gains and losses associated with relapse. J Pathol 210:49–58. doi:10.​1002/​path.​2021 CrossRefPubMed
26.
28.
go back to reference Stembalska A, Blin N, Ramsey D, Sasiadek MM (2006) Three distinct regions of deletion on 13q in squamous cell carcinoma of the larynx. Oncol Rep 16:417–421PubMed Stembalska A, Blin N, Ramsey D, Sasiadek MM (2006) Three distinct regions of deletion on 13q in squamous cell carcinoma of the larynx. Oncol Rep 16:417–421PubMed
30.
go back to reference Weiss MM, Kuipers EJ, Postma C, Snijders AM, Pinkel D, Meuwissen SG et al (2004) Genomic alterations in primary gastric adenocarcinomas correlate with clinicopathological characteristics and survival. Cell Oncol 26:307–317PubMed Weiss MM, Kuipers EJ, Postma C, Snijders AM, Pinkel D, Meuwissen SG et al (2004) Genomic alterations in primary gastric adenocarcinomas correlate with clinicopathological characteristics and survival. Cell Oncol 26:307–317PubMed
31.
go back to reference Yu W, Inoue J, Imoto I, Matsuo Y, Karpas A, Inazawa J (2003) GPC5 is a possible target for the 13q31–q32 amplification detected in lymphoma cell lines. J Hum Genet 48:331–335PubMed Yu W, Inoue J, Imoto I, Matsuo Y, Karpas A, Inazawa J (2003) GPC5 is a possible target for the 13q31–q32 amplification detected in lymphoma cell lines. J Hum Genet 48:331–335PubMed
33.
go back to reference Kovalchuk O, Tryndyak VP, Montgomery B, Boyko A, Kutanzi K, Zemp F et al (2007) Estrogen-induced rat breast carcinogenesis is characterized by alterations in DNA methylation, histone modifications and aberrant microRNA expression. Cell Cycle 6:2010–2018PubMed Kovalchuk O, Tryndyak VP, Montgomery B, Boyko A, Kutanzi K, Zemp F et al (2007) Estrogen-induced rat breast carcinogenesis is characterized by alterations in DNA methylation, histone modifications and aberrant microRNA expression. Cell Cycle 6:2010–2018PubMed
34.
go back to reference Choi C, Kim MH, Juhng SW (1998) Loss of heterozygosity on chromosome XP22.2–p22.13 and Xq26.1–q27.1 in human breast carcinomas. J Korean Med Sci 13:311–316PubMed Choi C, Kim MH, Juhng SW (1998) Loss of heterozygosity on chromosome XP22.2–p22.13 and Xq26.1–q27.1 in human breast carcinomas. J Korean Med Sci 13:311–316PubMed
35.
go back to reference Choi C, Cho S, Horikawa I, Berchuck A, Wang N, Cedrone E et al (1997) Loss of heterozygosity at chromosome segment Xq25–26.1 in advanced human ovarian carcinomas. Genes Chromosom Cancer 20:234–242. doi:10.1002/(SICI)1098-2264(199711)20:3<234::AID-GCC3>3.0.CO;2-3CrossRefPubMed Choi C, Cho S, Horikawa I, Berchuck A, Wang N, Cedrone E et al (1997) Loss of heterozygosity at chromosome segment Xq25–26.1 in advanced human ovarian carcinomas. Genes Chromosom Cancer 20:234–242. doi:10.1002/(SICI)1098-2264(199711)20:3<234::AID-GCC3>3.0.CO;2-3CrossRefPubMed
38.
go back to reference Chen YT, Scanlan MJ, Venditti CA, Chua R, Theiler G, Stevenson BJ et al (2005) Identification of cancer/testis-antigen genes by massively parallel signature sequencing. Proc Natl Acad Sci USA 102:7940–7945. doi:10.1073/pnas.0502583102 CrossRefPubMed Chen YT, Scanlan MJ, Venditti CA, Chua R, Theiler G, Stevenson BJ et al (2005) Identification of cancer/testis-antigen genes by massively parallel signature sequencing. Proc Natl Acad Sci USA 102:7940–7945. doi:10.​1073/​pnas.​0502583102 CrossRefPubMed
39.
go back to reference Lucas S, De SC, Arden KC, Viars CS, Lethe B, Lurquin C et al (1998) Identification of a new MAGE gene with tumor-specific expression by representational difference analysis. Cancer Res 58:743–752PubMed Lucas S, De SC, Arden KC, Viars CS, Lethe B, Lurquin C et al (1998) Identification of a new MAGE gene with tumor-specific expression by representational difference analysis. Cancer Res 58:743–752PubMed
42.
go back to reference Rapley EA, Crockford GP, Teare D, Biggs P, Seal S, Barfoot R et al (2000) Localization to Xq27 of a susceptibility gene for testicular germ-cell tumours. Nat Genet 24:197–200. doi:10.1038/72877 CrossRefPubMed Rapley EA, Crockford GP, Teare D, Biggs P, Seal S, Barfoot R et al (2000) Localization to Xq27 of a susceptibility gene for testicular germ-cell tumours. Nat Genet 24:197–200. doi:10.​1038/​72877 CrossRefPubMed
43.
go back to reference Chen YT, Alpen B, Ono T, Gure AO, Scanlan MA, Biggs WHIII et al (2003) Identification and characterization of mouse SSX genes: a multigene family on the X chromosome with restricted cancer/testis expression. Genomics 82:628–636. doi:10.1016/S0888-7543(03)00183-6 CrossRefPubMed Chen YT, Alpen B, Ono T, Gure AO, Scanlan MA, Biggs WHIII et al (2003) Identification and characterization of mouse SSX genes: a multigene family on the X chromosome with restricted cancer/testis expression. Genomics 82:628–636. doi:10.​1016/​S0888-7543(03)00183-6 CrossRefPubMed
44.
go back to reference Zendman AJ, Van Kraats AA, Weidle UH, Ruiter DJ, Van Muijen GN (2002) The XAGE family of cancer/testis-associated genes: alignment and expression profile in normal tissues, melanoma lesions and Ewing’s sarcoma. Int J Cancer 99:361–369. doi:10.1002/ijc.10371 CrossRefPubMed Zendman AJ, Van Kraats AA, Weidle UH, Ruiter DJ, Van Muijen GN (2002) The XAGE family of cancer/testis-associated genes: alignment and expression profile in normal tissues, melanoma lesions and Ewing’s sarcoma. Int J Cancer 99:361–369. doi:10.​1002/​ijc.​10371 CrossRefPubMed
45.
48.
go back to reference Timmer T, Terpstra P, van den BA, Veldhuis PM, Ter EA, van der Veen AY, Kok K, Naylor SL, Buys CH (1999) An evolutionary rearrangement of the Xp11.3–11.23 region in 3p21.3, a region frequently deleted in a variety of cancers. Genomics 60:238–240. doi:10.1006/geno.1999.5878 CrossRefPubMed Timmer T, Terpstra P, van den BA, Veldhuis PM, Ter EA, van der Veen AY, Kok K, Naylor SL, Buys CH (1999) An evolutionary rearrangement of the Xp11.3–11.23 region in 3p21.3, a region frequently deleted in a variety of cancers. Genomics 60:238–240. doi:10.​1006/​geno.​1999.​5878 CrossRefPubMed
56.
go back to reference Suzuki A, Shibata T, Shimada Y, Murakami Y, Horii A, Shiratori K et al (2008) Identification of SMURF1 as a possible target for 7q21.3–22.1 amplification detected in a pancreatic cancer cell line by in-house array-based comparative genomic hybridization. Cancer Sci 99:986–994. doi:10.1111/j.1349-7006.2008.00779.x CrossRefPubMed Suzuki A, Shibata T, Shimada Y, Murakami Y, Horii A, Shiratori K et al (2008) Identification of SMURF1 as a possible target for 7q21.3–22.1 amplification detected in a pancreatic cancer cell line by in-house array-based comparative genomic hybridization. Cancer Sci 99:986–994. doi:10.​1111/​j.​1349-7006.​2008.​00779.​x CrossRefPubMed
57.
go back to reference Law FB, Chen YW, Wong KY, Ying J, Tao Q, Langford C et al (2007) Identification of a novel tumor transforming gene GAEC1 at 7q22 which encodes a nuclear protein and is frequently amplified and overexpressed in esophageal squamous cell carcinoma. Oncogene 26:5877–5888. doi:10.1038/sj.onc.1210390 CrossRefPubMed Law FB, Chen YW, Wong KY, Ying J, Tao Q, Langford C et al (2007) Identification of a novel tumor transforming gene GAEC1 at 7q22 which encodes a nuclear protein and is frequently amplified and overexpressed in esophageal squamous cell carcinoma. Oncogene 26:5877–5888. doi:10.​1038/​sj.​onc.​1210390 CrossRefPubMed
59.
go back to reference Matsubara H, Takeuchi T, Nishikawa E, Yanagisawa K, Hayashita Y, Ebi H et al (2007) Apoptosis induction by antisense oligonucleotides against miR-17–5p and miR-20a in lung cancers overexpressing miR-17–92. Oncogene 26:6099–6105. doi:10.1038/sj.onc.1210425 CrossRefPubMed Matsubara H, Takeuchi T, Nishikawa E, Yanagisawa K, Hayashita Y, Ebi H et al (2007) Apoptosis induction by antisense oligonucleotides against miR-17–5p and miR-20a in lung cancers overexpressing miR-17–92. Oncogene 26:6099–6105. doi:10.​1038/​sj.​onc.​1210425 CrossRefPubMed
60.
go back to reference Johannsdottir HK, Jonsson G, Johannesdottir G, Agnarsson BA, Eerola H, Arason A et al (2006) Chromosome 5 imbalance mapping in breast tumors from BRCA1 and BRCA2 mutation carriers and sporadic breast tumors. Int J Cancer 119:1052–1060. doi:10.1002/ijc.21934 CrossRefPubMed Johannsdottir HK, Jonsson G, Johannesdottir G, Agnarsson BA, Eerola H, Arason A et al (2006) Chromosome 5 imbalance mapping in breast tumors from BRCA1 and BRCA2 mutation carriers and sporadic breast tumors. Int J Cancer 119:1052–1060. doi:10.​1002/​ijc.​21934 CrossRefPubMed
61.
go back to reference Thornton DE, Theil K, Payson R, Balcerzak SP, Chiu IM (1991) Characterization of the 5q-breakpoint in an acute nonlymphocytic leukemia patient using pulsed-field gel electrophoresis. Am J Med Genet 41:557–565. doi:10.1002/ajmg.1320410437 CrossRefPubMed Thornton DE, Theil K, Payson R, Balcerzak SP, Chiu IM (1991) Characterization of the 5q-breakpoint in an acute nonlymphocytic leukemia patient using pulsed-field gel electrophoresis. Am J Med Genet 41:557–565. doi:10.​1002/​ajmg.​1320410437 CrossRefPubMed
62.
go back to reference Pettenati MJ, Le Beau MM, Lemons RS, Shima EA, Kawasaki ES, Larson RA et al (1987) Assignment of CSF-1 to 5q33.1: evidence for clustering of genes regulating hematopoiesis and for their involvement in the deletion of the long arm of chromosome 5 in myeloid disorders. Proc Natl Acad Sci USA 84:2970–2974. doi:10.1073/pnas.84.9.2970 CrossRefPubMed Pettenati MJ, Le Beau MM, Lemons RS, Shima EA, Kawasaki ES, Larson RA et al (1987) Assignment of CSF-1 to 5q33.1: evidence for clustering of genes regulating hematopoiesis and for their involvement in the deletion of the long arm of chromosome 5 in myeloid disorders. Proc Natl Acad Sci USA 84:2970–2974. doi:10.​1073/​pnas.​84.​9.​2970 CrossRefPubMed
63.
go back to reference Gudmundsson J, Sulem P, Rafnar T, Bergthorsson JT, Manolescu A, Gudbjartsson D et al (2008) Common sequence variants on 2p15 and Xp11.22 confer susceptibility to prostate cancer. Nat Genet 40:281–283. doi:10.1038/ng.89 CrossRefPubMed Gudmundsson J, Sulem P, Rafnar T, Bergthorsson JT, Manolescu A, Gudbjartsson D et al (2008) Common sequence variants on 2p15 and Xp11.22 confer susceptibility to prostate cancer. Nat Genet 40:281–283. doi:10.​1038/​ng.​89 CrossRefPubMed
64.
go back to reference Shipley JM, Birdsall S, Clark J, Crew J, Gill S, Linehan M et al (1995) Mapping the X chromosome breakpoint in two papillary renal cell carcinoma cell lines with a t(X;1)(p11.2;q21.2) and the first report of a female case. Cytogenet Cell Genet 71:280–284. doi:10.1159/000134127 CrossRefPubMed Shipley JM, Birdsall S, Clark J, Crew J, Gill S, Linehan M et al (1995) Mapping the X chromosome breakpoint in two papillary renal cell carcinoma cell lines with a t(X;1)(p11.2;q21.2) and the first report of a female case. Cytogenet Cell Genet 71:280–284. doi:10.​1159/​000134127 CrossRefPubMed
65.
go back to reference Shipley JM, Clark J, Crew AJ, Birdsall S, Rocques PJ, Gill S, Chelly J, Monaco AP, Abe S, Gusterson BA, Cooper CS (1994) The t(X;18)(p11.2;q11.2) translocation found in human synovial sarcomas involves two distinct loci on the X chromosome. Oncogene 9:1447–1453PubMed Shipley JM, Clark J, Crew AJ, Birdsall S, Rocques PJ, Gill S, Chelly J, Monaco AP, Abe S, Gusterson BA, Cooper CS (1994) The t(X;18)(p11.2;q11.2) translocation found in human synovial sarcomas involves two distinct loci on the X chromosome. Oncogene 9:1447–1453PubMed
Metadata
Title
Expression profile of microRNAs in c-Myc induced mouse mammary tumors
Authors
Yuan Sun
Jack Wu
Si-hung Wu
Archana Thakur
Aliccia Bollig
Yong Huang
D. Joshua Liao
Publication date
01-11-2009
Publisher
Springer US
Published in
Breast Cancer Research and Treatment / Issue 1/2009
Print ISSN: 0167-6806
Electronic ISSN: 1573-7217
DOI
https://doi.org/10.1007/s10549-008-0171-6

Other articles of this Issue 1/2009

Breast Cancer Research and Treatment 1/2009 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine