Skip to main content
Top
Published in: Breast Cancer Research and Treatment 1/2008

01-09-2008 | Preclinical Study

Insulin receptor substrate-1 involvement in epidermal growth factor receptor and insulin-like growth factor receptor signalling: implication for Gefitinib (‘Iressa’) response and resistance

Authors: Janice M. Knowlden, Helen E. Jones, Denise Barrow, Julia M. W. Gee, Robert I. Nicholson, Iain R. Hutcheson

Published in: Breast Cancer Research and Treatment | Issue 1/2008

Login to get access

Abstract

Classically the insulin receptor substrate-1 (IRS-1) is an essential component of insulin-like growth factor type 1 receptor (IGF-IR) signalling, providing an interface between the receptor and key downstream signalling cascades. Here, however, we show that in tamoxifen-resistant MCF-7 (Tam-R) breast cancer cells, that are highly dependent on epidermal growth factor receptor (EGFR) for growth, IRS-1 can interact with EGFR and be preferentially phosphorylated on tyrosine (Y) 896, a Grb2 binding site. Indeed, phosphorylation of this site is greatly enhanced by exposure of these cells, and other EGFR-positive cell lines, to EGF. Importantly, while IGF-II promotes phosphorylation of IRS-1 on Y612, a PI3-K recruitment site, it has limited effect on Y896 phosphorylation in Tam-R cells. Furthermore, EGF and IGF-II co-treatment, reduces the ability of IGF-II to phosphorylate Y612, whilst maintaining Y896 phosphorylation, suggesting that the EGFR is the dominant recruiter of IRS-1 in this cell line. Significantly, challenge of Tam-R cells with the EGFR-selective tyrosine kinase inhibitor gefitinib, for 7 days, reduces IRS-1/EGFR association and IRS-1 Y896 phosphorylation, while promoting IRS-1/IGF-IR association and IRS-1 Y612 phosphorylation. Furthermore, gefitinib significantly enhances IGF-II-mediated phosphorylation of IRS-1 Y612 and AKT in Tam-R cells. Importantly, induction of this pathway by gefitinib can be abrogated by inhibition/downregulation of the IGF-IR. Our data would therefore suggest a novel association exists between the EGFR and IRS-1 in several EGFR-positive cancer cell lines. This association acts to promote phosphorylation of IRS-1 at Y896 and drive MAPK signalling whilst preventing recruitment of IRS-1 by the IGF-IR and inhibiting signalling via this receptor. Treatment with gefitinib alters the dynamics of this system, promoting IGF-IR signalling, the dominant gefitinib-resistant growth regulatory pathway in Tam-R cells, thus, potentially limiting its efficacy.
Literature
1.
go back to reference Olayioye MA, Neve RM, Lane HA, Hynes N (2000) The erbB signaling network: receptor heterodimerization in development and cancer. EMBO J 19:3159–3167PubMedCrossRef Olayioye MA, Neve RM, Lane HA, Hynes N (2000) The erbB signaling network: receptor heterodimerization in development and cancer. EMBO J 19:3159–3167PubMedCrossRef
2.
go back to reference Nicholson RI, Gee JMW, Harper ME (2001) EGFR and cancer prognosis. Eur J Cancer 37(Suppl 4):S9–S15PubMedCrossRef Nicholson RI, Gee JMW, Harper ME (2001) EGFR and cancer prognosis. Eur J Cancer 37(Suppl 4):S9–S15PubMedCrossRef
3.
go back to reference Salomon DS, Bradt R, Ciardiello F, Normanno N (1995) Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol 19:183–232PubMedCrossRef Salomon DS, Bradt R, Ciardiello F, Normanno N (1995) Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol 19:183–232PubMedCrossRef
4.
go back to reference Schlessinger J (2000) Cell Signaling by receptor tyrosine kinases cell 103:211–225 Schlessinger J (2000) Cell Signaling by receptor tyrosine kinases cell 103:211–225
5.
go back to reference Baselga J (2002) Why the epidermal growth factor receptor? The rationale for cancer therapy. Oncologist 7:2–8PubMedCrossRef Baselga J (2002) Why the epidermal growth factor receptor? The rationale for cancer therapy. Oncologist 7:2–8PubMedCrossRef
6.
go back to reference Baselga J, Arteaga CL (2005) Critical update and emerging trends in epidermal growth factor receptor targeting in cancer. J Clin Oncol 23:2445–2459PubMedCrossRef Baselga J, Arteaga CL (2005) Critical update and emerging trends in epidermal growth factor receptor targeting in cancer. J Clin Oncol 23:2445–2459PubMedCrossRef
7.
go back to reference Agrawal A, Gutteridge E, Gee JM, Nicholson RI, Robertson JF (2005) Overview of tyrosine kinase inhibitors in clinical breast cancer. Endocr Relat Cancer 12(Suppl 1):S135–S144PubMedCrossRef Agrawal A, Gutteridge E, Gee JM, Nicholson RI, Robertson JF (2005) Overview of tyrosine kinase inhibitors in clinical breast cancer. Endocr Relat Cancer 12(Suppl 1):S135–S144PubMedCrossRef
8.
go back to reference Johnston SRD (2005) Clinical trials of intracellular signal transductions inhibitors for breast cancer—a strategy to overcome endocrine resistance. Endocr Relat Cancer 12:145–157CrossRef Johnston SRD (2005) Clinical trials of intracellular signal transductions inhibitors for breast cancer—a strategy to overcome endocrine resistance. Endocr Relat Cancer 12:145–157CrossRef
9.
go back to reference Ranson M, Hammond LA, Ferry D, Kris M, Tullo A, Murray PI, Miller V, Averbuch S, Ochs J, Morris C, Feyereislova A, Swaisland H, Rowinsky EK (2002) ZD1839, a selective oral epidermal growth factor receptor-tyrosine kinase inhibitor, is well tolerated and active in patients with solid, malignant tumors: results of a phase I trial. J Clin Oncol 20:2240–2250PubMedCrossRef Ranson M, Hammond LA, Ferry D, Kris M, Tullo A, Murray PI, Miller V, Averbuch S, Ochs J, Morris C, Feyereislova A, Swaisland H, Rowinsky EK (2002) ZD1839, a selective oral epidermal growth factor receptor-tyrosine kinase inhibitor, is well tolerated and active in patients with solid, malignant tumors: results of a phase I trial. J Clin Oncol 20:2240–2250PubMedCrossRef
10.
go back to reference Baselga J, Norton L, Masui H, Pandiella A, Coplan K, Miller WH Jr, Mendelsohn J (1993) Antitumor effects of doxorubicin in combination with anti-epidermal growth factor receptor monoclonal antibodies. J Natl Cancer Inst 18:1327–1333CrossRef Baselga J, Norton L, Masui H, Pandiella A, Coplan K, Miller WH Jr, Mendelsohn J (1993) Antitumor effects of doxorubicin in combination with anti-epidermal growth factor receptor monoclonal antibodies. J Natl Cancer Inst 18:1327–1333CrossRef
11.
go back to reference Ciardiello F (2005) Epidermal growth factor receptor inhibitors in cancer treatment. Future Oncol 1:221–234PubMedCrossRef Ciardiello F (2005) Epidermal growth factor receptor inhibitors in cancer treatment. Future Oncol 1:221–234PubMedCrossRef
12.
go back to reference Raben D, Helfrich BA, Chan D, Johnson G, Bunn PA Jr (2002) Zd1839, a selective epidermal growth factor receptor tyrosine kinase inhibitor, alone and in combination with radiation and chemotherapy as a new therapeutic strategy in non-small cell lung cancer. Semin Oncol 29:37–46PubMedCrossRef Raben D, Helfrich BA, Chan D, Johnson G, Bunn PA Jr (2002) Zd1839, a selective epidermal growth factor receptor tyrosine kinase inhibitor, alone and in combination with radiation and chemotherapy as a new therapeutic strategy in non-small cell lung cancer. Semin Oncol 29:37–46PubMedCrossRef
13.
go back to reference El-Rayes BF, LoRusso PM (2004) Targeting the epidermal growth factor receptor. Br J Cancer 91:418–424PubMedCrossRef El-Rayes BF, LoRusso PM (2004) Targeting the epidermal growth factor receptor. Br J Cancer 91:418–424PubMedCrossRef
14.
go back to reference Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat SM, Supko JG, Haluska FG, Louis DN, Christiani DC, Settleman J, Haber DA (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350:2129–2139PubMedCrossRef Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat SM, Supko JG, Haluska FG, Louis DN, Christiani DC, Settleman J, Haber DA (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350:2129–2139PubMedCrossRef
15.
go back to reference Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ, Naoki K, Sasaki H, Fujii Y, Eck MJ, Sellers WR, Johnson BE, Meyerson M (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304:1497–1500PubMedCrossRef Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ, Naoki K, Sasaki H, Fujii Y, Eck MJ, Sellers WR, Johnson BE, Meyerson M (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304:1497–1500PubMedCrossRef
16.
go back to reference Riedel RF, Febbo PG (2005) Epidermal growth factor receptor mutations predict sensitivity to gefitinib in patients with non-small-cell lung cancer. Future Oncol 14:461–466CrossRef Riedel RF, Febbo PG (2005) Epidermal growth factor receptor mutations predict sensitivity to gefitinib in patients with non-small-cell lung cancer. Future Oncol 14:461–466CrossRef
17.
go back to reference Bianco R, Shin I, Ritter CA, Yakes FM, Basso A, Rosen N, Tsurutani J, Dennis PA, Mills GB, Arteaga CL (2003) Loss of PTEN/MMAC1/TEP in EGF receptor-expressing tumor cells counteracts the antitumor action of EGFR tyrosine kinase inhibitors. Oncogene 22:2812–2822PubMedCrossRef Bianco R, Shin I, Ritter CA, Yakes FM, Basso A, Rosen N, Tsurutani J, Dennis PA, Mills GB, Arteaga CL (2003) Loss of PTEN/MMAC1/TEP in EGF receptor-expressing tumor cells counteracts the antitumor action of EGFR tyrosine kinase inhibitors. Oncogene 22:2812–2822PubMedCrossRef
18.
go back to reference Liu B, Fang M, Lu Y, Mendelsohn J, Fan Z (2001) Fibroblast growth factor and insulin-like growth factor differentially modulate the apoptosis and G1 arrest induced by anti-epidermal growth factor receptor monoclonal antibody. Oncogene 20:1913–1922PubMedCrossRef Liu B, Fang M, Lu Y, Mendelsohn J, Fan Z (2001) Fibroblast growth factor and insulin-like growth factor differentially modulate the apoptosis and G1 arrest induced by anti-epidermal growth factor receptor monoclonal antibody. Oncogene 20:1913–1922PubMedCrossRef
19.
go back to reference Chakravarti A, Loeffler JS, Dyson NJ (2002) Insulin-like growth factor receptor I mediates resistance to anti-epidermal growth factor receptor therapy in primary human glioblastoma cells through continued activation of phosphoinositide 3-kinase signalling. Cancer Res 62:200–207PubMed Chakravarti A, Loeffler JS, Dyson NJ (2002) Insulin-like growth factor receptor I mediates resistance to anti-epidermal growth factor receptor therapy in primary human glioblastoma cells through continued activation of phosphoinositide 3-kinase signalling. Cancer Res 62:200–207PubMed
20.
go back to reference Jones HE, Goddard L, Gee JMW, Hiscox S, Rubini M, Barrow D, Knowlden JM, Williams S, Wakeling AE, Nicholson RI (2004) Insulin-like growth factor-I receptor signalling and acquired resistance to gefitinib (ZD1839; Iressa) in human breast and prostate cancer cells. Endocr Relat Cancer 11:793–814PubMedCrossRef Jones HE, Goddard L, Gee JMW, Hiscox S, Rubini M, Barrow D, Knowlden JM, Williams S, Wakeling AE, Nicholson RI (2004) Insulin-like growth factor-I receptor signalling and acquired resistance to gefitinib (ZD1839; Iressa) in human breast and prostate cancer cells. Endocr Relat Cancer 11:793–814PubMedCrossRef
21.
go back to reference Camirand A, Zakikhani M, Young F, Pollak M (2005) Inhibition of insulin-like growth factor receptor signalling enhances growth-inhibitory and pro-apoptotic effects of gefitinib (Iressa) in human breast cancer cells. Breast Cancer Res 7:570–579CrossRef Camirand A, Zakikhani M, Young F, Pollak M (2005) Inhibition of insulin-like growth factor receptor signalling enhances growth-inhibitory and pro-apoptotic effects of gefitinib (Iressa) in human breast cancer cells. Breast Cancer Res 7:570–579CrossRef
22.
go back to reference Ullrich A, Gray A, Tam AW, Yang-Feng T, Tsubokawa M, Collins C, Henzel W, Le Bon T, Kathuria S, Chen E, Jacobs S, Francke U, Ramachandran J, Fujita-Yamaguchi Y (1986) Insulin-like growth factor I receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificity. EMBO J 5:2503–2512PubMed Ullrich A, Gray A, Tam AW, Yang-Feng T, Tsubokawa M, Collins C, Henzel W, Le Bon T, Kathuria S, Chen E, Jacobs S, Francke U, Ramachandran J, Fujita-Yamaguchi Y (1986) Insulin-like growth factor I receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificity. EMBO J 5:2503–2512PubMed
23.
go back to reference Rocha RL, Hilsenbeck SG, Jackson JG, Van Den Berg CL, Weng C, Lee AV, Yee D (1997) Insulin-like growth factor binding protein 3 and insulin receptor substrate 1 in breast cancer: correlation with clinical parameters and disease-free survival. Clin Can Res 3:103–109 Rocha RL, Hilsenbeck SG, Jackson JG, Van Den Berg CL, Weng C, Lee AV, Yee D (1997) Insulin-like growth factor binding protein 3 and insulin receptor substrate 1 in breast cancer: correlation with clinical parameters and disease-free survival. Clin Can Res 3:103–109
24.
go back to reference Turner BC, Haffty BG, Narayanan L, Yuan J, Havre PA, Gumbs AA, Kaplan L, Burgaud JL, Carter D, Baserga R, Glazer PM (1997) IGF-I receptor and cyclin D1 expression influence cellular radiosensitivity and local recurrence after lumpectomy and radiation. Cancer Res 57:3079–3083PubMed Turner BC, Haffty BG, Narayanan L, Yuan J, Havre PA, Gumbs AA, Kaplan L, Burgaud JL, Carter D, Baserga R, Glazer PM (1997) IGF-I receptor and cyclin D1 expression influence cellular radiosensitivity and local recurrence after lumpectomy and radiation. Cancer Res 57:3079–3083PubMed
25.
go back to reference White MF (1997) The insulin signalling system and the IRS proteins. Diabetologia 40:2–17CrossRef White MF (1997) The insulin signalling system and the IRS proteins. Diabetologia 40:2–17CrossRef
26.
go back to reference Esposito DL, Li Y, Cama A, Quon MJ (2001) Tyr(612) and Tyr(632) in human insulin receptor substrate-1 are important for full activation of insulin-stimulated phosphatidylinositol 3-kinase activity and translocation of GLUT4 in adipose cells. Endocrinology 142:2833–2840PubMedCrossRef Esposito DL, Li Y, Cama A, Quon MJ (2001) Tyr(612) and Tyr(632) in human insulin receptor substrate-1 are important for full activation of insulin-stimulated phosphatidylinositol 3-kinase activity and translocation of GLUT4 in adipose cells. Endocrinology 142:2833–2840PubMedCrossRef
27.
go back to reference Hers I, Bell CJ, Poole AW, Jiang D, Denton RM, Schaeffer E, Tavare JM (2002) Reciprocal feedback regulation of insulin receptor and insulin receptor substrate tyrosine phosphorylation by phosphoinositide 3-kinase in primary adipocytes. Biochem J 368:875–884PubMedCrossRef Hers I, Bell CJ, Poole AW, Jiang D, Denton RM, Schaeffer E, Tavare JM (2002) Reciprocal feedback regulation of insulin receptor and insulin receptor substrate tyrosine phosphorylation by phosphoinositide 3-kinase in primary adipocytes. Biochem J 368:875–884PubMedCrossRef
28.
go back to reference Lu Y, Zi X, Zhao Y, Mascarenhas D, Pollak M (2001) Insulin-like growth factor receptor signalling and resistance to trastuzumab (Herceptin). J Natl Cancer Inst 93:1852–1857PubMedCrossRef Lu Y, Zi X, Zhao Y, Mascarenhas D, Pollak M (2001) Insulin-like growth factor receptor signalling and resistance to trastuzumab (Herceptin). J Natl Cancer Inst 93:1852–1857PubMedCrossRef
29.
go back to reference Lu Y, Xiaolin ZI, Pollak M (2004) Molecular mechanisms underlying IGF-I-induced attenuation of the growth inhibitory activity of trastuzumab (Herceptin) on SKBR3 breast cancer cells. Int J Cancer 108:334–341PubMedCrossRef Lu Y, Xiaolin ZI, Pollak M (2004) Molecular mechanisms underlying IGF-I-induced attenuation of the growth inhibitory activity of trastuzumab (Herceptin) on SKBR3 breast cancer cells. Int J Cancer 108:334–341PubMedCrossRef
30.
go back to reference Knowlden JM, Hutcheson IR, Jones HE, Madden T, Gee JM, Harper ME, Barrow D, Wakeling AE, Nicholson RI (2003) Elevated levels of epidermal growth factor receptor/c-erbB2 heterodimers mediate an autocrine growth regulatory pathway in tamoxifen-resistant MCF-7 cells. Endocrinology 144:1032–1044PubMedCrossRef Knowlden JM, Hutcheson IR, Jones HE, Madden T, Gee JM, Harper ME, Barrow D, Wakeling AE, Nicholson RI (2003) Elevated levels of epidermal growth factor receptor/c-erbB2 heterodimers mediate an autocrine growth regulatory pathway in tamoxifen-resistant MCF-7 cells. Endocrinology 144:1032–1044PubMedCrossRef
31.
go back to reference Jones HE, Gee JM, Barrow D, Tonge D, Holloway B, Nicholson RI (2006) Inhibition of insulin receptor isoform-A signalling restores sensitivity to gefitinib in previously de novo resistant colon cancer cells. Br J Cancer 95:172–180PubMedCrossRef Jones HE, Gee JM, Barrow D, Tonge D, Holloway B, Nicholson RI (2006) Inhibition of insulin receptor isoform-A signalling restores sensitivity to gefitinib in previously de novo resistant colon cancer cells. Br J Cancer 95:172–180PubMedCrossRef
32.
go back to reference Knowlden JM, Hutcheson IR, Barrow D, Gee JM, Nicholson RI (2005) Insulin-like growth factor-I receptor signaling in tamoxifen-resistant breast cancer: a supporting role to the epidermal growth factor receptor. Endocrinology 146:4609–4618PubMedCrossRef Knowlden JM, Hutcheson IR, Barrow D, Gee JM, Nicholson RI (2005) Insulin-like growth factor-I receptor signaling in tamoxifen-resistant breast cancer: a supporting role to the epidermal growth factor receptor. Endocrinology 146:4609–4618PubMedCrossRef
33.
go back to reference Jordan NJ, Gee JMW, Barrow D, Wakeling AE, Nicholson RI (2004) Increased constitutive activity of PKB/Akt in tamoxifen resistant breast cancer MCF-7 cells. Breast Cancer Res Treat 87:167–180PubMedCrossRef Jordan NJ, Gee JMW, Barrow D, Wakeling AE, Nicholson RI (2004) Increased constitutive activity of PKB/Akt in tamoxifen resistant breast cancer MCF-7 cells. Breast Cancer Res Treat 87:167–180PubMedCrossRef
34.
go back to reference Fujioka T, Kim JH, Adachi H, Saito K, Tsujimoto M, Yokoyama S, Ui M (2001) Further evidence for the involvement of insulin receptor substrates in epidermal growth factor-induced activation of phosphatidylinositol 3-kinase. Eur J Biochem 268:4158–4168PubMedCrossRef Fujioka T, Kim JH, Adachi H, Saito K, Tsujimoto M, Yokoyama S, Ui M (2001) Further evidence for the involvement of insulin receptor substrates in epidermal growth factor-induced activation of phosphatidylinositol 3-kinase. Eur J Biochem 268:4158–4168PubMedCrossRef
35.
go back to reference Fujioka T, Ui M (2001) Involvement of insulin receptor substrates in epidermal growth factor induced activation of phosphatidylinositol 3-kinase in rat hepatocyte primary culture. Eur J Biochem 268:25–34PubMedCrossRef Fujioka T, Ui M (2001) Involvement of insulin receptor substrates in epidermal growth factor induced activation of phosphatidylinositol 3-kinase in rat hepatocyte primary culture. Eur J Biochem 268:25–34PubMedCrossRef
36.
go back to reference Hardy RW, Gupta KB, McDonald JM, Williford J, Wells A (1995) Epidermal growth factor (EGF) receptor carboxy-terminal domains are required for EGF-induced glucose transport in transgenic 3T3-L1 adipocytes. Endocrinology 136:431–439PubMedCrossRef Hardy RW, Gupta KB, McDonald JM, Williford J, Wells A (1995) Epidermal growth factor (EGF) receptor carboxy-terminal domains are required for EGF-induced glucose transport in transgenic 3T3-L1 adipocytes. Endocrinology 136:431–439PubMedCrossRef
37.
go back to reference Jones RB, Gordus A, Krall JA, MacBeath G (2006) A quantitative protein interaction network for the ErbB receptors using protein microarrays. Nature 439:168–174PubMedCrossRef Jones RB, Gordus A, Krall JA, MacBeath G (2006) A quantitative protein interaction network for the ErbB receptors using protein microarrays. Nature 439:168–174PubMedCrossRef
38.
go back to reference Songyang Z, Margolis B, Chaudhuri M, Shoelson SE, Cantley LC (1995) The phosphotyrosine interaction domain of SHC recognizes tyrosine-phosphorylated NPXY motif. J Biol Chem 270:14863–14866PubMedCrossRef Songyang Z, Margolis B, Chaudhuri M, Shoelson SE, Cantley LC (1995) The phosphotyrosine interaction domain of SHC recognizes tyrosine-phosphorylated NPXY motif. J Biol Chem 270:14863–14866PubMedCrossRef
39.
go back to reference Zhang H, Hoff H, Sell C (2000) Insulin-like growth factor I-mediated degradation of insulin receptor substrate-1 is inhibited by epidermal growth factor in prostate epithelial cells. J Biol Chem 275:22558–22562PubMedCrossRef Zhang H, Hoff H, Sell C (2000) Insulin-like growth factor I-mediated degradation of insulin receptor substrate-1 is inhibited by epidermal growth factor in prostate epithelial cells. J Biol Chem 275:22558–22562PubMedCrossRef
40.
go back to reference Nicholson RI, Hutcheson IR, Knowlden JM, Jones H, Harper ME, Jordan N, Hiscox SE, Barrow B, Gee JMW (2004) Nonendocrine pathways and endocrine resistance: observations with antiestrogens and signal transduction inhibitors. Clin Cancer Res 10:346–354CrossRef Nicholson RI, Hutcheson IR, Knowlden JM, Jones H, Harper ME, Jordan N, Hiscox SE, Barrow B, Gee JMW (2004) Nonendocrine pathways and endocrine resistance: observations with antiestrogens and signal transduction inhibitors. Clin Cancer Res 10:346–354CrossRef
41.
go back to reference Reiss K, Wang JY, Romano G, Furnari FB, Cavenee WK, Morrione A, Tu X, Baserga R (2000) IGF-I receptor signaling in a prostatic cancer cell line with a PTEN mutation. Oncogene 19:2687–2694PubMedCrossRef Reiss K, Wang JY, Romano G, Furnari FB, Cavenee WK, Morrione A, Tu X, Baserga R (2000) IGF-I receptor signaling in a prostatic cancer cell line with a PTEN mutation. Oncogene 19:2687–2694PubMedCrossRef
Metadata
Title
Insulin receptor substrate-1 involvement in epidermal growth factor receptor and insulin-like growth factor receptor signalling: implication for Gefitinib (‘Iressa’) response and resistance
Authors
Janice M. Knowlden
Helen E. Jones
Denise Barrow
Julia M. W. Gee
Robert I. Nicholson
Iain R. Hutcheson
Publication date
01-09-2008
Publisher
Springer US
Published in
Breast Cancer Research and Treatment / Issue 1/2008
Print ISSN: 0167-6806
Electronic ISSN: 1573-7217
DOI
https://doi.org/10.1007/s10549-007-9763-9

Other articles of this Issue 1/2008

Breast Cancer Research and Treatment 1/2008 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine