Skip to main content
Top
Published in: Breast Cancer Research and Treatment 2/2008

01-03-2008 | Preclinical Study

Predicting features of breast cancer with gene expression patterns

Authors: Xuesong Lu, Xin Lu, Zhigang C. Wang, J. Dirk Iglehart, Xuegong Zhang, Andrea L. Richardson

Published in: Breast Cancer Research and Treatment | Issue 2/2008

Login to get access

Abstract

Data from gene expression arrays hold an enormous amount of biological information. We sought to determine if global gene expression in primary breast cancers contained information about biologic, histologic, and anatomic features of the disease in individual patients. Microarray data from the tumors of 129 patients were analyzed for the ability to predict biomarkers [estrogen receptor (ER) and HER2], histologic features [grade and lymphatic-vascular invasion (LVI)], and stage parameters (tumor size and lymph node metastasis). Multiple statistical predictors were used and the prediction accuracy was determined by cross-validation error rate; multidimensional scaling (MDS) allowed visualization of the predicted states under study. Models built from gene expression data accurately predict ER and HER2 status, and divide tumor grade into high-grade and low-grade clusters; intermediate-grade tumors are not a unique group. In contrast, gene expression data is inaccurate at predicting tumor size, lymph node status or LVI. The best model for prediction of nodal status included tumor size, LVI status and pathologically defined tumor subtype (based on combinations of ER, HER2, and grade); the addition of microarray-based prediction to this model failed to improve the prediction accuracy. Global gene expression supports a binary division of ER, HER2, and grade, clearly separating tumors into two categories; intermediate values for these bio-indicators do not define intermediate tumor subsets. Results are consistent with a model of regional metastasis that depends on inherent biologic differences in metastatic propensity between breast cancer subtypes, upon which time and chance then operate.
Literature
1.
go back to reference Harari D, Yarden Y (2000) Molecular mechanisms underlying ErbB2/HER2 action in breast cancer. Oncogene 19:6102–6114PubMedCrossRef Harari D, Yarden Y (2000) Molecular mechanisms underlying ErbB2/HER2 action in breast cancer. Oncogene 19:6102–6114PubMedCrossRef
2.
go back to reference Davidoff AM, Humphrey PA, Iglehart JD, Marks JR (1991) Genetic basis for p53 overexpression in human breast cancer. Proc Natl Acad Sci USA 88:5006–5010PubMedCrossRef Davidoff AM, Humphrey PA, Iglehart JD, Marks JR (1991) Genetic basis for p53 overexpression in human breast cancer. Proc Natl Acad Sci USA 88:5006–5010PubMedCrossRef
3.
go back to reference Miki Y, Swensen J, Shattuck-Eidens D et al (1994) A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266:66–71PubMedCrossRef Miki Y, Swensen J, Shattuck-Eidens D et al (1994) A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266:66–71PubMedCrossRef
4.
go back to reference Wooster R, Bignell G, Lancaster J et al (1995) Identification of the breast cancer susceptibility gene BRCA2. Nature 378:789–792PubMedCrossRef Wooster R, Bignell G, Lancaster J et al (1995) Identification of the breast cancer susceptibility gene BRCA2. Nature 378:789–792PubMedCrossRef
5.
go back to reference Dickson RB, Lippman ME (2000) Oncogenes, suppressor genes, and signal transduction. In: Harris JR, Lippman ME, Morrow M, Osborne CK (eds) Diseases of the breast, 2nd edn. Lippincott Williams & Wilkins, Philadelphia, pp 281–302 Dickson RB, Lippman ME (2000) Oncogenes, suppressor genes, and signal transduction. In: Harris JR, Lippman ME, Morrow M, Osborne CK (eds) Diseases of the breast, 2nd edn. Lippincott Williams & Wilkins, Philadelphia, pp 281–302
6.
go back to reference Dickson RB, Stancel GM (2000) Estrogen receptor-mediated processes in normal and cancer cells. J Natl Cancer Inst Monogr 27:135–145PubMed Dickson RB, Stancel GM (2000) Estrogen receptor-mediated processes in normal and cancer cells. J Natl Cancer Inst Monogr 27:135–145PubMed
7.
go back to reference Carter CL, Allen C, Henson DE (1989) Relation of tumor size, lymph node status, and survival in 24, 740 breast cancer cases. Cancer 63:181–187PubMedCrossRef Carter CL, Allen C, Henson DE (1989) Relation of tumor size, lymph node status, and survival in 24, 740 breast cancer cases. Cancer 63:181–187PubMedCrossRef
8.
go back to reference Fisher B, Bauer M, Wickerham DL et al (1983) Relation of number of positive axillary nodes to the prognosis of patients with primary breast cancer: an NSABP update. Cancer 52:1551–1557PubMedCrossRef Fisher B, Bauer M, Wickerham DL et al (1983) Relation of number of positive axillary nodes to the prognosis of patients with primary breast cancer: an NSABP update. Cancer 52:1551–1557PubMedCrossRef
9.
go back to reference Early Breast Cancer Trialists’ Collaborative Group (1998) Polychemotherapy for early breast cancer: and overview of the randomised trials. Lancet 352:930–942CrossRef Early Breast Cancer Trialists’ Collaborative Group (1998) Polychemotherapy for early breast cancer: and overview of the randomised trials. Lancet 352:930–942CrossRef
10.
go back to reference Barth A, Craig PH, Silverstein MJ (1997) Predictors of axillary lymph node metastases in patients with T1 breast carcinoma. Cancer 79:1918–1922PubMedCrossRef Barth A, Craig PH, Silverstein MJ (1997) Predictors of axillary lymph node metastases in patients with T1 breast carcinoma. Cancer 79:1918–1922PubMedCrossRef
11.
go back to reference Yiangou C, Shousha S, Sinnett HD (1999) Primary tumour characteristics and axillary lymph node status in breast cancer. Br J Cancer 80:1974–1978PubMedCrossRef Yiangou C, Shousha S, Sinnett HD (1999) Primary tumour characteristics and axillary lymph node status in breast cancer. Br J Cancer 80:1974–1978PubMedCrossRef
12.
go back to reference Silverstein MJ, Skinner KA, Lomis TJ (2001) Predicting axillary nodal positivity in 2282 patients with breast carcinoma. World J Surg 25:767–772PubMedCrossRef Silverstein MJ, Skinner KA, Lomis TJ (2001) Predicting axillary nodal positivity in 2282 patients with breast carcinoma. World J Surg 25:767–772PubMedCrossRef
13.
go back to reference Mittra I, MacRae KD (1991) A meta-analysis of reported correlations between prognostic factors in breast cancer: does axillary lymph node metastasis represent biology or chronology? Eur J Cancer 27:1574–1583PubMed Mittra I, MacRae KD (1991) A meta-analysis of reported correlations between prognostic factors in breast cancer: does axillary lymph node metastasis represent biology or chronology? Eur J Cancer 27:1574–1583PubMed
14.
go back to reference Tubiana-Hulin M, Hacene K, Martin PM, Spyratos F (1995) Prognostic factor clustering in breast cancer: biology or chronology? Eur J Cancer 31A:282–283PubMedCrossRef Tubiana-Hulin M, Hacene K, Martin PM, Spyratos F (1995) Prognostic factor clustering in breast cancer: biology or chronology? Eur J Cancer 31A:282–283PubMedCrossRef
15.
go back to reference Lancet (1992) Prognostic factors in breast cancer: biology or chronology? Lancet 340:517–518CrossRef Lancet (1992) Prognostic factors in breast cancer: biology or chronology? Lancet 340:517–518CrossRef
16.
go back to reference Mittra I (1993) Axillary lymph node metastasis in breast cancer: prognostic indicator or lead-time bias? Eur J Cancer 29A:300–302PubMedCrossRef Mittra I (1993) Axillary lymph node metastasis in breast cancer: prognostic indicator or lead-time bias? Eur J Cancer 29A:300–302PubMedCrossRef
17.
go back to reference Golub TR, Slonim DK, Tamayo P et al (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286:531–537PubMedCrossRef Golub TR, Slonim DK, Tamayo P et al (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286:531–537PubMedCrossRef
18.
go back to reference Alon U, Barkai N, Notterman DA et al (1999) Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc Natl Acad Sci USA 96:6745–6750PubMedCrossRef Alon U, Barkai N, Notterman DA et al (1999) Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc Natl Acad Sci USA 96:6745–6750PubMedCrossRef
19.
go back to reference Dhanasekaran SM, Barrette TR, Ghosh D et al (2001) Delineation of prognostic biomarkers in prostate cancer. Nature 412:822–826PubMedCrossRef Dhanasekaran SM, Barrette TR, Ghosh D et al (2001) Delineation of prognostic biomarkers in prostate cancer. Nature 412:822–826PubMedCrossRef
20.
go back to reference Welsh JB, Zarrinkar PP, Sapinoso LM et al (2001) Analysis of gene expression profiles in normal and neoplastic ovarian tissue samples identifies candidate molecular markers of epithelial ovarian cancer. Proc Natl Acad Sci USA 98:1176–1181PubMedCrossRef Welsh JB, Zarrinkar PP, Sapinoso LM et al (2001) Analysis of gene expression profiles in normal and neoplastic ovarian tissue samples identifies candidate molecular markers of epithelial ovarian cancer. Proc Natl Acad Sci USA 98:1176–1181PubMedCrossRef
21.
go back to reference van’t Veer LJ, Dai H, van de Vijver MJ et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536CrossRef van’t Veer LJ, Dai H, van de Vijver MJ et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536CrossRef
22.
go back to reference Perou CM, Sorlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752PubMedCrossRef Perou CM, Sorlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752PubMedCrossRef
23.
go back to reference Sorlie T, Perou CM, Tibshirani R et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98:10869–10874PubMedCrossRef Sorlie T, Perou CM, Tibshirani R et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98:10869–10874PubMedCrossRef
24.
go back to reference Sorlie T, Tibshirani R, Parker J et al (2003) Repeated observation of breast tumour subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 100:8418–8423PubMedCrossRef Sorlie T, Tibshirani R, Parker J et al (2003) Repeated observation of breast tumour subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 100:8418–8423PubMedCrossRef
25.
go back to reference Wang Y, Klijn JGM, Zhang Y et al (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365:671–679PubMed Wang Y, Klijn JGM, Zhang Y et al (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365:671–679PubMed
26.
go back to reference Li C, Wong WH (2001) Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc Natl Acad Sci USA 98:31–36PubMedCrossRef Li C, Wong WH (2001) Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc Natl Acad Sci USA 98:31–36PubMedCrossRef
27.
go back to reference Signoretti S, Di Marcotullio L, Richardson A et al (2002) Oncogenic role of the ubiquitin ligase subunit Skp2 in human breast cancer. J Clin Invest 110:633–641PubMedCrossRef Signoretti S, Di Marcotullio L, Richardson A et al (2002) Oncogenic role of the ubiquitin ligase subunit Skp2 in human breast cancer. J Clin Invest 110:633–641PubMedCrossRef
28.
go back to reference Wang ZC, Lin M, Wei LJ et al (2004) Loss of heterozygosity and its correlation with expression profiles in subclasses of invasive breast cancers. Cancer Res 64:64–71PubMedCrossRef Wang ZC, Lin M, Wei LJ et al (2004) Loss of heterozygosity and its correlation with expression profiles in subclasses of invasive breast cancers. Cancer Res 64:64–71PubMedCrossRef
29.
go back to reference Matros E, Wang ZC, Richardson AL, Iglehart JD (2004) Genomic approaches in cancer biology. Surgery 136:511–518PubMedCrossRef Matros E, Wang ZC, Richardson AL, Iglehart JD (2004) Genomic approaches in cancer biology. Surgery 136:511–518PubMedCrossRef
30.
go back to reference Zhang X, Lu X, Shi Q et al (2006) Recursive SVM feature selection and sample classification for mass-spectrometry and microarray data. BMC Bioinformatics 7:197PubMedCrossRef Zhang X, Lu X, Shi Q et al (2006) Recursive SVM feature selection and sample classification for mass-spectrometry and microarray data. BMC Bioinformatics 7:197PubMedCrossRef
31.
go back to reference Furey TS, Cristianini N, Duffy N, Bednarski DW, Schummer M, Haussler D (2000) Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16:906–914PubMedCrossRef Furey TS, Cristianini N, Duffy N, Bednarski DW, Schummer M, Haussler D (2000) Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16:906–914PubMedCrossRef
32.
go back to reference Vapnik VN (1999) The nature of statistical learning theory, 2nd edn. Springer, New York Vapnik VN (1999) The nature of statistical learning theory, 2nd edn. Springer, New York
33.
go back to reference Pittman J, Huang E, Nevins JR, Wang Q, West M (2004) Bayesian analysis of binary prediction tree models. Biostatistics 5:587–601PubMedCrossRef Pittman J, Huang E, Nevins JR, Wang Q, West M (2004) Bayesian analysis of binary prediction tree models. Biostatistics 5:587–601PubMedCrossRef
35.
go back to reference Cox TF, Cox MAA (1994) Multidimensional scaling. Chapman and Hall, London Cox TF, Cox MAA (1994) Multidimensional scaling. Chapman and Hall, London
36.
go back to reference Hosmer DW, Lemeshow S (2000) Applied logistic regression. Wiley, New York Hosmer DW, Lemeshow S (2000) Applied logistic regression. Wiley, New York
37.
go back to reference Tian L, Cai T, Goetghebeur E, Wei LJ (2005) Model evaluation based on the distribution of estimated absolute prediction error. Harvard University Biostatistics Working Paper Series. Working Paper 35 Tian L, Cai T, Goetghebeur E, Wei LJ (2005) Model evaluation based on the distribution of estimated absolute prediction error. Harvard University Biostatistics Working Paper Series. Working Paper 35
38.
go back to reference Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. Chapman and Hall, London Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. Chapman and Hall, London
39.
go back to reference West M, Blanchette C, Dressman H et al (2001) Predicting the clinical status of human breast cancer by using gene expression profiles. Proc Natl Acad Sci USA 98:11462–11467PubMedCrossRef West M, Blanchette C, Dressman H et al (2001) Predicting the clinical status of human breast cancer by using gene expression profiles. Proc Natl Acad Sci USA 98:11462–11467PubMedCrossRef
40.
go back to reference Mittra I, MacRae KD (1991) A meta-analysis of reported correlations between prognostic factors in breast cancer: does axillary lymph node metastasis represent biology or chronology? Eur J Cancer 27(12):1574–1583PubMedCrossRef Mittra I, MacRae KD (1991) A meta-analysis of reported correlations between prognostic factors in breast cancer: does axillary lymph node metastasis represent biology or chronology? Eur J Cancer 27(12):1574–1583PubMedCrossRef
41.
go back to reference Barth A, Craig PH, Silverstein MJ (1997) Predictors of axillary lymph node metastases in patients with T1 breast carcinoma. Cancer 79:1918–1922PubMedCrossRef Barth A, Craig PH, Silverstein MJ (1997) Predictors of axillary lymph node metastases in patients with T1 breast carcinoma. Cancer 79:1918–1922PubMedCrossRef
42.
go back to reference Rivadeneira DE, Simmons RM, Christos PJ, hanna K, Daly JM, Osborne MP (2000) Predictive factors associated with axillary lymph node metastases in T1a and T1b breast carcinomas: analysis in more the 900 patients. J Am Coll Surg 191:1–8PubMedCrossRef Rivadeneira DE, Simmons RM, Christos PJ, hanna K, Daly JM, Osborne MP (2000) Predictive factors associated with axillary lymph node metastases in T1a and T1b breast carcinomas: analysis in more the 900 patients. J Am Coll Surg 191:1–8PubMedCrossRef
43.
go back to reference Huang E, Cheng SH, Dressman H et al (2003) Gene expression predictors of breast cancer outcomes. Lancet 361:1590–1596PubMedCrossRef Huang E, Cheng SH, Dressman H et al (2003) Gene expression predictors of breast cancer outcomes. Lancet 361:1590–1596PubMedCrossRef
44.
go back to reference Weigelt B, Wessels LFA, Bosma AJ et al (2005) No common denominator for breast cancer lymph node metastasis. Br J Cancer 93:924–932PubMedCrossRef Weigelt B, Wessels LFA, Bosma AJ et al (2005) No common denominator for breast cancer lymph node metastasis. Br J Cancer 93:924–932PubMedCrossRef
Metadata
Title
Predicting features of breast cancer with gene expression patterns
Authors
Xuesong Lu
Xin Lu
Zhigang C. Wang
J. Dirk Iglehart
Xuegong Zhang
Andrea L. Richardson
Publication date
01-03-2008
Publisher
Springer US
Published in
Breast Cancer Research and Treatment / Issue 2/2008
Print ISSN: 0167-6806
Electronic ISSN: 1573-7217
DOI
https://doi.org/10.1007/s10549-007-9596-6

Other articles of this Issue 2/2008

Breast Cancer Research and Treatment 2/2008 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine