Skip to main content
Top
Published in: Brain Topography 3/2019

01-05-2019 | Original Paper

Brain Activity Mapping from MEG Data via a Hierarchical Bayesian Algorithm with Automatic Depth Weighting

Authors: Daniela Calvetti, Annalisa Pascarella, Francesca Pitolli, Erkki Somersalo, Barbara Vantaggi

Published in: Brain Topography | Issue 3/2019

Login to get access

Abstract

A recently proposed iterated alternating sequential (IAS) MEG inverse solver algorithm, based on the coupling of a hierarchical Bayesian model with computationally efficient Krylov subspace linear solver, has been shown to perform well for both superficial and deep brain sources. However, a systematic study of its ability to correctly identify active brain regions is still missing. We propose novel statistical protocols to quantify the performance of MEG inverse solvers, focusing in particular on how their accuracy and precision at identifying active brain regions. We use these protocols for a systematic study of the performance of the IAS MEG inverse solver, comparing it with three standard inversion methods, wMNE, dSPM, and sLORETA. To avoid the bias of anecdotal tests towards a particular algorithm, the proposed protocols are Monte Carlo sampling based, generating an ensemble of activity patches in each brain region identified in a given atlas. The performance in correctly identifying the active areas is measured by how much, on average, the reconstructed activity is concentrated in the brain region of the simulated active patch. The analysis is based on Bayes factors, interpreting the estimated current activity as data for testing the hypothesis that the active brain region is correctly identified, versus the hypothesis of any erroneous attribution. The methodology allows the presence of a single or several simultaneous activity regions, without assuming that the number of active regions is known. The testing protocols suggest that the IAS solver performs well with both with cortical and subcortical activity estimation.
Appendix
Available only for authorised users
Literature
go back to reference Aine CJ, Sanfratello L, Ranken D, Best E, MacArthur JA, Wallace T, Gilliam K, Donahue CH, Montano R, Bryant JE et al (2012) MEG-SIM: a web portal for testing MEG analysis methods using realistic simulated and empirical data. Neuroinformatics 10(2):141–158CrossRefPubMedPubMedCentral Aine CJ, Sanfratello L, Ranken D, Best E, MacArthur JA, Wallace T, Gilliam K, Donahue CH, Montano R, Bryant JE et al (2012) MEG-SIM: a web portal for testing MEG analysis methods using realistic simulated and empirical data. Neuroinformatics 10(2):141–158CrossRefPubMedPubMedCentral
go back to reference Algorri ME, Flores-Mangas F (2004) Classification of anatomical structures in MR brain images using fuzzy parameters. IEEE Trans Biomed Eng 51:1599–1608CrossRefPubMed Algorri ME, Flores-Mangas F (2004) Classification of anatomical structures in MR brain images using fuzzy parameters. IEEE Trans Biomed Eng 51:1599–1608CrossRefPubMed
go back to reference Attal Y, Schwartz D (2013) Assessment of subcortical source localization using deep brain activity imaging model with minimum norm operators: a MEG study. PLoS ONE 8:e59856CrossRefPubMedPubMedCentral Attal Y, Schwartz D (2013) Assessment of subcortical source localization using deep brain activity imaging model with minimum norm operators: a MEG study. PLoS ONE 8:e59856CrossRefPubMedPubMedCentral
go back to reference Attal Y, Maess B, Friederici A, David O (2012) Head models and dynamic causal modeling of subcortical activity using magnetoencephalographic/electroencephalographic data. Rev Neurosci 23:141–158CrossRef Attal Y, Maess B, Friederici A, David O (2012) Head models and dynamic causal modeling of subcortical activity using magnetoencephalographic/electroencephalographic data. Rev Neurosci 23:141–158CrossRef
go back to reference Auranen T, Nummenmaa A, Hämäläinen MS, Jääskeläinen IP, Lampinen J, Vehtari A, Sams M (2005) Bayesian analysis of the neuromagnetic inverse problem with \(\ell _p\)-norm priors. NeuroImage 26:870–884CrossRefPubMed Auranen T, Nummenmaa A, Hämäläinen MS, Jääskeläinen IP, Lampinen J, Vehtari A, Sams M (2005) Bayesian analysis of the neuromagnetic inverse problem with \(\ell _p\)-norm priors. NeuroImage 26:870–884CrossRefPubMed
go back to reference Baillet S, Mosher JC, Leahy RM (2001) Electromagnetic brain mapping. IEEE Signal Proc Mag 18:14–30CrossRef Baillet S, Mosher JC, Leahy RM (2001) Electromagnetic brain mapping. IEEE Signal Proc Mag 18:14–30CrossRef
go back to reference Bernardo JM, Smith AFM (2004) Bayesian theory. Wiley, New York Bernardo JM, Smith AFM (2004) Bayesian theory. Wiley, New York
go back to reference Brette R, Destexhe A (2012) Handbook of neural activity measurement. Cambridge University Press, CambridgeCrossRef Brette R, Destexhe A (2012) Handbook of neural activity measurement. Cambridge University Press, CambridgeCrossRef
go back to reference Calvetti D, Pascarella A, Pitolli F, Somersalo E, Vantaggi B (2015) A hierarchical Krylov-Bayes iterative inverse solver for MEG with physiological preconditioning. Inverse Probl 31:125005CrossRef Calvetti D, Pascarella A, Pitolli F, Somersalo E, Vantaggi B (2015) A hierarchical Krylov-Bayes iterative inverse solver for MEG with physiological preconditioning. Inverse Probl 31:125005CrossRef
go back to reference Calvetti D, Hakula H, Pursiainen S, Somersalo E (2009) Conditionally Gaussian hypermodels for cerebral source localization. SIAM J Imaging Sci 2:879–909CrossRef Calvetti D, Hakula H, Pursiainen S, Somersalo E (2009) Conditionally Gaussian hypermodels for cerebral source localization. SIAM J Imaging Sci 2:879–909CrossRef
go back to reference Ciofolo C, Barillot C (2009) Atlas-based segmentation of 3D cerebral structures with competitive level sets and fuzzy control. Med Image Anal 13:456–470CrossRefPubMed Ciofolo C, Barillot C (2009) Atlas-based segmentation of 3D cerebral structures with competitive level sets and fuzzy control. Med Image Anal 13:456–470CrossRefPubMed
go back to reference Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis: I. Segmentation and surface reconstruction. NeuroImage 9:179–194CrossRef Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis: I. Segmentation and surface reconstruction. NeuroImage 9:179–194CrossRef
go back to reference Dale MA, Liu AK, Fischl BR, Buckner RL, Belliveau JW, Lewine JD, Halgren E (2000) Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron 26:55–67CrossRefPubMed Dale MA, Liu AK, Fischl BR, Buckner RL, Belliveau JW, Lewine JD, Halgren E (2000) Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron 26:55–67CrossRefPubMed
go back to reference de Munck JC, Vijn PCM, da Silva FH Lopes (1992) A random dipole model for spontaneous brain activity. IEEE Trans BME 39:791–804CrossRef de Munck JC, Vijn PCM, da Silva FH Lopes (1992) A random dipole model for spontaneous brain activity. IEEE Trans BME 39:791–804CrossRef
go back to reference Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT et al (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31:968–980CrossRefPubMed Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT et al (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31:968–980CrossRefPubMed
go back to reference Gorodnitsky IF, Rao BD (1997) Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm. IEEE Trans Signal Process 45:600–616CrossRef Gorodnitsky IF, Rao BD (1997) Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm. IEEE Trans Signal Process 45:600–616CrossRef
go back to reference Gramfort A, Luessi M, Larson E, Engemann DA, Strohmeier D, Brodbeck C, Parkkonen L, Hämäläinen MS (2014) MNE software for processing MEG and EEG data. NeuroImage 31:446–460CrossRef Gramfort A, Luessi M, Larson E, Engemann DA, Strohmeier D, Brodbeck C, Parkkonen L, Hämäläinen MS (2014) MNE software for processing MEG and EEG data. NeuroImage 31:446–460CrossRef
go back to reference Hedrich T, Pellegrino G, Kobayashi E, Lina JM, Grova G (2017) Comparison of the spatial resolution of source imaging techniques in high-density EEG and MEG. NeuroImage 175:531–544CrossRef Hedrich T, Pellegrino G, Kobayashi E, Lina JM, Grova G (2017) Comparison of the spatial resolution of source imaging techniques in high-density EEG and MEG. NeuroImage 175:531–544CrossRef
go back to reference Henson RN, Mattout J, Phillips C, Friston KJ (2009) Selecting forward models for MEG source-reconstruction using model-evidence. NeuroImage 46:168–176CrossRefPubMedPubMedCentral Henson RN, Mattout J, Phillips C, Friston KJ (2009) Selecting forward models for MEG source-reconstruction using model-evidence. NeuroImage 46:168–176CrossRefPubMedPubMedCentral
go back to reference Henson RN, Flandin G, Friston KJ, Mattout J (2010) A parametric empirical Bayesian framework for fMRI-constrained MEG/EEG source reconstruction. Hum Brain Mapp 31:1512–1531CrossRefPubMedPubMedCentral Henson RN, Flandin G, Friston KJ, Mattout J (2010) A parametric empirical Bayesian framework for fMRI-constrained MEG/EEG source reconstruction. Hum Brain Mapp 31:1512–1531CrossRefPubMedPubMedCentral
go back to reference Hämäläinen MS, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV (1993) Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys 65:413–498CrossRef Hämäläinen MS, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV (1993) Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys 65:413–498CrossRef
go back to reference Hämäläinen MS, Ilmoniemi RJ (1984) Interpreting measured magnetic fields of the brain: estimates of current distributions. Report TKK-F-A559 Hämäläinen MS, Ilmoniemi RJ (1984) Interpreting measured magnetic fields of the brain: estimates of current distributions. Report TKK-F-A559
go back to reference Huizenga HM, JaC De Munck, Waldorp LJ, Grasman RPPP (2002) Spatiotemporal EEG/MEG source analysis based on a parametric noise covariance model. IEEE Trans BME 49:533–539CrossRef Huizenga HM, JaC De Munck, Waldorp LJ, Grasman RPPP (2002) Spatiotemporal EEG/MEG source analysis based on a parametric noise covariance model. IEEE Trans BME 49:533–539CrossRef
go back to reference Kiebel SJ, Daunizeau J, Phillips C, Friston KJ (2008) Variational Bayesian inversion of the equivalent current dipole model in EEG/MEG. NeuroImage 39:728–741CrossRefPubMed Kiebel SJ, Daunizeau J, Phillips C, Friston KJ (2008) Variational Bayesian inversion of the equivalent current dipole model in EEG/MEG. NeuroImage 39:728–741CrossRefPubMed
go back to reference Kybic J, Clerc M, Abboud T, Faugeras O, Keriven R, Papadopoulos T (2005) A common formalism for the integral formulations of the forward EEG problem. IEEE Trans Med Imaging 24:12–28CrossRefPubMed Kybic J, Clerc M, Abboud T, Faugeras O, Keriven R, Papadopoulos T (2005) A common formalism for the integral formulations of the forward EEG problem. IEEE Trans Med Imaging 24:12–28CrossRefPubMed
go back to reference Lin FH, Witzel T, Ahlfors SP, Stufflebeam SM, Belliveau JW, Hämäläinen MS (2006a) Assessing and improving the spatial accuracy in MEG source localization by depth-weighted minimum-norm estimates. NeuroImage 31:160–171CrossRefPubMed Lin FH, Witzel T, Ahlfors SP, Stufflebeam SM, Belliveau JW, Hämäläinen MS (2006a) Assessing and improving the spatial accuracy in MEG source localization by depth-weighted minimum-norm estimates. NeuroImage 31:160–171CrossRefPubMed
go back to reference Lin FH, Belliveau JW, Dale AM, Hämäläinen MS (2006b) Distributed current estimates using cortical orientation constraints. Hum Brain Mapp 27:1–13CrossRefPubMed Lin FH, Belliveau JW, Dale AM, Hämäläinen MS (2006b) Distributed current estimates using cortical orientation constraints. Hum Brain Mapp 27:1–13CrossRefPubMed
go back to reference Lopez JD, Litvak V, Espinosa JJ, Friston K, Barnes GR (2014) Algorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM. NeuroImage 84:476–487CrossRefPubMedPubMedCentral Lopez JD, Litvak V, Espinosa JJ, Friston K, Barnes GR (2014) Algorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM. NeuroImage 84:476–487CrossRefPubMedPubMedCentral
go back to reference Lucka F, Pursiainen S, Burger M, Wolters CH (2012) Hierarchical Bayesian inference for the EEG inverse problem using realistic FE head models: depth localization and source separation for focal primary currents. NeuroImage 61:1364–1382CrossRefPubMed Lucka F, Pursiainen S, Burger M, Wolters CH (2012) Hierarchical Bayesian inference for the EEG inverse problem using realistic FE head models: depth localization and source separation for focal primary currents. NeuroImage 61:1364–1382CrossRefPubMed
go back to reference Mattout J, Phillips C, Penny WD, Rugg MD, Friston KJ (2006) MEG source localization under multiple constraints: an extended Bayesian framework. NeuroImage 30:753–767CrossRefPubMed Mattout J, Phillips C, Penny WD, Rugg MD, Friston KJ (2006) MEG source localization under multiple constraints: an extended Bayesian framework. NeuroImage 30:753–767CrossRefPubMed
go back to reference Molins A, Stufflebeam SM, Brown EN, Hämáläinen MS (2008) Quantification of the benefit from integrating MEG and EEG data in minimum ℓ2-norm estimation. Neuroimage 42(3):1069–1077CrossRef Molins A, Stufflebeam SM, Brown EN, Hämáläinen MS (2008) Quantification of the benefit from integrating MEG and EEG data in minimum ℓ2-norm estimation. Neuroimage 42(3):1069–1077CrossRef
go back to reference Mosher JC, Spencer ME, Leahy RM, Lewis PS (1993) Error bounds for EEG and MEG dipole source localization. Electroenceph clin Neurophysiol 86:303–321CrossRefPubMed Mosher JC, Spencer ME, Leahy RM, Lewis PS (1993) Error bounds for EEG and MEG dipole source localization. Electroenceph clin Neurophysiol 86:303–321CrossRefPubMed
go back to reference Nummenmaa A, Auranen T, Hämäläinen MS, Jääskeläinen IP, Lampinen J, Sams M, Vehtari A (2007a) Hierarchical Bayesian estimates of distributed MEG sources: theoretical aspects and comparison of variational and MCMC methods. NeuroImage 35:669–685CrossRefPubMed Nummenmaa A, Auranen T, Hämäläinen MS, Jääskeläinen IP, Lampinen J, Sams M, Vehtari A (2007a) Hierarchical Bayesian estimates of distributed MEG sources: theoretical aspects and comparison of variational and MCMC methods. NeuroImage 35:669–685CrossRefPubMed
go back to reference Nummenmaa A, Auranen T, Hämäläinen MS, Jääskeläinen IP, Lampinen J, Sams M, Vehtari A (2007b) Automatic relevance determination based hierarchical Bayesian MEG inversion in practice. NeuroImage 3:876–889CrossRef Nummenmaa A, Auranen T, Hämäläinen MS, Jääskeläinen IP, Lampinen J, Sams M, Vehtari A (2007b) Automatic relevance determination based hierarchical Bayesian MEG inversion in practice. NeuroImage 3:876–889CrossRef
go back to reference Owen JP, Wipf DP, Attias HT, Sekihara K, Nagarajan SS (2012) Performance evaluation of the Champagne source reconstruction algorithm on simulated and real M/EEG data. NeuroImage 60:305–323CrossRefPubMed Owen JP, Wipf DP, Attias HT, Sekihara K, Nagarajan SS (2012) Performance evaluation of the Champagne source reconstruction algorithm on simulated and real M/EEG data. NeuroImage 60:305–323CrossRefPubMed
go back to reference Parkkonen L, Fujiki N, Mäkelä JP (2009) Sources of auditory brainstem responses revisited: contribution by magnetoencephalography. Hum Brain Mapp 30:1772–1782CrossRefPubMed Parkkonen L, Fujiki N, Mäkelä JP (2009) Sources of auditory brainstem responses revisited: contribution by magnetoencephalography. Hum Brain Mapp 30:1772–1782CrossRefPubMed
go back to reference Pascual-Marqui RD (1999) Review of methods for solving the EEG inverse problem. Int J Bioelectromagn 1:75–86 Pascual-Marqui RD (1999) Review of methods for solving the EEG inverse problem. Int J Bioelectromagn 1:75–86
go back to reference Sato M, Yoshioka T, Kajihara S, Toyama K, Goda N, Doya K, Kawato M (2004) Hierarchical Bayesian estimation for MEG inverse problem. NeuroImage 23:806–826CrossRefPubMed Sato M, Yoshioka T, Kajihara S, Toyama K, Goda N, Doya K, Kawato M (2004) Hierarchical Bayesian estimation for MEG inverse problem. NeuroImage 23:806–826CrossRefPubMed
go back to reference Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM (2011) Brainstorm: a user-friendly application for MEG/EEG analysis. Comp Intell Neurosci 2011:879716 Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM (2011) Brainstorm: a user-friendly application for MEG/EEG analysis. Comp Intell Neurosci 2011:879716
go back to reference Trujillo-Barreto NJ, Aubert-Vázquez E, Valdés-Sosa PA (2004) Bayesian model averaging in EEG/MEG imaging. NeuroImage 21:1300–1319CrossRefPubMed Trujillo-Barreto NJ, Aubert-Vázquez E, Valdés-Sosa PA (2004) Bayesian model averaging in EEG/MEG imaging. NeuroImage 21:1300–1319CrossRefPubMed
go back to reference Uutela K, Hämäläinen MS, Somersalo E (1999) Visualization of magnetoencephalographic data using minimum current estimates. NeuroImage 10:173–180CrossRefPubMed Uutela K, Hämäläinen MS, Somersalo E (1999) Visualization of magnetoencephalographic data using minimum current estimates. NeuroImage 10:173–180CrossRefPubMed
go back to reference Wagner M, Fuchs M, Kastner J (2004) Evaluation of sLORETA in the presence of noise and multiple sources. Brain Topogr 16:277–280CrossRef Wagner M, Fuchs M, Kastner J (2004) Evaluation of sLORETA in the presence of noise and multiple sources. Brain Topogr 16:277–280CrossRef
go back to reference Wipf D, Nagarajan S (2009) A unified Bayesian framework for MEG/EEG source imaging. NeuroImage 44:947–966CrossRefPubMed Wipf D, Nagarajan S (2009) A unified Bayesian framework for MEG/EEG source imaging. NeuroImage 44:947–966CrossRefPubMed
go back to reference Wipf DP, Owen JP, Attias HT, Sekihara K, Nagarajan SS (2010) Robust Bayesian estimation of the location, orientation, and time course of multiple correlated neural sources using MEG. NeuroImage 49:641–655CrossRefPubMed Wipf DP, Owen JP, Attias HT, Sekihara K, Nagarajan SS (2010) Robust Bayesian estimation of the location, orientation, and time course of multiple correlated neural sources using MEG. NeuroImage 49:641–655CrossRefPubMed
go back to reference Vorwerk J, Cho JH, Rampp S, Hamer H, Knösche TR, Wolters CH (2014) A guideline for head volume conductor modeling in EEG and MEG. NeuroImage 100:590–607CrossRefPubMed Vorwerk J, Cho JH, Rampp S, Hamer H, Knösche TR, Wolters CH (2014) A guideline for head volume conductor modeling in EEG and MEG. NeuroImage 100:590–607CrossRefPubMed
Metadata
Title
Brain Activity Mapping from MEG Data via a Hierarchical Bayesian Algorithm with Automatic Depth Weighting
Authors
Daniela Calvetti
Annalisa Pascarella
Francesca Pitolli
Erkki Somersalo
Barbara Vantaggi
Publication date
01-05-2019
Publisher
Springer US
Published in
Brain Topography / Issue 3/2019
Print ISSN: 0896-0267
Electronic ISSN: 1573-6792
DOI
https://doi.org/10.1007/s10548-018-0670-7

Other articles of this Issue 3/2019

Brain Topography 3/2019 Go to the issue