Skip to main content
Top
Published in: Brain Topography 2/2010

01-06-2010 | Original Paper

On Optimal Channel Configurations for SMR-based Brain–Computer Interfaces

Authors: Claudia Sannelli, Thorsten Dickhaus, Sebastian Halder, Eva-Maria Hammer, Klaus-Robert Müller, Benjamin Blankertz

Published in: Brain Topography | Issue 2/2010

Login to get access

Abstract

One crucial question in the design of electroencephalogram (EEG)-based brain–computer interface (BCI) experiments is the selection of EEG channels. While a setup with few channels is more convenient and requires less preparation time, a dense placement of electrodes provides more detailed information and henceforth could lead to a better classification performance. Here, we investigate this question for a specific setting: a BCI that uses the popular CSP algorithm in order to classify voluntary modulations of sensorimotor rhythms (SMR). In a first approach 13 different fixed channel configurations are compared to the full one consisting of 119 channels. The configuration with 48 channels results to be the best one, while configurations with less channels, from 32 to 8, performed not significantly worse than the best configuration in cases where only few training trials are available. In a second approach an optimal channel configuration is obtained by an iterative procedure in the spirit of stepwise variable selection with nonparametric multiple comparisons. As a surprising result, in the second approach a setting with 22 channels centered over the motor areas was selected. Thanks to the acquisition of a large data set recorded from 80 novice participants using 119 EEG channels, the results of this study can be expected to have a high degree of generalizability.
Literature
go back to reference Al-Ani A, Al-Sukker A (2006) Effect of feature and channel selection on EEG classification. In: Engineering in medicine and biology society, 2006. EMBS ’06. 28th annual international conference of the IEEE, pp 2171–2174. doi:10.1109/IEMBS.2006.259833 Al-Ani A, Al-Sukker A (2006) Effect of feature and channel selection on EEG classification. In: Engineering in medicine and biology society, 2006. EMBS ’06. 28th annual international conference of the IEEE, pp 2171–2174. doi:10.​1109/​IEMBS.​2006.​259833
go back to reference Blankertz B, Tomioka R, Lemm S, Kawanabe M, Müller K-R (2008) Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Proc Mag 25(1):41–56CrossRef Blankertz B, Tomioka R, Lemm S, Kawanabe M, Müller K-R (2008) Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Proc Mag 25(1):41–56CrossRef
go back to reference Blankertz B, Dornhege G, Krauledat M, Müller K-R, Curio G (2007) The non-invasive Berlin brain–computer interface: fast acquisition of effective performance in untrained subjects. NeuroImage 37(2):539–550CrossRefPubMed Blankertz B, Dornhege G, Krauledat M, Müller K-R, Curio G (2007) The non-invasive Berlin brain–computer interface: fast acquisition of effective performance in untrained subjects. NeuroImage 37(2):539–550CrossRefPubMed
go back to reference Dornhege G, del R Millán J, Hinterberger T, McFarland D, Müller KR (eds) (2007) Toward brain–computer interfacing. MIT Press, Cambridge, MA Dornhege G, del R Millán J, Hinterberger T, McFarland D, Müller KR (eds) (2007) Toward brain–computer interfacing. MIT Press, Cambridge, MA
go back to reference Draper N, Smith H (1981) Applied regression analysis, 2nd edn. Wiley, New York Draper N, Smith H (1981) Applied regression analysis, 2nd edn. Wiley, New York
go back to reference Engelbrecht AP (2005) Fundamentals of computational swarm intelligence. Wiley, Chichester, UK Engelbrecht AP (2005) Fundamentals of computational swarm intelligence. Wiley, Chichester, UK
go back to reference Farquhar J, Hill NJ, Lal TN, Schölkopf B (2006) Regularised CSP for sensor selection in BCI. In: Proceedings of the 3rd international brain–computer interface workshop and training course, Graz, pp 14–15 Farquhar J, Hill NJ, Lal TN, Schölkopf B (2006) Regularised CSP for sensor selection in BCI. In: Proceedings of the 3rd international brain–computer interface workshop and training course, Graz, pp 14–15
go back to reference Friedman JH (1989) Regularized discriminant analysis. J Am Stat Assoc 84(405):165–175CrossRef Friedman JH (1989) Regularized discriminant analysis. J Am Stat Assoc 84(405):165–175CrossRef
go back to reference Gibbons JD (1985) Nonparametric statistical inference, 2nd edn. Marcel Dekker Inc., New York Gibbons JD (1985) Nonparametric statistical inference, 2nd edn. Marcel Dekker Inc., New York
go back to reference Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer classification using support vector machines. Mach Learn 46(1–3):389–422CrossRef Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer classification using support vector machines. Mach Learn 46(1–3):389–422CrossRef
go back to reference Hollander M, Wolfe DA (1973) Nonparametric statistical methods. Wiley, New York Hollander M, Wolfe DA (1973) Nonparametric statistical methods. Wiley, New York
go back to reference Hocking RR (1976) The analysis and selection of variables in a linear regression. Biometrics 32:1–49CrossRef Hocking RR (1976) The analysis and selection of variables in a linear regression. Biometrics 32:1–49CrossRef
go back to reference Hyvärinen A, Karhunen J, Oja E (2001) Independent component analysis. Wiley, New YorkCrossRef Hyvärinen A, Karhunen J, Oja E (2001) Independent component analysis. Wiley, New YorkCrossRef
go back to reference Jolliffe IT (2002) Principal component analysis, 2nd edn. Springer, New York Jolliffe IT (2002) Principal component analysis, 2nd edn. Springer, New York
go back to reference Lal TN, Schröder M, Hinterberger T, Weston J, Bodgan M, Birbaumer N, Schölkopf B (2004) Support vector channel selection in BCI. IEEE Trans Bio-Med Eng 51(6):1003–1010CrossRef Lal TN, Schröder M, Hinterberger T, Weston J, Bodgan M, Birbaumer N, Schölkopf B (2004) Support vector channel selection in BCI. IEEE Trans Bio-Med Eng 51(6):1003–1010CrossRef
go back to reference Lv J, Meichun L (2008) Common spatial pattern and particle swarm optimization for channel selection in BCI. In: ICICIC ’08: Proceedings of the 2008 3rd international conference on innovative computing information and control. IEEE computer society, Washington, DC, pp 457–460. doi:10.1109/ICICIC.2008.196 Lv J, Meichun L (2008) Common spatial pattern and particle swarm optimization for channel selection in BCI. In: ICICIC ’08: Proceedings of the 2008 3rd international conference on innovative computing information and control. IEEE computer society, Washington, DC, pp 457–460. doi:10.​1109/​ICICIC.​2008.​196
go back to reference Naeem M, Brunner C, Pfurtscheller G (2009) Dimensionality reduction and channel selection of motor imagery electroencephalographic data. Comput Intell Neurosci 2009, Article ID 537504, 8 pp. doi:10.1155/2009/537504 Naeem M, Brunner C, Pfurtscheller G (2009) Dimensionality reduction and channel selection of motor imagery electroencephalographic data. Comput Intell Neurosci 2009, Article ID 537504, 8 pp. doi:10.​1155/​2009/​537504
go back to reference Ramoser H, Müller-Gerking J, Pfurtsheller G (2000) Optimal Spatial Filtering of single trial EEG during imagined hand movement. IEEE Trans Rehab Eng 4(8):441-446CrossRef Ramoser H, Müller-Gerking J, Pfurtsheller G (2000) Optimal Spatial Filtering of single trial EEG during imagined hand movement. IEEE Trans Rehab Eng 4(8):441-446CrossRef
go back to reference Vidaurre C, Krämer N, Blankertz Benjamin, Schlögl A (2009) Time domain parameters as a feature for eeg-based brain computer interfaces. Neural Networks, Special Issue 22(9):1201–1358. doi:10.1016/j.neunet.2009.07.020 Vidaurre C, Krämer N, Blankertz Benjamin, Schlögl A (2009) Time domain parameters as a feature for eeg-based brain computer interfaces. Neural Networks, Special Issue 22(9):1201–1358. doi:10.​1016/​j.​neunet.​2009.​07.​020
go back to reference Vidaurre C, Schlögl A (2008) Comparison of adaptive features with linear discriminant classifier for brain computer interfaces. In: Engineering in medicine and biology society, 2008. EMBS 2008. 30th annual international conference of the IEEE, pp 173–176. doi:10.1109/IEMBS.2008.4649118 Vidaurre C, Schlögl A (2008) Comparison of adaptive features with linear discriminant classifier for brain computer interfaces. In: Engineering in medicine and biology society, 2008. EMBS 2008. 30th annual international conference of the IEEE, pp 173–176. doi:10.​1109/​IEMBS.​2008.​4649118
go back to reference Wang Y, Gao X, Gao S (2005) Common spatial pattern method for channel selection in motor imagery based brain–computer interface. In: Proceedings of the 27th international IEEE EMBS conference, pp 5392–5395. doi:10.1109/IEMBS.2005.1615701 Wang Y, Gao X, Gao S (2005) Common spatial pattern method for channel selection in motor imagery based brain–computer interface. In: Proceedings of the 27th international IEEE EMBS conference, pp 5392–5395. doi:10.​1109/​IEMBS.​2005.​1615701
Metadata
Title
On Optimal Channel Configurations for SMR-based Brain–Computer Interfaces
Authors
Claudia Sannelli
Thorsten Dickhaus
Sebastian Halder
Eva-Maria Hammer
Klaus-Robert Müller
Benjamin Blankertz
Publication date
01-06-2010
Publisher
Springer US
Published in
Brain Topography / Issue 2/2010
Print ISSN: 0896-0267
Electronic ISSN: 1573-6792
DOI
https://doi.org/10.1007/s10548-010-0135-0

Other articles of this Issue 2/2010

Brain Topography 2/2010 Go to the issue