Skip to main content
Top
Published in: Brain Topography 2/2010

01-06-2010 | Original Paper

Multimodal Integration of fMRI and EEG Data for High Spatial and Temporal Resolution Analysis of Brain Networks

Authors: D. Mantini, L. Marzetti, M. Corbetta, G. L. Romani, C. Del Gratta

Published in: Brain Topography | Issue 2/2010

Login to get access

Abstract

Two major non-invasive brain mapping techniques, electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), have complementary advantages with regard to their spatial and temporal resolution. We propose an approach based on the integration of EEG and fMRI, enabling the EEG temporal dynamics of information processing to be characterized within spatially well-defined fMRI large-scale networks. First, the fMRI data are decomposed into networks by means of spatial independent component analysis (sICA), and those associated with intrinsic activity and/or responding to task performance are selected using information from the related time-courses. Next, the EEG data over all sensors are averaged with respect to event timing, thus calculating event-related potentials (ERPs). The ERPs are subjected to temporal ICA (tICA), and the resulting components are localized with the weighted minimum norm (WMNLS) algorithm using the task-related fMRI networks as priors. Finally, the temporal contribution of each ERP component in the areas belonging to the fMRI large-scale networks is estimated. The proposed approach has been evaluated on visual target detection data. Our results confirm that two different components, commonly observed in EEG when presenting novel and salient stimuli, respectively, are related to the neuronal activation in large-scale networks, operating at different latencies and associated with different functional processes.
Literature
go back to reference Benar CG, Schon D, Grimault S, Nazarian B, Burle B, Roth M, Badier JM, Marquis P, Liegeois-Chauvel C, Anton JL (2007) Single-trial analysis of oddball event-related potentials in simultaneous EEG-fMRI. Hum Brain Mapp 28:602–613CrossRefPubMed Benar CG, Schon D, Grimault S, Nazarian B, Burle B, Roth M, Badier JM, Marquis P, Liegeois-Chauvel C, Anton JL (2007) Single-trial analysis of oddball event-related potentials in simultaneous EEG-fMRI. Hum Brain Mapp 28:602–613CrossRefPubMed
go back to reference Bledowski C, Prvulovic D, Goebel R, Zanella FE, Linden DE (2004) Attentional systems in target and distractor processing: a combined ERP and fMRI study. Neuroimage 22:530–540CrossRefPubMed Bledowski C, Prvulovic D, Goebel R, Zanella FE, Linden DE (2004) Attentional systems in target and distractor processing: a combined ERP and fMRI study. Neuroimage 22:530–540CrossRefPubMed
go back to reference Calhoun VD, Adali T, Pearlson GD, Kiehl KA (2006) Neuronal chronometry of target detection: fusion of hemodynamic and event-related potential. Neuroimage 30:544–553CrossRefPubMed Calhoun VD, Adali T, Pearlson GD, Kiehl KA (2006) Neuronal chronometry of target detection: fusion of hemodynamic and event-related potential. Neuroimage 30:544–553CrossRefPubMed
go back to reference Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3:201–215CrossRefPubMed Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3:201–215CrossRefPubMed
go back to reference Dale AM, Liu AK, Fischl BR, Buckner RL, Belliveau JW, Lewine JD, Halgren E (2000) Dynamic statistical parametric neurotechnique mapping: combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron 26:55–67CrossRefPubMed Dale AM, Liu AK, Fischl BR, Buckner RL, Belliveau JW, Lewine JD, Halgren E (2000) Dynamic statistical parametric neurotechnique mapping: combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron 26:55–67CrossRefPubMed
go back to reference Debener S, Ullsperger M, Siegel M, Fiehler K, von Cramon DY, Engel AK (2005) Trial-by-trial coupling of concurrent electroencephalogram and functional magnetic resonance imaging identifies the dynamics of performance monitoring. J Neurosci 25:11730–11737CrossRefPubMed Debener S, Ullsperger M, Siegel M, Fiehler K, von Cramon DY, Engel AK (2005) Trial-by-trial coupling of concurrent electroencephalogram and functional magnetic resonance imaging identifies the dynamics of performance monitoring. J Neurosci 25:11730–11737CrossRefPubMed
go back to reference Dosenbach NU, Visscher KM, Palmer ED, Miezin FM, Wenger KK, Kang HC, Burgund ED, Grimes AL, Schlaggar BL, Petersen SE (2006) A core system for the implementation of task sets. Neuron 50:799–812CrossRefPubMed Dosenbach NU, Visscher KM, Palmer ED, Miezin FM, Wenger KK, Kang HC, Burgund ED, Grimes AL, Schlaggar BL, Petersen SE (2006) A core system for the implementation of task sets. Neuron 50:799–812CrossRefPubMed
go back to reference Eichele T, Calhoun VD, Moosmann M, Specht K, Jongsma ML, Quiroga RQ, Nordby H, Hugdahl K (2008) Unmixing concurrent EEG-fMRI with parallel independent component analysis. Int J Psychophysiol 67:222–234CrossRefPubMed Eichele T, Calhoun VD, Moosmann M, Specht K, Jongsma ML, Quiroga RQ, Nordby H, Hugdahl K (2008) Unmixing concurrent EEG-fMRI with parallel independent component analysis. Int J Psychophysiol 67:222–234CrossRefPubMed
go back to reference Esposito F, Scarabino T, Hyvärinen A, Himberg J, Formisano E, Comani S, Tedeschi G, Goebel R, Seifritz E, Di Salle F (2005) Independent component analysis of fMRI group studies by self-organizing clustering. Neuroimage 25:193–205CrossRefPubMed Esposito F, Scarabino T, Hyvärinen A, Himberg J, Formisano E, Comani S, Tedeschi G, Goebel R, Seifritz E, Di Salle F (2005) Independent component analysis of fMRI group studies by self-organizing clustering. Neuroimage 25:193–205CrossRefPubMed
go back to reference Fox MD, Snyder AZ, Zacks JM, Raichle ME (2006) Coherent spontaneous activity accounts for trial-to-trial variability in human evoked brain responses. Nat Neurosci 9:23–25CrossRefPubMed Fox MD, Snyder AZ, Zacks JM, Raichle ME (2006) Coherent spontaneous activity accounts for trial-to-trial variability in human evoked brain responses. Nat Neurosci 9:23–25CrossRefPubMed
go back to reference Fuchs M, Drenckhahn R, Wischmann HA, Wagner M (1998) An improved boundary element method for realistic volume-conductor modeling. IEEE Trans Biomed Eng 45:980–997CrossRefPubMed Fuchs M, Drenckhahn R, Wischmann HA, Wagner M (1998) An improved boundary element method for realistic volume-conductor modeling. IEEE Trans Biomed Eng 45:980–997CrossRefPubMed
go back to reference Goldstein A, Spencer KM, Donchin E (2002) The influence of stimulus deviance and novelty on the P300 and novelty P3. Psychophysiology 39:781–790CrossRefPubMed Goldstein A, Spencer KM, Donchin E (2002) The influence of stimulus deviance and novelty on the P300 and novelty P3. Psychophysiology 39:781–790CrossRefPubMed
go back to reference Gonçalves SI, Pouwels PJ, Kuijer JP, Heethaar RM, de Munck JC (2007) Artifact removal in co-registered EEG-fMRI by selective average subtraction. Clin Neurophysiol 118:2437–2450CrossRefPubMed Gonçalves SI, Pouwels PJ, Kuijer JP, Heethaar RM, de Munck JC (2007) Artifact removal in co-registered EEG-fMRI by selective average subtraction. Clin Neurophysiol 118:2437–2450CrossRefPubMed
go back to reference Hamalainen MS, Ilmoniemi RJ (1994) Interpreting magnetic fields of the brain: minimum norm estimates. Med Biol Eng Comput 32:35–42CrossRefPubMed Hamalainen MS, Ilmoniemi RJ (1994) Interpreting magnetic fields of the brain: minimum norm estimates. Med Biol Eng Comput 32:35–42CrossRefPubMed
go back to reference Heeger DJ, Ress D (2002) What does fMRI tell us about neuronal activity? Nat Rev Neurosci 3:142–151CrossRefPubMed Heeger DJ, Ress D (2002) What does fMRI tell us about neuronal activity? Nat Rev Neurosci 3:142–151CrossRefPubMed
go back to reference Hyvärinen A (1999) Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans Neural Netw 10:626–634CrossRefPubMed Hyvärinen A (1999) Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans Neural Netw 10:626–634CrossRefPubMed
go back to reference James CJ, Hesse CW (2005) Independent component analysis for biomedical signals. Physiol Meas 26:R15–R39CrossRefPubMed James CJ, Hesse CW (2005) Independent component analysis for biomedical signals. Physiol Meas 26:R15–R39CrossRefPubMed
go back to reference Liu AK, Belliveau JW, Dale AM (1998) Spatiotemporal imaging of human brain activity using functional MRI constrained magnetoencephalography: Monte Carlo simulations. ProcNatl Acad Sci USA 95:8945–8950CrossRef Liu AK, Belliveau JW, Dale AM (1998) Spatiotemporal imaging of human brain activity using functional MRI constrained magnetoencephalography: Monte Carlo simulations. ProcNatl Acad Sci USA 95:8945–8950CrossRef
go back to reference Makeig S, Jung TP, Bell AJ, Ghahremani D, Sejnowski TJ (1997) Blind separation of auditory event-related brain responses into independent components. Proc Natl Acad Sci USA 94:10979–10984CrossRefPubMed Makeig S, Jung TP, Bell AJ, Ghahremani D, Sejnowski TJ (1997) Blind separation of auditory event-related brain responses into independent components. Proc Natl Acad Sci USA 94:10979–10984CrossRefPubMed
go back to reference Makeig S, Westerfield M, Townsend J, Jung TP, Courchesne E, Sejnowski TJ (1999) Functionally independent components of early event-related potentials in a visual spatial attention task. Philos Trans R Soc Lond B Biol Sci 354:1135–1144CrossRefPubMed Makeig S, Westerfield M, Townsend J, Jung TP, Courchesne E, Sejnowski TJ (1999) Functionally independent components of early event-related potentials in a visual spatial attention task. Philos Trans R Soc Lond B Biol Sci 354:1135–1144CrossRefPubMed
go back to reference Mantini D, Perrucci MG, Cugini S, Ferretti A, Romani GL, Del Gratta C (2007a) Complete artifact removal for EEG recorded during continuous fMRI using independent component analysis. Neuroimage 34:598–607CrossRefPubMed Mantini D, Perrucci MG, Cugini S, Ferretti A, Romani GL, Del Gratta C (2007a) Complete artifact removal for EEG recorded during continuous fMRI using independent component analysis. Neuroimage 34:598–607CrossRefPubMed
go back to reference Mantini D, Perrucci MG, Del Gratta C, Romani GL, Corbetta M (2007b) Electrophysiological signatures of resting state networks in the human brain. Proc Natl Acad Sci USA 104:13170–13175CrossRefPubMed Mantini D, Perrucci MG, Del Gratta C, Romani GL, Corbetta M (2007b) Electrophysiological signatures of resting state networks in the human brain. Proc Natl Acad Sci USA 104:13170–13175CrossRefPubMed
go back to reference Mantini D, Corbetta M, Perrucci MG, Romani GL, Del Gratta C (2009) Large-scale brain networks account for sustained and transient activity during target detection. Neuroimage 44:265–274CrossRefPubMed Mantini D, Corbetta M, Perrucci MG, Romani GL, Del Gratta C (2009) Large-scale brain networks account for sustained and transient activity during target detection. Neuroimage 44:265–274CrossRefPubMed
go back to reference Maris E, Oostenveld R (2007) Nonparametric statistical testing of EEG- and MEG-data. J Neurosci Methods 164:177–190CrossRefPubMed Maris E, Oostenveld R (2007) Nonparametric statistical testing of EEG- and MEG-data. J Neurosci Methods 164:177–190CrossRefPubMed
go back to reference McKeown MJ, Makeig S, Brown GG, Jung TP, Kindermann SS, Bell AJ, Sejnowski TJ (1998) Analysis of fMRI data by blind separation into independent spatial components. Hum Brain Mapp 6:160–188CrossRefPubMed McKeown MJ, Makeig S, Brown GG, Jung TP, Kindermann SS, Bell AJ, Sejnowski TJ (1998) Analysis of fMRI data by blind separation into independent spatial components. Hum Brain Mapp 6:160–188CrossRefPubMed
go back to reference Mulert C, Jager L, Schmitt R, Bussfeld P, Pogarell O, Moller HJ, Juckel G, Hegerl U (2004) Integration of fMRI and simultaneous EEG: towards a comprehensive understanding of localization and time-course of brain activity in target detection. Neuroimage 22:83–94CrossRefPubMed Mulert C, Jager L, Schmitt R, Bussfeld P, Pogarell O, Moller HJ, Juckel G, Hegerl U (2004) Integration of fMRI and simultaneous EEG: towards a comprehensive understanding of localization and time-course of brain activity in target detection. Neuroimage 22:83–94CrossRefPubMed
go back to reference Nir Y, Hasson U, Levy I, Yeshurun Y, Malach R (2006) Widespread functional connectivity and fMRI fluctuations in human visual cortex in the absence of visual stimulation. Neuroimage 30:1313–1324CrossRefPubMed Nir Y, Hasson U, Levy I, Yeshurun Y, Malach R (2006) Widespread functional connectivity and fMRI fluctuations in human visual cortex in the absence of visual stimulation. Neuroimage 30:1313–1324CrossRefPubMed
go back to reference Zar JH (1996) Biostatistical analysis. Prentice-Hall, Upper Saddle River, NJ Zar JH (1996) Biostatistical analysis. Prentice-Hall, Upper Saddle River, NJ
Metadata
Title
Multimodal Integration of fMRI and EEG Data for High Spatial and Temporal Resolution Analysis of Brain Networks
Authors
D. Mantini
L. Marzetti
M. Corbetta
G. L. Romani
C. Del Gratta
Publication date
01-06-2010
Publisher
Springer US
Published in
Brain Topography / Issue 2/2010
Print ISSN: 0896-0267
Electronic ISSN: 1573-6792
DOI
https://doi.org/10.1007/s10548-009-0132-3

Other articles of this Issue 2/2010

Brain Topography 2/2010 Go to the issue