Skip to main content
Top
Published in: Journal of Inherited Metabolic Disease 3/2018

Open Access 01-05-2018 | Glycomics

Clinical glycomics for the diagnosis of congenital disorders of glycosylation

Authors: Nurulamin Abu Bakar, Dirk J. Lefeber, Monique van Scherpenzeel

Published in: Journal of Inherited Metabolic Disease | Issue 3/2018

Login to get access

Abstract

Clinical glycomics comprises a spectrum of different analytical methodologies to analyze glycan structures, which provides insights into the mechanisms of glycosylation. Within clinical diagnostics, glycomics serves as a functional readout of genetic variants, and can form a basis for therapy development, as was described for PGM1-CDG. Integration of glycomics with genomics has resulted in the elucidation of previously unknown disorders of glycosylation, namely CCDC115-CDG, TMEM199-CDG, ATP6AP1-CDG, MAN1B1-CDG, and PGM1-CDG. This review provides an introduction into protein glycosylation and presents the different glycomics methodologies ranging from gel electrophoresis to mass spectrometry (MS) and from free glycans to intact glycoproteins. The role of glycomics in the diagnosis of congenital disorders of glycosylation (CDG) is presented, including a diagnostic flow chart and an overview of glycomics data of known CDG subtypes. The review ends with some future perspectives, showing upcoming technologies as system wide mapping of the N- and O-glycoproteome, intact glycoprotein profiling and analysis of sugar metabolism. These new advances will provide additional insights and opportunities to develop personalized therapy. This is especially true for inborn errors of metabolism, which are amenable to causal therapy, because interventions through supplementation therapy can directly target the pathogenesis at the molecular level.
Literature
go back to reference Ciucanu I, Kerek F (1984) A simple and rapid method for the permethylation of carbohydrate. Carbohydr Res 131:209–217CrossRef Ciucanu I, Kerek F (1984) A simple and rapid method for the permethylation of carbohydrate. Carbohydr Res 131:209–217CrossRef
go back to reference Cummings RD (2009) The repertoire of glycan determinants in the human glycome. Mol BioSyst 5:1087–1104CrossRefPubMed Cummings RD (2009) The repertoire of glycan determinants in the human glycome. Mol BioSyst 5:1087–1104CrossRefPubMed
go back to reference Defaus S, Gupta P, Andreu D, Gutierrez-Gallego R (2014) Mammalian protein glycosylation-structure versus function. Analyst 139:2944–2967CrossRefPubMed Defaus S, Gupta P, Andreu D, Gutierrez-Gallego R (2014) Mammalian protein glycosylation-structure versus function. Analyst 139:2944–2967CrossRefPubMed
go back to reference Dorre K, Olczak M, Wada Y et al (2015) A new case of UDP-galactose transporter deficiency (SLC35A2-CDG): molecular basis, clinical phenotype, and therapeutic approach. J Inherit Metab Dis 38:931–940CrossRefPubMed Dorre K, Olczak M, Wada Y et al (2015) A new case of UDP-galactose transporter deficiency (SLC35A2-CDG): molecular basis, clinical phenotype, and therapeutic approach. J Inherit Metab Dis 38:931–940CrossRefPubMed
go back to reference Duplomb L, Duvet S, Picot D et al (2014) Cohen syndrome is associated with major glycosylation defects. Hum Mol Genet 23:2391–2399CrossRefPubMed Duplomb L, Duvet S, Picot D et al (2014) Cohen syndrome is associated with major glycosylation defects. Hum Mol Genet 23:2391–2399CrossRefPubMed
go back to reference Edvardson S, Ashikov A, Jalas C et al (2013) Mutations in SLC35A3 cause autism spectrum disorder, epilepsy and arthrogryposis. J Med Genet 50:733–739CrossRefPubMed Edvardson S, Ashikov A, Jalas C et al (2013) Mutations in SLC35A3 cause autism spectrum disorder, epilepsy and arthrogryposis. J Med Genet 50:733–739CrossRefPubMed
go back to reference El-Aneed A, Cohen A, Banoub J (2009) Mass spectrometry, review of the basics: electrospray, MALDI, and commonly used mass analyzers. Appl Spectrosc Rev 44:210–230CrossRef El-Aneed A, Cohen A, Banoub J (2009) Mass spectrometry, review of the basics: electrospray, MALDI, and commonly used mass analyzers. Appl Spectrosc Rev 44:210–230CrossRef
go back to reference Faid V, Chirat F, Seta N, Foulquier F, Morelle W (2007) A rapid mass spectrometric strategy for the characterization of N- and O-glycan chains in the diagnosis of defects in glycan biosynthesis. Proteomics 7:1800–1813CrossRefPubMed Faid V, Chirat F, Seta N, Foulquier F, Morelle W (2007) A rapid mass spectrometric strategy for the characterization of N- and O-glycan chains in the diagnosis of defects in glycan biosynthesis. Proteomics 7:1800–1813CrossRefPubMed
go back to reference Foulquier F, Ungar D, Reynders E et al (2007) A new inborn error of glycosylation due to a Cog8 deficiency reveals a critical role for the Cog1-Cog8 interaction in COG complex formation. Hum Mol Genet 16:717–730CrossRefPubMed Foulquier F, Ungar D, Reynders E et al (2007) A new inborn error of glycosylation due to a Cog8 deficiency reveals a critical role for the Cog1-Cog8 interaction in COG complex formation. Hum Mol Genet 16:717–730CrossRefPubMed
go back to reference Foulquier F, Vasile E, Schollen E et al (2006) Conserved oligomeric Golgi complex subunit 1 deficiency reveals a previously uncharacterized congenital disorder of glycosylation type II. Proc Natl Acad Sci U S A 103:3764–3769CrossRefPubMedPubMedCentral Foulquier F, Vasile E, Schollen E et al (2006) Conserved oligomeric Golgi complex subunit 1 deficiency reveals a previously uncharacterized congenital disorder of glycosylation type II. Proc Natl Acad Sci U S A 103:3764–3769CrossRefPubMedPubMedCentral
go back to reference Freeze HH, Chong JX, Bamshad MJ, Ng BG (2014) Solving glycosylation disorders: fundamental approaches reveal complicated pathways. Am J Hum Genet 94:161–175CrossRefPubMedPubMedCentral Freeze HH, Chong JX, Bamshad MJ, Ng BG (2014) Solving glycosylation disorders: fundamental approaches reveal complicated pathways. Am J Hum Genet 94:161–175CrossRefPubMedPubMedCentral
go back to reference Fuzery AK, Levin J, Chan MM, Chan DW (2013) Translation of proteomic biomarkers into FDA approved cancer diagnostics: issues and challenges. Clin Proteomics 10:13CrossRefPubMedPubMedCentral Fuzery AK, Levin J, Chan MM, Chan DW (2013) Translation of proteomic biomarkers into FDA approved cancer diagnostics: issues and challenges. Clin Proteomics 10:13CrossRefPubMedPubMedCentral
go back to reference Gao N, Lehrman MA (2002) Analyses of dolichol pyrophosphate–linked oligosaccharides in cell cultures and tissues by fluorophore-assisted carbohydrate electrophoresis. Glycobiology 12:353–360CrossRefPubMed Gao N, Lehrman MA (2002) Analyses of dolichol pyrophosphate–linked oligosaccharides in cell cultures and tissues by fluorophore-assisted carbohydrate electrophoresis. Glycobiology 12:353–360CrossRefPubMed
go back to reference Guillard M, Gloerich J, Wessels HJ, Morava E, Wevers RA, Lefeber DJ (2009) Automated measurement of permethylated serum N-glycans by MALDI-linear ion trap mass spectrometry. Carbohydr Res 344:1550–1557CrossRefPubMed Guillard M, Gloerich J, Wessels HJ, Morava E, Wevers RA, Lefeber DJ (2009) Automated measurement of permethylated serum N-glycans by MALDI-linear ion trap mass spectrometry. Carbohydr Res 344:1550–1557CrossRefPubMed
go back to reference Guillard M, Morava E, van Delft FL et al (2011) Plasma N-glycan profiling by mass spectrometry for congenital disorders of glycosylation type II. Clin Chem 57:593–602CrossRefPubMed Guillard M, Morava E, van Delft FL et al (2011) Plasma N-glycan profiling by mass spectrometry for congenital disorders of glycosylation type II. Clin Chem 57:593–602CrossRefPubMed
go back to reference Hennet T (2012) Diseases of glycosylation beyond classical congenital disorders of glycosylation. Biochim Biophys Acta 1820:1306–1317CrossRefPubMed Hennet T (2012) Diseases of glycosylation beyond classical congenital disorders of glycosylation. Biochim Biophys Acta 1820:1306–1317CrossRefPubMed
go back to reference Hoffmann M, Marx K, Reichl U, Wuhrer M, Rapp E (2016) Site specific O-glycosylation analysis of human blood plasma proteins. Mol Cell Proteomics 15:624–641CrossRefPubMed Hoffmann M, Marx K, Reichl U, Wuhrer M, Rapp E (2016) Site specific O-glycosylation analysis of human blood plasma proteins. Mol Cell Proteomics 15:624–641CrossRefPubMed
go back to reference Hua S, Williams CC, Dimapasoc LM et al (2013) Isomer-specific chromatographic profiling yields highly sensitive and specific potential N-glycan biomarkers for epithelial ovarian cancer. J Chromatogr A 1279:58–67CrossRefPubMedPubMedCentral Hua S, Williams CC, Dimapasoc LM et al (2013) Isomer-specific chromatographic profiling yields highly sensitive and specific potential N-glycan biomarkers for epithelial ovarian cancer. J Chromatogr A 1279:58–67CrossRefPubMedPubMedCentral
go back to reference Huybrechts S, De Laet C, Bontems P et al (2012) Deficiency of subunit 6 of the conserved oligomeric Golgi complex (COG6-CDG): second patient, different phenotype. JIMD Rep 4:103–108CrossRefPubMed Huybrechts S, De Laet C, Bontems P et al (2012) Deficiency of subunit 6 of the conserved oligomeric Golgi complex (COG6-CDG): second patient, different phenotype. JIMD Rep 4:103–108CrossRefPubMed
go back to reference Iqbal Z, Shahzad M, Vissers LE et al (2013) A compound heterozygous mutation in DPAGT1 results in a congenital disorder of glycosylation with a relatively mild phenotype. Eur J Hum Genet 21:844–849CrossRefPubMed Iqbal Z, Shahzad M, Vissers LE et al (2013) A compound heterozygous mutation in DPAGT1 results in a congenital disorder of glycosylation with a relatively mild phenotype. Eur J Hum Genet 21:844–849CrossRefPubMed
go back to reference Jaeken J (2011) Congenital disorders of glycosylation (CDG): it's (nearly) all in it! J Inherit Metab Dis 34:853–858CrossRefPubMed Jaeken J (2011) Congenital disorders of glycosylation (CDG): it's (nearly) all in it! J Inherit Metab Dis 34:853–858CrossRefPubMed
go back to reference Jaeken J, Van Eijk HG, van der Heul C, Corbeel L, Eeckels R, Eggermont E (1984) Sialic acid-deficient serum and cerebrospinal fluid transferrin in a newly recognized genetic syndrome. Clin Chim Acta 144:245–247CrossRefPubMed Jaeken J, Van Eijk HG, van der Heul C, Corbeel L, Eeckels R, Eggermont E (1984) Sialic acid-deficient serum and cerebrospinal fluid transferrin in a newly recognized genetic syndrome. Clin Chim Acta 144:245–247CrossRefPubMed
go back to reference Jansen EJ, Timal S, Ryan M et al (2016a) ATP6AP1 deficiency causes an immunodeficiency with hepatopathy, cognitive impairment and abnormal protein glycosylation. Nat Commun 7:11600CrossRefPubMedPubMedCentral Jansen EJ, Timal S, Ryan M et al (2016a) ATP6AP1 deficiency causes an immunodeficiency with hepatopathy, cognitive impairment and abnormal protein glycosylation. Nat Commun 7:11600CrossRefPubMedPubMedCentral
go back to reference Jansen JC, Cirak S, van Scherpenzeel M et al (2016c) CCDC115 deficiency causes a disorder of Golgi homeostasis with abnormal protein glycosylation. Am J Hum Genet 98:310–321CrossRefPubMedPubMedCentral Jansen JC, Cirak S, van Scherpenzeel M et al (2016c) CCDC115 deficiency causes a disorder of Golgi homeostasis with abnormal protein glycosylation. Am J Hum Genet 98:310–321CrossRefPubMedPubMedCentral
go back to reference Jansen JC, Timal S, van Scherpenzeel M et al (2016b) TMEM199 deficiency is a disorder of Golgi homeostasis characterized by elevated aminotransferases, alkaline phosphatase, and cholesterol and abnormal glycosylation. Am J Hum Genet 98:322–330CrossRefPubMedPubMedCentral Jansen JC, Timal S, van Scherpenzeel M et al (2016b) TMEM199 deficiency is a disorder of Golgi homeostasis characterized by elevated aminotransferases, alkaline phosphatase, and cholesterol and abnormal glycosylation. Am J Hum Genet 98:322–330CrossRefPubMedPubMedCentral
go back to reference Kang P, Mechref Y, Novotny MV (2008) High-throughput solid-phase permethylation of glycans prior to mass spectrometry. Rapid Commun Mass Spectrom 22:721–734CrossRefPubMed Kang P, Mechref Y, Novotny MV (2008) High-throughput solid-phase permethylation of glycans prior to mass spectrometry. Rapid Commun Mass Spectrom 22:721–734CrossRefPubMed
go back to reference Khatri K, Staples GO, Leymarie N et al (2014) Confident assignment of site-specific glycosylation in complex glycoproteins in a single step. J Proteome Res 13:4347–4355CrossRefPubMedPubMedCentral Khatri K, Staples GO, Leymarie N et al (2014) Confident assignment of site-specific glycosylation in complex glycoproteins in a single step. J Proteome Res 13:4347–4355CrossRefPubMedPubMedCentral
go back to reference Kornak U, Reynders E, Dimopoulou A et al (2008) Impaired glycosylation and cutis laxa caused by mutations in the vesicular H+-ATPase subunit ATP6V0A2. Nat Genet 40:32–34CrossRefPubMed Kornak U, Reynders E, Dimopoulou A et al (2008) Impaired glycosylation and cutis laxa caused by mutations in the vesicular H+-ATPase subunit ATP6V0A2. Nat Genet 40:32–34CrossRefPubMed
go back to reference Kranz C, Ng BG, Sun L et al (2007) COG8 deficiency causes new congenital disorder of glycosylation type IIh. Hum Mol Genet 16:731–741CrossRefPubMed Kranz C, Ng BG, Sun L et al (2007) COG8 deficiency causes new congenital disorder of glycosylation type IIh. Hum Mol Genet 16:731–741CrossRefPubMed
go back to reference Lacey JM, Bergen HR, Magera MJ, Naylor S, O’Brien JF (2001) Rapid determination of transferrin isoforms by immunoaffinity liquid chromatography and electrospray mass spectrometry. Clin Chem 47:513–518PubMed Lacey JM, Bergen HR, Magera MJ, Naylor S, O’Brien JF (2001) Rapid determination of transferrin isoforms by immunoaffinity liquid chromatography and electrospray mass spectrometry. Clin Chem 47:513–518PubMed
go back to reference Lee LY, Thaysen-Andersen M, Baker MS, Packer NH, Hancock WS, Fanayan S (2014) Comprehensive N-glycome profiling of cultured human epithelial breast cells identifies unique secretome N-glycosylation signatures enabling tumorigenic subtype classification. J Proteome Res 13:4783–4795CrossRefPubMed Lee LY, Thaysen-Andersen M, Baker MS, Packer NH, Hancock WS, Fanayan S (2014) Comprehensive N-glycome profiling of cultured human epithelial breast cells identifies unique secretome N-glycosylation signatures enabling tumorigenic subtype classification. J Proteome Res 13:4783–4795CrossRefPubMed
go back to reference Leerapun A, Suravarapu SV, Bida JP et al (2007) The utility of Lens Culinaris agglutinin-reactive alpha-fetoprotein in the diagnosis of hepatocellular carcinoma: evaluation in a United States referral population. Clin Gastroenterol Hepatol 5:394–402CrossRefPubMedPubMedCentral Leerapun A, Suravarapu SV, Bida JP et al (2007) The utility of Lens Culinaris agglutinin-reactive alpha-fetoprotein in the diagnosis of hepatocellular carcinoma: evaluation in a United States referral population. Clin Gastroenterol Hepatol 5:394–402CrossRefPubMedPubMedCentral
go back to reference Leiserowitz GS, Lebrilla C, Miyamoto S et al (2007) Glycomics analysis of serum: a potential new biomarker for ovarian cancer? Int J Gynecol Cancer 18:470–475CrossRefPubMedPubMedCentral Leiserowitz GS, Lebrilla C, Miyamoto S et al (2007) Glycomics analysis of serum: a potential new biomarker for ovarian cancer? Int J Gynecol Cancer 18:470–475CrossRefPubMedPubMedCentral
go back to reference Li D, Mallory T, Satomura S (2001) AFP-L3: a new generation of tumor marker for hepatocellular carcinoma. Clin Chim Acta 313:15–19CrossRefPubMed Li D, Mallory T, Satomura S (2001) AFP-L3: a new generation of tumor marker for hepatocellular carcinoma. Clin Chim Acta 313:15–19CrossRefPubMed
go back to reference Melmer M, Stangler T, Premstaller A, Lindner W (2011) Comparison of hydrophilic-interaction, reversed-phase and porous graphitic carbon chromatography for glycan analysis. J Chromatogr A 1218:118–123CrossRefPubMed Melmer M, Stangler T, Premstaller A, Lindner W (2011) Comparison of hydrophilic-interaction, reversed-phase and porous graphitic carbon chromatography for glycan analysis. J Chromatogr A 1218:118–123CrossRefPubMed
go back to reference Mohamed M, Ashikov A, Guillard M et al (2013) Intellectual disability and bleeding diathesis due to deficient CMP–sialic acid transport. Neurology 81:681–687CrossRefPubMed Mohamed M, Ashikov A, Guillard M et al (2013) Intellectual disability and bleeding diathesis due to deficient CMP–sialic acid transport. Neurology 81:681–687CrossRefPubMed
go back to reference Morava E, Wopereis S, Coucke P et al (2005) Defective protein glycosylation in patients with cutis laxa syndrome. Eur J Hum Genet 13:414–421CrossRefPubMed Morava E, Wopereis S, Coucke P et al (2005) Defective protein glycosylation in patients with cutis laxa syndrome. Eur J Hum Genet 13:414–421CrossRefPubMed
go back to reference Morava E, Zeevaert R, Korsch E et al (2007) A common mutation in the COG7 gene with a consistent phenotype including microcephaly, adducted thumbs, growth retardation, VSD and episodes of hyperthermia. Eur J Hum Genet 15:638–645CrossRefPubMed Morava E, Zeevaert R, Korsch E et al (2007) A common mutation in the COG7 gene with a consistent phenotype including microcephaly, adducted thumbs, growth retardation, VSD and episodes of hyperthermia. Eur J Hum Genet 15:638–645CrossRefPubMed
go back to reference Ng BG, Sharma V, Sun L et al (2011) Identification of the first COG-CDG patient of Indian origin. Mol Genet Metab 102:364–367CrossRefPubMed Ng BG, Sharma V, Sun L et al (2011) Identification of the first COG-CDG patient of Indian origin. Mol Genet Metab 102:364–367CrossRefPubMed
go back to reference Pabst M, Altmann F (2008) Influence of electrosorption, solvent, temperature, and ion polarity on the performance of LC-ESI-MS using graphitic carbon for acidic oligosaccharides. Anal Chem 80:7534–7542CrossRefPubMed Pabst M, Altmann F (2008) Influence of electrosorption, solvent, temperature, and ion polarity on the performance of LC-ESI-MS using graphitic carbon for acidic oligosaccharides. Anal Chem 80:7534–7542CrossRefPubMed
go back to reference Pabst M, Kolarich D, Poltl G et al (2009) Comparison of fluorescent labels for oligosaccharides and introduction of a new postlabeling purification method. Anal Biochem 384:263–273CrossRefPubMed Pabst M, Kolarich D, Poltl G et al (2009) Comparison of fluorescent labels for oligosaccharides and introduction of a new postlabeling purification method. Anal Biochem 384:263–273CrossRefPubMed
go back to reference Paesold-Burda P, Maag C, Troxler H et al (2009) Deficiency in COG5 causes a moderate form of congenital disorders of glycosylation. Hum Mol Genet 18:4350–4356CrossRefPubMed Paesold-Burda P, Maag C, Troxler H et al (2009) Deficiency in COG5 causes a moderate form of congenital disorders of glycosylation. Hum Mol Genet 18:4350–4356CrossRefPubMed
go back to reference Palmigiano A, Barone R, Sturiale L et al (2016) CSF N-glycoproteomics for early diagnosis in Alzheimer’s disease. J Proteome 131:29–37CrossRef Palmigiano A, Barone R, Sturiale L et al (2016) CSF N-glycoproteomics for early diagnosis in Alzheimer’s disease. J Proteome 131:29–37CrossRef
go back to reference Palmigiano A, Bua RO, Barone R et al (2017) MALDI-MS profiling of serum O- and N-glycosylation in COG5-CDG. J Mass Spectrom 52:372–377CrossRefPubMed Palmigiano A, Bua RO, Barone R et al (2017) MALDI-MS profiling of serum O- and N-glycosylation in COG5-CDG. J Mass Spectrom 52:372–377CrossRefPubMed
go back to reference Reiding KR, Blank D, Kuijper DM, Deelder AM, Wuhrer M (2014) High-throughput profiling of protein N-glycosylation by MALDI-TOF-MS employing linkage-specific sialic acid esterification. Anal Chem 86:5784–5793CrossRefPubMed Reiding KR, Blank D, Kuijper DM, Deelder AM, Wuhrer M (2014) High-throughput profiling of protein N-glycosylation by MALDI-TOF-MS employing linkage-specific sialic acid esterification. Anal Chem 86:5784–5793CrossRefPubMed
go back to reference Reynders E, Foulquier F, Leao Teles E et al (2009) Golgi function and dysfunction in the first COG4-deficient CDG type II patient. Hum Mol Genet 18:3244–3256CrossRefPubMedPubMedCentral Reynders E, Foulquier F, Leao Teles E et al (2009) Golgi function and dysfunction in the first COG4-deficient CDG type II patient. Hum Mol Genet 18:3244–3256CrossRefPubMedPubMedCentral
go back to reference Ruhaak LR, Stroble C, Dai J et al (2016) Serum glycans as risk markers for non-small cell lung cancer. Cancer Prev Res (Phila) 9:317–323CrossRef Ruhaak LR, Stroble C, Dai J et al (2016) Serum glycans as risk markers for non-small cell lung cancer. Cancer Prev Res (Phila) 9:317–323CrossRef
go back to reference Ruhaak LR, Zauner G, Huhn C, Bruggink C, Deelder AM, Wuhrer M (2010) Glycan labeling strategies and their use in identification and quantification. Anal Bioanal Chem 397:3457–3481CrossRefPubMedPubMedCentral Ruhaak LR, Zauner G, Huhn C, Bruggink C, Deelder AM, Wuhrer M (2010) Glycan labeling strategies and their use in identification and quantification. Anal Bioanal Chem 397:3457–3481CrossRefPubMedPubMedCentral
go back to reference Russell AC, Simurina M, Garcia MT et al (2017) The N-glycosylation of immunoglobulin G as a novel biomarker of Parkinson’s disease. Glycobiology 27:501–510CrossRefPubMed Russell AC, Simurina M, Garcia MT et al (2017) The N-glycosylation of immunoglobulin G as a novel biomarker of Parkinson’s disease. Glycobiology 27:501–510CrossRefPubMed
go back to reference Sasai K, Ikeda Y, Fujii T, Tsuda T, Taniguchi N (2002) UDP-GlcNAc concentration is an important factor in the biosynthesis of beta1,6-branched oligosaccharides: regulation based on the kinetic properties of N-acetylglucosaminyltransferase V. Glycobiology 12:119–127CrossRefPubMed Sasai K, Ikeda Y, Fujii T, Tsuda T, Taniguchi N (2002) UDP-GlcNAc concentration is an important factor in the biosynthesis of beta1,6-branched oligosaccharides: regulation based on the kinetic properties of N-acetylglucosaminyltransferase V. Glycobiology 12:119–127CrossRefPubMed
go back to reference Sethi MK, Kim H, Park CK et al (2015) In-depth N-glycome profiling of paired colorectal cancer and non-tumorigenic tissues reveals cancer-, stage- and EGFR-specific protein N-glycosylation. Glycobiology 25:1064–1078CrossRefPubMed Sethi MK, Kim H, Park CK et al (2015) In-depth N-glycome profiling of paired colorectal cancer and non-tumorigenic tissues reveals cancer-, stage- and EGFR-specific protein N-glycosylation. Glycobiology 25:1064–1078CrossRefPubMed
go back to reference Sethi MK, Thaysen-Andersen M, Smith JT et al (2014) Comparative N-glycan profiling of colorectal cancer cell lines reveals unique bisecting GlcNAc and alpha-2,3-linked sialic acid determinants are associated with membrane proteins of the more metastatic/aggressive cell lines. J Proteome Res 13:277–288CrossRefPubMed Sethi MK, Thaysen-Andersen M, Smith JT et al (2014) Comparative N-glycan profiling of colorectal cancer cell lines reveals unique bisecting GlcNAc and alpha-2,3-linked sialic acid determinants are associated with membrane proteins of the more metastatic/aggressive cell lines. J Proteome Res 13:277–288CrossRefPubMed
go back to reference Spaapen LJ, Bakker JA, van der Meer SB et al (2005) Clinical and biochemical presentation of siblings with COG-7 deficiency, a lethal multiple O- and N-glycosylation disorder. J Inherit Metab Dis 28:707–714CrossRefPubMed Spaapen LJ, Bakker JA, van der Meer SB et al (2005) Clinical and biochemical presentation of siblings with COG-7 deficiency, a lethal multiple O- and N-glycosylation disorder. J Inherit Metab Dis 28:707–714CrossRefPubMed
go back to reference Stray-Pedersen A, Backe PH, Sorte HS et al (2014) PGM3 mutations cause a congenital disorder of glycosylation with severe immunodeficiency and skeletal dysplasia. Am J Hum Genet 95:96–107CrossRefPubMedPubMedCentral Stray-Pedersen A, Backe PH, Sorte HS et al (2014) PGM3 mutations cause a congenital disorder of glycosylation with severe immunodeficiency and skeletal dysplasia. Am J Hum Genet 95:96–107CrossRefPubMedPubMedCentral
go back to reference Sturiale L, Barone R, Garozzo D (2011) The impact of mass spectrometry in the diagnosis of congenital disorders of glycosylation. J Inherit Metab Dis 34:891–899CrossRefPubMed Sturiale L, Barone R, Garozzo D (2011) The impact of mass spectrometry in the diagnosis of congenital disorders of glycosylation. J Inherit Metab Dis 34:891–899CrossRefPubMed
go back to reference Thaysen-Andersen M, Packer NH (2014) Advances in LC-MS/MS-based glycoproteomics: getting closer to system-wide site-specific mapping of the N- and O-glycoproteome. Biochim Biophys Acta 1844:1437–1452CrossRefPubMed Thaysen-Andersen M, Packer NH (2014) Advances in LC-MS/MS-based glycoproteomics: getting closer to system-wide site-specific mapping of the N- and O-glycoproteome. Biochim Biophys Acta 1844:1437–1452CrossRefPubMed
go back to reference Timal S, Hoischen A, Lehle L et al (2012) Gene identification in the congenital disorders of glycosylation type I by whole exome sequencing. Hum Mol Genet 21:4151–4161CrossRefPubMed Timal S, Hoischen A, Lehle L et al (2012) Gene identification in the congenital disorders of glycosylation type I by whole exome sequencing. Hum Mol Genet 21:4151–4161CrossRefPubMed
go back to reference Van Damme T, Gardeitchik T, Mohamed M et al (2016) Mutations in ATP6V1E1 or ATP6V1A cause autosomal-recessive cutis laxa. Am J Hum Genet 100:216–227CrossRef Van Damme T, Gardeitchik T, Mohamed M et al (2016) Mutations in ATP6V1E1 or ATP6V1A cause autosomal-recessive cutis laxa. Am J Hum Genet 100:216–227CrossRef
go back to reference Van Karnebeek CD, Bonafe L, Wen XY et al (2016) NANS-mediated synthesis of sialic acid is required for brain and skeletal development. Nat Genet 48:777–784CrossRefPubMed Van Karnebeek CD, Bonafe L, Wen XY et al (2016) NANS-mediated synthesis of sialic acid is required for brain and skeletal development. Nat Genet 48:777–784CrossRefPubMed
go back to reference Van Scherpenzeel M, Steenbergen G, Morava E, Wevers RA, Lefeber DJ (2015) High-resolution mass spectrometry glycoprofiling of intact transferrin for diagnosis and subtype identification in the congenital disorders of glycosylation. Transl Res 166:639–649CrossRefPubMed Van Scherpenzeel M, Steenbergen G, Morava E, Wevers RA, Lefeber DJ (2015) High-resolution mass spectrometry glycoprofiling of intact transferrin for diagnosis and subtype identification in the congenital disorders of glycosylation. Transl Res 166:639–649CrossRefPubMed
go back to reference Van Scherpenzeel M, Timal S, Rymen D et al (2014) Diagnostic serum glycosylation profile in patients with intellectual disability as a result of MAN1B1 deficiency. Brain 137:1030–1038CrossRefPubMed Van Scherpenzeel M, Timal S, Rymen D et al (2014) Diagnostic serum glycosylation profile in patients with intellectual disability as a result of MAN1B1 deficiency. Brain 137:1030–1038CrossRefPubMed
go back to reference Van Scherpenzeel M, Willems E, Lefeber DJ (2016) Clinical diagnostics and therapy monitoring in the congenital disorders of glycosylation. Glyconj J 33:345–358CrossRef Van Scherpenzeel M, Willems E, Lefeber DJ (2016) Clinical diagnostics and therapy monitoring in the congenital disorders of glycosylation. Glyconj J 33:345–358CrossRef
go back to reference Vissers L, van Nimwegen KJM, Schieving JH (2017) A clinical utility study of exome sequencing versus conventional genetic testing in pediatric neurology. Genet Med 19:1055–1063CrossRefPubMedPubMedCentral Vissers L, van Nimwegen KJM, Schieving JH (2017) A clinical utility study of exome sequencing versus conventional genetic testing in pediatric neurology. Genet Med 19:1055–1063CrossRefPubMedPubMedCentral
go back to reference Voermans NC, Guillard M, Doedee R et al (2010) Clinical features, lectin staining, and a novel GNE frameshift mutation in hereditary inclusion body myopathy. Clin Neuropathol 29:71–77PubMedPubMedCentral Voermans NC, Guillard M, Doedee R et al (2010) Clinical features, lectin staining, and a novel GNE frameshift mutation in hereditary inclusion body myopathy. Clin Neuropathol 29:71–77PubMedPubMedCentral
go back to reference Voermans NC, Preisler N, Madsen KL et al (2017) PGM1 deficiency: substrate use during exercise and effect of treatment with galactose. Neuromuscul Disord 27:370–376CrossRefPubMed Voermans NC, Preisler N, Madsen KL et al (2017) PGM1 deficiency: substrate use during exercise and effect of treatment with galactose. Neuromuscul Disord 27:370–376CrossRefPubMed
go back to reference Wada Y (2016) Mass spectrometry of transferrin and apolipoprotein C-III for diagnosis and screening of congenital disorder of glycosylation. Glycoconj J 33:297–307CrossRefPubMed Wada Y (2016) Mass spectrometry of transferrin and apolipoprotein C-III for diagnosis and screening of congenital disorder of glycosylation. Glycoconj J 33:297–307CrossRefPubMed
go back to reference Wada Y, Kadoya M, Okamoto N (2012) Mass spectrometry of apolipoprotein C-III, a simple analytical method for mucin-type O-glycosylation and its application to an autosomal recessive cutis laxa type-2 (ARCL2) patient. Glycobiology 22:1140–1144CrossRefPubMed Wada Y, Kadoya M, Okamoto N (2012) Mass spectrometry of apolipoprotein C-III, a simple analytical method for mucin-type O-glycosylation and its application to an autosomal recessive cutis laxa type-2 (ARCL2) patient. Glycobiology 22:1140–1144CrossRefPubMed
go back to reference Wada Y, Nishikawa A, Okamoto N et al (1992b) Structure of serum transferrin in carbohydrate-deficient glycoprotein syndrome. Biochem Biophys Res Commun 189:832–836CrossRefPubMed Wada Y, Nishikawa A, Okamoto N et al (1992b) Structure of serum transferrin in carbohydrate-deficient glycoprotein syndrome. Biochem Biophys Res Commun 189:832–836CrossRefPubMed
go back to reference Wada Y, Tajiri M, Yoshida S (2004) Hydrophilic affinity isolation and MALDI multiple-stage tandem mass spectrometry of glycopeptides for glycoproteomics. Anal Chem 76:6560–6565CrossRefPubMed Wada Y, Tajiri M, Yoshida S (2004) Hydrophilic affinity isolation and MALDI multiple-stage tandem mass spectrometry of glycopeptides for glycoproteomics. Anal Chem 76:6560–6565CrossRefPubMed
go back to reference Wada Y, Tamura J, Musselman BD, Kassel DB, Sakurai T, Matsuo T (1992a) Electrospray ionization mass spectra of hemoglobin and transferrin by a magnetic sector mass spectrometer. Comparison with theoretical isotopic distributions. Rapid Commun Mass Spectrom 6:9–13CrossRefPubMed Wada Y, Tamura J, Musselman BD, Kassel DB, Sakurai T, Matsuo T (1992a) Electrospray ionization mass spectra of hemoglobin and transferrin by a magnetic sector mass spectrometer. Comparison with theoretical isotopic distributions. Rapid Commun Mass Spectrom 6:9–13CrossRefPubMed
go back to reference Wang YC, Peterson SE, Loring JF (2014) Protein post-translational modifications and regulation of pluripotency in human stem cells. Cell Res 24:143–160CrossRefPubMed Wang YC, Peterson SE, Loring JF (2014) Protein post-translational modifications and regulation of pluripotency in human stem cells. Cell Res 24:143–160CrossRefPubMed
go back to reference West MB, Segu ZM, Feasley CL et al (2010) Analysis of site-specific glycosylation of renal and hepatic gamma-glutamyl transpeptidase from normal human tissue. J Biol Chem 285:29511–29524CrossRefPubMedPubMedCentral West MB, Segu ZM, Feasley CL et al (2010) Analysis of site-specific glycosylation of renal and hepatic gamma-glutamyl transpeptidase from normal human tissue. J Biol Chem 285:29511–29524CrossRefPubMedPubMedCentral
go back to reference Wheeler SF, Domann P, Harvey DJ (2009) Derivatization of sialic acids for stabilization in matrix-assisted laser desorption/ionization mass spectrometry and concomitant differentiation of alpha(2 --> 3)- and alpha(2 --> 6)-isomers. Rapid Commun Mass Spectrom 23:303–312CrossRefPubMed Wheeler SF, Domann P, Harvey DJ (2009) Derivatization of sialic acids for stabilization in matrix-assisted laser desorption/ionization mass spectrometry and concomitant differentiation of alpha(2 --> 3)- and alpha(2 --> 6)-isomers. Rapid Commun Mass Spectrom 23:303–312CrossRefPubMed
go back to reference Wopereis S, Grunewald S, Huijben KM et al (2007) Transferrin and apolipoprotein C-III isofocusing are complementary in the diagnosis of N- and O-glycan biosynthesis defects. Clin Chem 53:180–187CrossRefPubMed Wopereis S, Grunewald S, Huijben KM et al (2007) Transferrin and apolipoprotein C-III isofocusing are complementary in the diagnosis of N- and O-glycan biosynthesis defects. Clin Chem 53:180–187CrossRefPubMed
go back to reference Wopereis S, Grunewald S, Morava E et al (2003) Apolipoprotein C-III isofocusing in the diagnosis of genetic defects in O-glycan biosynthesis. Clin Chem 49:1839–1845CrossRefPubMed Wopereis S, Grunewald S, Morava E et al (2003) Apolipoprotein C-III isofocusing in the diagnosis of genetic defects in O-glycan biosynthesis. Clin Chem 49:1839–1845CrossRefPubMed
go back to reference Wopereis S, Lefeber DJ, Morava E, Wevers RA (2006) Mechanisms in protein O-glycan biosynthesis and clinical and molecular aspects of protein O-glycan biosynthesis defects: a review. Clin Chem 52:574–600CrossRefPubMed Wopereis S, Lefeber DJ, Morava E, Wevers RA (2006) Mechanisms in protein O-glycan biosynthesis and clinical and molecular aspects of protein O-glycan biosynthesis defects: a review. Clin Chem 52:574–600CrossRefPubMed
go back to reference Wuhrer M, Koeleman CA, Deelder AM, Hokke CH (2004) Normal-phase nanoscale liquid chromatography−mass spectrometry of underivatized oligosaccharides at low-femtomole sensitivity. Anal Chem 76:833–838CrossRefPubMed Wuhrer M, Koeleman CA, Deelder AM, Hokke CH (2004) Normal-phase nanoscale liquid chromatography−mass spectrometry of underivatized oligosaccharides at low-femtomole sensitivity. Anal Chem 76:833–838CrossRefPubMed
go back to reference Xia B, Zhang W, Li X et al (2013) Serum N-glycan and O-glycan analysis by mass spectrometry for diagnosis of congenital disorder of glycosylation. Anal Biochem 442:178–185CrossRefPubMed Xia B, Zhang W, Li X et al (2013) Serum N-glycan and O-glycan analysis by mass spectrometry for diagnosis of congenital disorder of glycosylation. Anal Biochem 442:178–185CrossRefPubMed
go back to reference Yang Y, Franc V, Heck AJR (2017) Glycoproteomics: a balance between high-throughput and in-depth analysis. Trends Biotechnol 35:598–609CrossRefPubMed Yang Y, Franc V, Heck AJR (2017) Glycoproteomics: a balance between high-throughput and in-depth analysis. Trends Biotechnol 35:598–609CrossRefPubMed
go back to reference Zeevaert R, Foulquier F, Jaeken J, Matthijs G (2008) Deficiencies in subunits of the conserved oligomeric Golgi (COG) complex define a novel group of congenital disorders of glycosylation. Mol Genet Metab 93:15–21CrossRefPubMed Zeevaert R, Foulquier F, Jaeken J, Matthijs G (2008) Deficiencies in subunits of the conserved oligomeric Golgi (COG) complex define a novel group of congenital disorders of glycosylation. Mol Genet Metab 93:15–21CrossRefPubMed
go back to reference Zhang W, James PM, Ng BG et al (2016) A novel N-tetrasaccharide in patients with congenital disorders of glycosylation, including asparagine-linked glycosylation protein 1, phosphomannomutase 2, and mannose phosphate isomerase deficiencies. Clin Chem 62:208–217CrossRefPubMed Zhang W, James PM, Ng BG et al (2016) A novel N-tetrasaccharide in patients with congenital disorders of glycosylation, including asparagine-linked glycosylation protein 1, phosphomannomutase 2, and mannose phosphate isomerase deficiencies. Clin Chem 62:208–217CrossRefPubMed
go back to reference Zielinska DF, Gnad F, Wisniewski JR, Mann M (2010) Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints. Cell 141:897–899CrossRefPubMed Zielinska DF, Gnad F, Wisniewski JR, Mann M (2010) Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints. Cell 141:897–899CrossRefPubMed
Metadata
Title
Clinical glycomics for the diagnosis of congenital disorders of glycosylation
Authors
Nurulamin Abu Bakar
Dirk J. Lefeber
Monique van Scherpenzeel
Publication date
01-05-2018
Publisher
Springer Netherlands
Published in
Journal of Inherited Metabolic Disease / Issue 3/2018
Print ISSN: 0141-8955
Electronic ISSN: 1573-2665
DOI
https://doi.org/10.1007/s10545-018-0144-9

Other articles of this Issue 3/2018

Journal of Inherited Metabolic Disease 3/2018 Go to the issue