Skip to main content
Top
Published in: Journal of Inherited Metabolic Disease 3/2018

Open Access 01-05-2018 | Metabolomics

Advances in metabolome information retrieval: turning chemistry into biology. Part II: biological information recovery

Authors: Abdellah Tebani, Carlos Afonso, Soumeya Bekri

Published in: Journal of Inherited Metabolic Disease | Issue 3/2018

Login to get access

Abstract

This work reports the second part of a review intending to give the state of the art of major metabolic phenotyping strategies. It particularly deals with inherent advantages and limits regarding data analysis issues and biological information retrieval tools along with translational challenges. This Part starts with introducing the main data preprocessing strategies of the different metabolomics data. Then, it describes the main data analysis techniques including univariate and multivariate aspects. It also addresses the challenges related to metabolite annotation and characterization. Finally, functional analysis including pathway and network strategies are discussed. The last section of this review is devoted to practical considerations and current challenges and pathways to bring metabolomics into clinical environments.
Literature
go back to reference Alonso A, Julia A, Beltran A et al (2011) AStream: an R package for annotating LC/MS metabolomic data. Bioinformatics 27:1339PubMedCrossRef Alonso A, Julia A, Beltran A et al (2011) AStream: an R package for annotating LC/MS metabolomic data. Bioinformatics 27:1339PubMedCrossRef
go back to reference Al-Saegh A (2015) Independent component analysis for separation of speech mixtures: a comparison among thirty algorithms. Iraqi J Electr Electron Eng 11(1):1–9 Al-Saegh A (2015) Independent component analysis for separation of speech mixtures: a comparison among thirty algorithms. Iraqi J Electr Electron Eng 11(1):1–9
go back to reference Alyass A, Turcotte M, Meyre D (2015) From big data analysis to personalized medicine for all: challenges and opportunities. BMC Med Genet 8:1–12 Alyass A, Turcotte M, Meyre D (2015) From big data analysis to personalized medicine for all: challenges and opportunities. BMC Med Genet 8:1–12
go back to reference Aon MA (2014) Complex systems biology of networks: the riddle and the challenge. In: Systems biology of metabolic and signaling networks. Springer, Berlin, p 19–35 Aon MA (2014) Complex systems biology of networks: the riddle and the challenge. In: Systems biology of metabolic and signaling networks. Springer, Berlin, p 19–35
go back to reference Aon MA, Cortassa S (2015) Systems biology of the Fluxome. PRO 3:607–618 Aon MA, Cortassa S (2015) Systems biology of the Fluxome. PRO 3:607–618
go back to reference Argmann CA, Houten SM, Zhu J, Schadt EE (2016) A next generation multiscale view of inborn errors of metabolism. Cell Metab 23:13–26PubMedCrossRef Argmann CA, Houten SM, Zhu J, Schadt EE (2016) A next generation multiscale view of inborn errors of metabolism. Cell Metab 23:13–26PubMedCrossRef
go back to reference Aurich MK, Thiele I (2016) Computational Modeling of human metabolism and its application to systems biomedicine. Methods Mol Biol 1386:253–281PubMedCrossRef Aurich MK, Thiele I (2016) Computational Modeling of human metabolism and its application to systems biomedicine. Methods Mol Biol 1386:253–281PubMedCrossRef
go back to reference Balog J, Sasi-Szabo L, Kinross J et al (2013) Intraoperative tissue identification using rapid evaporative ionization mass spectrometry. Sci Transl Med 5:11CrossRef Balog J, Sasi-Szabo L, Kinross J et al (2013) Intraoperative tissue identification using rapid evaporative ionization mass spectrometry. Sci Transl Med 5:11CrossRef
go back to reference Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57:289–300 Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57:289–300
go back to reference Bijlsma S, Bobeldijk I, Verheij ER et al (2006) Large-scale human metabolomics studies: a strategy for data (pre-) processing and validation. Anal Chem 78:567–574PubMedCrossRef Bijlsma S, Bobeldijk I, Verheij ER et al (2006) Large-scale human metabolomics studies: a strategy for data (pre-) processing and validation. Anal Chem 78:567–574PubMedCrossRef
go back to reference Bouveresse DJ-R, Rutledge D (2016) Independent components analysis: theory and applications. Resolving spectral mixtures: with applications from ultrafast time-resolved spectroscopy to super-resolution imaging, vol 30. Elsevier, Amsterdamn, p 7225 Bouveresse DJ-R, Rutledge D (2016) Independent components analysis: theory and applications. Resolving spectral mixtures: with applications from ultrafast time-resolved spectroscopy to super-resolution imaging, vol 30. Elsevier, Amsterdamn, p 7225
go back to reference Brereton RG (2014) A short history of chemometrics: a personal view. J Chemom 28:749–760CrossRef Brereton RG (2014) A short history of chemometrics: a personal view. J Chemom 28:749–760CrossRef
go back to reference Broadhurst DI, Kell DB (2006) Statistical strategies for avoiding false discoveries in metabolomics and related experiments. Metabolomics 2:171–196CrossRef Broadhurst DI, Kell DB (2006) Statistical strategies for avoiding false discoveries in metabolomics and related experiments. Metabolomics 2:171–196CrossRef
go back to reference Broeckling CD, Afsar FA, Neumann S, Ben-Hur A, Prenni JE (2014) RAMClust: a novel feature clustering method enables spectral-matching-based annotation for Metabolomics data. Anal Chem 86:6812–6817PubMedCrossRef Broeckling CD, Afsar FA, Neumann S, Ben-Hur A, Prenni JE (2014) RAMClust: a novel feature clustering method enables spectral-matching-based annotation for Metabolomics data. Anal Chem 86:6812–6817PubMedCrossRef
go back to reference Cai Y, Weng K, Guo Y, Peng J, Zhu Z-J (2015) An integrated targeted metabolomic platform for high-throughput metabolite profiling and automated data processing. Metabolomics 11:1575–1586CrossRef Cai Y, Weng K, Guo Y, Peng J, Zhu Z-J (2015) An integrated targeted metabolomic platform for high-throughput metabolite profiling and automated data processing. Metabolomics 11:1575–1586CrossRef
go back to reference Caspi R, Foerster H, Fulcher CA et al (2008) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 36:D623–D631PubMedCrossRef Caspi R, Foerster H, Fulcher CA et al (2008) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 36:D623–D631PubMedCrossRef
go back to reference Caspi R, Billington R, Ferrer L et al (2016) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 44:D471–D480PubMedCrossRef Caspi R, Billington R, Ferrer L et al (2016) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 44:D471–D480PubMedCrossRef
go back to reference Cazzaniga P, Damiani C, Besozzi D et al (2014) Computational strategies for a system-level understanding of metabolism. Meta 4:1034–1087 Cazzaniga P, Damiani C, Besozzi D et al (2014) Computational strategies for a system-level understanding of metabolism. Meta 4:1034–1087
go back to reference Chitayat S, Rudan JF (2016) Phenome centers and global harmonization, chap. 10. In: Metabolic phenotyping in personalized and public healthcare. Academic, Boston, p 291–315 Chitayat S, Rudan JF (2016) Phenome centers and global harmonization, chap. 10. In: Metabolic phenotyping in personalized and public healthcare. Academic, Boston, p 291–315
go back to reference Cortassa S, Caceres V, Bell LN, O’Rourke B, Paolocci N, Aon MA (2015) From metabolomics to fluxomics: a computational procedure to translate metabolite profiles into metabolic fluxes. Biophys J 108:163–172PubMedPubMedCentralCrossRef Cortassa S, Caceres V, Bell LN, O’Rourke B, Paolocci N, Aon MA (2015) From metabolomics to fluxomics: a computational procedure to translate metabolite profiles into metabolic fluxes. Biophys J 108:163–172PubMedPubMedCentralCrossRef
go back to reference Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20:273–297 Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20:273–297
go back to reference Cui Q, Lewis IA, Hegeman AD et al (2008) Metabolite identification via the Madison Metabolomics consortium database. Nat Biotechnol 26:162–164PubMedCrossRef Cui Q, Lewis IA, Hegeman AD et al (2008) Metabolite identification via the Madison Metabolomics consortium database. Nat Biotechnol 26:162–164PubMedCrossRef
go back to reference Daly R, Rogers S, Wandy J, Jankevics A, Burgess KE, Breitling R (2014) MetAssign: probabilistic annotation of metabolites from LC-MS data using a Bayesian clustering approach. Bioinformatics 30:2764PubMedPubMedCentralCrossRef Daly R, Rogers S, Wandy J, Jankevics A, Burgess KE, Breitling R (2014) MetAssign: probabilistic annotation of metabolites from LC-MS data using a Bayesian clustering approach. Bioinformatics 30:2764PubMedPubMedCentralCrossRef
go back to reference De Livera AM, Dias DA, De Souza D et al (2012) Normalizing and integrating Metabolomics data. Anal Chem 84:10768–10776PubMedCrossRef De Livera AM, Dias DA, De Souza D et al (2012) Normalizing and integrating Metabolomics data. Anal Chem 84:10768–10776PubMedCrossRef
go back to reference Dieterle F, Ross A, Schlotterbeck G, Senn H (2006) Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics. Anal Chem 78:4281–4290PubMedCrossRef Dieterle F, Ross A, Schlotterbeck G, Senn H (2006) Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics. Anal Chem 78:4281–4290PubMedCrossRef
go back to reference Do KT, Kastenmüller G, Mook-Kanamori DO et al (2015) Network-based approach for analyzing intra- and Interfluid metabolite associations in human blood, urine, and saliva. J Proteome Res 14:1183–1194PubMedCrossRef Do KT, Kastenmüller G, Mook-Kanamori DO et al (2015) Network-based approach for analyzing intra- and Interfluid metabolite associations in human blood, urine, and saliva. J Proteome Res 14:1183–1194PubMedCrossRef
go back to reference Dudoit S, Yang YH, Callow MJ, Speed TP (2002) Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments. Stat Sin 12:111–139 Dudoit S, Yang YH, Callow MJ, Speed TP (2002) Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments. Stat Sin 12:111–139
go back to reference Engel J, Blanchet L, Engelke UF, Wevers RA, Buydens LM (2014) Towards the disease biomarker in an individual patient using statistical health monitoring. PLoS One 9:e92452PubMedPubMedCentralCrossRef Engel J, Blanchet L, Engelke UF, Wevers RA, Buydens LM (2014) Towards the disease biomarker in an individual patient using statistical health monitoring. PLoS One 9:e92452PubMedPubMedCentralCrossRef
go back to reference Engel J, Blanchet L, Engelke UFH, Wevers RA, & Buydens LMC (2017) Sparse statistical health monitoring: A novel variable selection approach to diagnosis and follow-up of individual patients. Chemom Intell Lab Syst 164:83–93 Engel J, Blanchet L, Engelke UFH, Wevers RA, & Buydens LMC (2017) Sparse statistical health monitoring: A novel variable selection approach to diagnosis and follow-up of individual patients. Chemom Intell Lab Syst 164:83–93
go back to reference Fan TW, Lane AN, Higashi RM (2016) Stable isotope resolved metabolomics studies in ex vivo tissue slices. Bio Protoc 6(3). pii:e1730 Fan TW, Lane AN, Higashi RM (2016) Stable isotope resolved metabolomics studies in ex vivo tissue slices. Bio Protoc 6(3). pii:e1730
go back to reference Garcia-Alcalde F, Garcia-Lopez F, Dopazo J, Conesa A (2011) Paintomics: a web based tool for the joint visualization of transcriptomics and metabolomics data. Bioinformatics 27:137–139PubMedCrossRef Garcia-Alcalde F, Garcia-Lopez F, Dopazo J, Conesa A (2011) Paintomics: a web based tool for the joint visualization of transcriptomics and metabolomics data. Bioinformatics 27:137–139PubMedCrossRef
go back to reference Giacomoni F, Le Corguille G, Monsoor M et al (2015) Workflow4Metabolomics: a collaborative research infrastructure for computational metabolomics. Bioinformatics 31:1493–1495PubMedCrossRef Giacomoni F, Le Corguille G, Monsoor M et al (2015) Workflow4Metabolomics: a collaborative research infrastructure for computational metabolomics. Bioinformatics 31:1493–1495PubMedCrossRef
go back to reference Goodacre R, Broadhurst D, Smilde AK et al (2007) Proposed minimum reporting standards for data analysis in metabolomics. Metabolomics 3:231–241CrossRef Goodacre R, Broadhurst D, Smilde AK et al (2007) Proposed minimum reporting standards for data analysis in metabolomics. Metabolomics 3:231–241CrossRef
go back to reference Goodwin CR, Sherrod SD, Marasco CC et al (2014) Phenotypic mapping of metabolic profiles using self-organizing maps of high-dimensional mass spectrometry data. Anal Chem 86:6563–6571PubMedPubMedCentralCrossRef Goodwin CR, Sherrod SD, Marasco CC et al (2014) Phenotypic mapping of metabolic profiles using self-organizing maps of high-dimensional mass spectrometry data. Anal Chem 86:6563–6571PubMedPubMedCentralCrossRef
go back to reference Gowda H, Ivanisevic J, Johnson CH et al (2014) Interactive XCMS online: simplifying advanced metabolomic data processing and subsequent statistical analyses. Anal Chem 86:6931–6939PubMedPubMedCentralCrossRef Gowda H, Ivanisevic J, Johnson CH et al (2014) Interactive XCMS online: simplifying advanced metabolomic data processing and subsequent statistical analyses. Anal Chem 86:6931–6939PubMedPubMedCentralCrossRef
go back to reference Gromski PS, Muhamadali H, Ellis DI et al (2015) A tutorial review: Metabolomics and partial least squares-discriminant analysis – a marriage of convenience or a shotgun wedding. Anal Chim Acta 879:10–23PubMedCrossRef Gromski PS, Muhamadali H, Ellis DI et al (2015) A tutorial review: Metabolomics and partial least squares-discriminant analysis – a marriage of convenience or a shotgun wedding. Anal Chim Acta 879:10–23PubMedCrossRef
go back to reference Grun D, Kester L, van Oudenaarden A (2014) Validation of noise models for single-cell transcriptomics. Nat Meth 11:637–640CrossRef Grun D, Kester L, van Oudenaarden A (2014) Validation of noise models for single-cell transcriptomics. Nat Meth 11:637–640CrossRef
go back to reference Habchi B, Alves S, Jouan-Rimbaud Bouveresse D et al (2017) An innovative chemometric method for processing direct introduction high resolution mass spectrometry metabolomic data: independent component–discriminant analysis (IC–DA). Metabolomics 13:45CrossRef Habchi B, Alves S, Jouan-Rimbaud Bouveresse D et al (2017) An innovative chemometric method for processing direct introduction high resolution mass spectrometry metabolomic data: independent component–discriminant analysis (IC–DA). Metabolomics 13:45CrossRef
go back to reference Hartigan JA, Wong MA (1979) Algorithm AS 136: a K-means clustering algorithm. J R Stat Soc: Ser C: Appl Stat 28:100–108 Hartigan JA, Wong MA (1979) Algorithm AS 136: a K-means clustering algorithm. J R Stat Soc: Ser C: Appl Stat 28:100–108
go back to reference Hauschild AC, Frisch T, Baumbach JI, Baumbach J (2015) Carotta: revealing hidden confounder markers in metabolic breath profiles. Meta 5:344–363 Hauschild AC, Frisch T, Baumbach JI, Baumbach J (2015) Carotta: revealing hidden confounder markers in metabolic breath profiles. Meta 5:344–363
go back to reference Henricks WH, Karcher DS, Harrison JH et al (2016) Pathology informatics essentials for residents: a flexible informatics curriculum linked to accreditation Council for Graduate Medical Education milestones. J Pathol Inform 7:27PubMedPubMedCentralCrossRef Henricks WH, Karcher DS, Harrison JH et al (2016) Pathology informatics essentials for residents: a flexible informatics curriculum linked to accreditation Council for Graduate Medical Education milestones. J Pathol Inform 7:27PubMedPubMedCentralCrossRef
go back to reference Hermansson M, Uphoff A, Kakela R, Somerharju P (2005) Automated quantitative analysis of complex lipidomes by liquid chromatography/mass spectrometry. Anal Chem 77:2166–2175PubMedCrossRef Hermansson M, Uphoff A, Kakela R, Somerharju P (2005) Automated quantitative analysis of complex lipidomes by liquid chromatography/mass spectrometry. Anal Chem 77:2166–2175PubMedCrossRef
go back to reference Higashi RM, Fan TW, Lorkiewicz PK, Moseley HN, Lane AN (2014) Stable isotope Labeled tracers for metabolic pathway elucidation by GC-MS and FT-MS. Methods Mol Biol 1198:147–167PubMedPubMedCentralCrossRef Higashi RM, Fan TW, Lorkiewicz PK, Moseley HN, Lane AN (2014) Stable isotope Labeled tracers for metabolic pathway elucidation by GC-MS and FT-MS. Methods Mol Biol 1198:147–167PubMedPubMedCentralCrossRef
go back to reference Hoffman JM, Tran V, Wachtman LM, Green CL, Jones DP, Promislow DE (2016) A longitudinal analysis of the effects of age on the blood plasma metabolome in the common marmoset, Callithrix Jacchus. Exp Gerontol 76:17–24PubMedPubMedCentralCrossRef Hoffman JM, Tran V, Wachtman LM, Green CL, Jones DP, Promislow DE (2016) A longitudinal analysis of the effects of age on the blood plasma metabolome in the common marmoset, Callithrix Jacchus. Exp Gerontol 76:17–24PubMedPubMedCentralCrossRef
go back to reference Hotelling H (1933) Analysis of a complex of statistical variables into principal components. Warwick & York, Baltimore Hotelling H (1933) Analysis of a complex of statistical variables into principal components. Warwick & York, Baltimore
go back to reference Huang J-H, Fu L, Li B et al (2015) Distinguishing the serum metabolite profiles differences in breast cancer by gas chromatography mass spectrometry and random forest method. RSC Adv 5:58952–58958CrossRef Huang J-H, Fu L, Li B et al (2015) Distinguishing the serum metabolite profiles differences in breast cancer by gas chromatography mass spectrometry and random forest method. RSC Adv 5:58952–58958CrossRef
go back to reference Jewison T, Su Y, Disfany FM et al (2014) SMPDB 2.0: big improvements to the small molecule pathway database. Nucleic Acids Res 42:D478–D484PubMedCrossRef Jewison T, Su Y, Disfany FM et al (2014) SMPDB 2.0: big improvements to the small molecule pathway database. Nucleic Acids Res 42:D478–D484PubMedCrossRef
go back to reference Jin R, Banton S, Tran VT et al (2016) Amino acid metabolism is altered in adolescents with nonalcoholic fatty liver disease-an untargeted, high resolution Metabolomics study. J Pediatr 172:14–19.e15PubMedPubMedCentralCrossRef Jin R, Banton S, Tran VT et al (2016) Amino acid metabolism is altered in adolescents with nonalcoholic fatty liver disease-an untargeted, high resolution Metabolomics study. J Pediatr 172:14–19.e15PubMedPubMedCentralCrossRef
go back to reference Johnsen LG, Skou PB, Khakimov B, Bro R (2017) Gas chromatography mass spectrometry data processing made easy. J Chromatogr A 1503:57–64PubMedCrossRef Johnsen LG, Skou PB, Khakimov B, Bro R (2017) Gas chromatography mass spectrometry data processing made easy. J Chromatogr A 1503:57–64PubMedCrossRef
go back to reference Kamburov A, Cavill R, Ebbels TMD, Herwig R, Keun HC (2011) Integrated pathway-level analysis of transcriptomics and metabolomics data with IMPaLA. Bioinformatics 27:2917–2918PubMedCrossRef Kamburov A, Cavill R, Ebbels TMD, Herwig R, Keun HC (2011) Integrated pathway-level analysis of transcriptomics and metabolomics data with IMPaLA. Bioinformatics 27:2917–2918PubMedCrossRef
go back to reference Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M (2016) KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 44:D457–D462PubMedCrossRef Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M (2016) KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 44:D457–D462PubMedCrossRef
go back to reference Kankainen M, Gopalacharyulu P, Holm L, Oresic M (2011) MPEA--metabolite pathway enrichment analysis. Bioinformatics 27:1878–1879PubMedCrossRef Kankainen M, Gopalacharyulu P, Holm L, Oresic M (2011) MPEA--metabolite pathway enrichment analysis. Bioinformatics 27:1878–1879PubMedCrossRef
go back to reference Karnovsky A, Weymouth T, Hull T et al (2012) Metscape 2 bioinformatics tool for the analysis and visualization of metabolomics and gene expression data. Bioinformatics 28:373–380PubMedCrossRef Karnovsky A, Weymouth T, Hull T et al (2012) Metscape 2 bioinformatics tool for the analysis and visualization of metabolomics and gene expression data. Bioinformatics 28:373–380PubMedCrossRef
go back to reference Kelder T, van Iersel MP, Hanspers K et al (2012) WikiPathways: building research communities on biological pathways. Nucleic Acids Res 40:D1301–D1307PubMedCrossRef Kelder T, van Iersel MP, Hanspers K et al (2012) WikiPathways: building research communities on biological pathways. Nucleic Acids Res 40:D1301–D1307PubMedCrossRef
go back to reference Kell DB, Goodacre R (2014) Metabolomics and systems pharmacology: why and how to model the human metabolic network for drug discovery. Drug Discov Today 19:171–182PubMedPubMedCentralCrossRef Kell DB, Goodacre R (2014) Metabolomics and systems pharmacology: why and how to model the human metabolic network for drug discovery. Drug Discov Today 19:171–182PubMedPubMedCentralCrossRef
go back to reference Kim IY, Suh SH, Lee IK, Wolfe RR (2016) Applications of stable, nonradioactive isotope tracers in in vivo human metabolic research. Exp Mol Med 48:e203PubMedPubMedCentralCrossRef Kim IY, Suh SH, Lee IK, Wolfe RR (2016) Applications of stable, nonradioactive isotope tracers in in vivo human metabolic research. Exp Mol Med 48:e203PubMedPubMedCentralCrossRef
go back to reference Kirwan J, Broadhurst D, Davidson R, Viant M (2013) Characterising and correcting batch variation in an automated direct infusion mass spectrometry (DIMS) metabolomics workflow. Anal Bioanal Chem 405:5147–5157PubMedCrossRef Kirwan J, Broadhurst D, Davidson R, Viant M (2013) Characterising and correcting batch variation in an automated direct infusion mass spectrometry (DIMS) metabolomics workflow. Anal Bioanal Chem 405:5147–5157PubMedCrossRef
go back to reference Kohler I, Verhoeven A, Derks RJ, Giera M (2016) Analytical pitfalls and challenges in clinical metabolomics. Bioanalysis 8:1509–1532PubMedCrossRef Kohler I, Verhoeven A, Derks RJ, Giera M (2016) Analytical pitfalls and challenges in clinical metabolomics. Bioanalysis 8:1509–1532PubMedCrossRef
go back to reference Krumsiek J, Suhre K, Illig T, Adamski J, Theis FJ (2011) Gaussian graphical modeling reconstructs pathway reactions from high-throughput metabolomics data. BMC Syst Biol 5:21PubMedPubMedCentralCrossRef Krumsiek J, Suhre K, Illig T, Adamski J, Theis FJ (2011) Gaussian graphical modeling reconstructs pathway reactions from high-throughput metabolomics data. BMC Syst Biol 5:21PubMedPubMedCentralCrossRef
go back to reference Kuhl C, Tautenhahn R, Bottcher C, Larson TR, Neumann S (2012) CAMERA: an integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets. Anal Chem 84:283PubMedCrossRef Kuhl C, Tautenhahn R, Bottcher C, Larson TR, Neumann S (2012) CAMERA: an integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets. Anal Chem 84:283PubMedCrossRef
go back to reference Kuo T-C, Tian T-F, Tseng YJ (2013) 3Omics: a web-based systems biology tool for analysis, integration and visualization of human transcriptomic, proteomic and metabolomic data. BMC Syst Biol 7:64PubMedPubMedCentralCrossRef Kuo T-C, Tian T-F, Tseng YJ (2013) 3Omics: a web-based systems biology tool for analysis, integration and visualization of human transcriptomic, proteomic and metabolomic data. BMC Syst Biol 7:64PubMedPubMedCentralCrossRef
go back to reference Lanpher B, Brunetti-Pierri N, Lee B (2006) Inborn errors of metabolism: the flux from Mendelian to complex diseases. Nat Rev Genet 7:449–460PubMedCrossRef Lanpher B, Brunetti-Pierri N, Lee B (2006) Inborn errors of metabolism: the flux from Mendelian to complex diseases. Nat Rev Genet 7:449–460PubMedCrossRef
go back to reference Leader DP, Burgess K, Creek D, Barrett MP (2011) Pathos: a web facility that uses metabolic maps to display experimental changes in metabolites identified by mass spectrometry. Rapid Commun Mass Spectrom 25:3422–3426PubMedPubMedCentralCrossRef Leader DP, Burgess K, Creek D, Barrett MP (2011) Pathos: a web facility that uses metabolic maps to display experimental changes in metabolites identified by mass spectrometry. Rapid Commun Mass Spectrom 25:3422–3426PubMedPubMedCentralCrossRef
go back to reference Lee J, Park J, Lim MS et al (2012) Quantile normalization approach for liquid chromatography-mass spectrometry-based metabolomic data from healthy human volunteers. Anal Sci 28:801–805PubMedCrossRef Lee J, Park J, Lim MS et al (2012) Quantile normalization approach for liquid chromatography-mass spectrometry-based metabolomic data from healthy human volunteers. Anal Sci 28:801–805PubMedCrossRef
go back to reference Levin N, Salek RM, Steinbeck C (2016) From databases to big data, chap. 11. In: Metabolic phenotyping in personalized and public healthcare. Academic, Boston, p 317–331 Levin N, Salek RM, Steinbeck C (2016) From databases to big data, chap. 11. In: Metabolic phenotyping in personalized and public healthcare. Academic, Boston, p 317–331
go back to reference Li X, Hansen J, Zhao X et al (2012) Independent component analysis in non-hypothesis driven metabolomics: improvement of pattern discovery and simplification of biological data interpretation demonstrated with plasma samples of exercising humans. J Chromatogr B 910:156–162CrossRef Li X, Hansen J, Zhao X et al (2012) Independent component analysis in non-hypothesis driven metabolomics: improvement of pattern discovery and simplification of biological data interpretation demonstrated with plasma samples of exercising humans. J Chromatogr B 910:156–162CrossRef
go back to reference Li B, Tang J, Yang Q et al (2016) Performance evaluation and online realization of data-driven normalization methods used in LC/MS based untargeted Metabolomics analysis. Sci Rep 6:38881PubMedPubMedCentralCrossRef Li B, Tang J, Yang Q et al (2016) Performance evaluation and online realization of data-driven normalization methods used in LC/MS based untargeted Metabolomics analysis. Sci Rep 6:38881PubMedPubMedCentralCrossRef
go back to reference Lin X, Wang Q, Yin P et al (2011) A method for handling metabonomics data from liquid chromatography/mass spectrometry: combinational use of support vector machine recursive feature elimination, genetic algorithm and random forest for feature selection. Metabolomics 7:549–558CrossRef Lin X, Wang Q, Yin P et al (2011) A method for handling metabonomics data from liquid chromatography/mass spectrometry: combinational use of support vector machine recursive feature elimination, genetic algorithm and random forest for feature selection. Metabolomics 7:549–558CrossRef
go back to reference Liu W, Bai X, Liu Y et al (2015) Topologically inferring pathway activity toward precise cancer classification via integrating genomic and metabolomic data: prostate cancer as a case. Sci Rep 5:13192PubMedPubMedCentralCrossRef Liu W, Bai X, Liu Y et al (2015) Topologically inferring pathway activity toward precise cancer classification via integrating genomic and metabolomic data: prostate cancer as a case. Sci Rep 5:13192PubMedPubMedCentralCrossRef
go back to reference Liu Y, Smirnov K, Lucio M, Gougeon RD, Alexandre H, Schmitt-Kopplin P (2016) MetICA: independent component analysis for high-resolution mass-spectrometry based non-targeted metabolomics. BMC Bioinf 17:1–14CrossRef Liu Y, Smirnov K, Lucio M, Gougeon RD, Alexandre H, Schmitt-Kopplin P (2016) MetICA: independent component analysis for high-resolution mass-spectrometry based non-targeted metabolomics. BMC Bioinf 17:1–14CrossRef
go back to reference Luscombe NM, Greenbaum D, Gerstein M (2001) What is bioinformatics? A proposed definition and overview of the field. Methods Inf Med 40:346–358PubMedCrossRef Luscombe NM, Greenbaum D, Gerstein M (2001) What is bioinformatics? A proposed definition and overview of the field. Methods Inf Med 40:346–358PubMedCrossRef
go back to reference Mak TD, Laiakis EC, Goudarzi M, Fornace AJ (2015) Selective paired ion contrast analysis: a novel algorithm for analyzing Postprocessed LC-MS Metabolomics data possessing high experimental noise. Anal Chem 87:3177–3186PubMedPubMedCentralCrossRef Mak TD, Laiakis EC, Goudarzi M, Fornace AJ (2015) Selective paired ion contrast analysis: a novel algorithm for analyzing Postprocessed LC-MS Metabolomics data possessing high experimental noise. Anal Chem 87:3177–3186PubMedPubMedCentralCrossRef
go back to reference Manwaring V, Boutin M, Auray-Blais C (2013) A metabolomic study to identify new globotriaosylceramide-related biomarkers in the plasma of Fabry disease patients. Anal Chem 85:9039–9048PubMedCrossRef Manwaring V, Boutin M, Auray-Blais C (2013) A metabolomic study to identify new globotriaosylceramide-related biomarkers in the plasma of Fabry disease patients. Anal Chem 85:9039–9048PubMedCrossRef
go back to reference Misra BB, van der Hooft JJ (2016) Updates in metabolomics tools and resources: 2014-2015. Electrophoresis 37:86–110PubMedCrossRef Misra BB, van der Hooft JJ (2016) Updates in metabolomics tools and resources: 2014-2015. Electrophoresis 37:86–110PubMedCrossRef
go back to reference Monakhova YB, Godelmann R, Kuballa T, Mushtakova SP, Rutledge DN (2015) Independent components analysis to increase efficiency of discriminant analysis methods (FDA and LDA): application to NMR fingerprinting of wine. Talanta 141:60–65PubMedCrossRef Monakhova YB, Godelmann R, Kuballa T, Mushtakova SP, Rutledge DN (2015) Independent components analysis to increase efficiency of discriminant analysis methods (FDA and LDA): application to NMR fingerprinting of wine. Talanta 141:60–65PubMedCrossRef
go back to reference Offroy M, Duponchel L (2016) Topological data analysis: a promising big data exploration tool in biology, analytical chemistry and physical chemistry. Anal Chim Acta 910:1–11PubMedCrossRef Offroy M, Duponchel L (2016) Topological data analysis: a promising big data exploration tool in biology, analytical chemistry and physical chemistry. Anal Chim Acta 910:1–11PubMedCrossRef
go back to reference Ombrone D, Giocaliere E, Forni G, Malvagia S, la Marca G (2016) Expanded newborn screening by mass spectrometry: new tests, future perspectives. Mass Spectrom Rev 35:71–84PubMedCrossRef Ombrone D, Giocaliere E, Forni G, Malvagia S, la Marca G (2016) Expanded newborn screening by mass spectrometry: new tests, future perspectives. Mass Spectrom Rev 35:71–84PubMedCrossRef
go back to reference Ouyang M, Zhang Z, Chen C, Liu X, Liang Y (2014) Application of sparse linear discriminant analysis for metabolomics data. Anal Methods 6:9037–9044CrossRef Ouyang M, Zhang Z, Chen C, Liu X, Liang Y (2014) Application of sparse linear discriminant analysis for metabolomics data. Anal Methods 6:9037–9044CrossRef
go back to reference Perez-Riverol Y, Bai M, da Veiga Leprevost F et al (2017) Discovering and linking public omics data sets using the Omics discovery index. Nat Biotechnol 35:406–409PubMedPubMedCentralCrossRef Perez-Riverol Y, Bai M, da Veiga Leprevost F et al (2017) Discovering and linking public omics data sets using the Omics discovery index. Nat Biotechnol 35:406–409PubMedPubMedCentralCrossRef
go back to reference Pirhaji L, Milani P, Leidl M et al (2016) Revealing disease-associated pathways by network integration of untargeted metabolomics. Nat Methods 13:770–776PubMedPubMedCentralCrossRef Pirhaji L, Milani P, Leidl M et al (2016) Revealing disease-associated pathways by network integration of untargeted metabolomics. Nat Methods 13:770–776PubMedPubMedCentralCrossRef
go back to reference Rafiei A, Sleno L (2015) Comparison of peak-picking workflows for untargeted liquid chromatography/high-resolution mass spectrometry metabolomics data analysis. Rapid Commun Mass Spectrom 29:119–127PubMedCrossRef Rafiei A, Sleno L (2015) Comparison of peak-picking workflows for untargeted liquid chromatography/high-resolution mass spectrometry metabolomics data analysis. Rapid Commun Mass Spectrom 29:119–127PubMedCrossRef
go back to reference Ren S, Hinzman A, Kang E, Szczesniak R, Lu L (2015) Computational and statistical analysis of metabolomics data. Metabolomics 11:1492–1513CrossRef Ren S, Hinzman A, Kang E, Szczesniak R, Lu L (2015) Computational and statistical analysis of metabolomics data. Metabolomics 11:1492–1513CrossRef
go back to reference Ritchie MD, Holzinger ER, Li R, Pendergrass SA, Kim D (2015) Methods of integrating data to uncover genotype-phenotype interactions. Nat Rev Genet 16:85–97PubMedCrossRef Ritchie MD, Holzinger ER, Li R, Pendergrass SA, Kim D (2015) Methods of integrating data to uncover genotype-phenotype interactions. Nat Rev Genet 16:85–97PubMedCrossRef
go back to reference Rohn H, Junker A, Hartmann A et al (2012) VANTED v2: a framework for systems biology applications. BMC Syst Biol 6:1–13CrossRef Rohn H, Junker A, Hartmann A et al (2012) VANTED v2: a framework for systems biology applications. BMC Syst Biol 6:1–13CrossRef
go back to reference Romero P, Wagg J, Green ML, Kaiser D, Krummenacker M, Karp PD (2005) Computational prediction of human metabolic pathways from the complete human genome. Genome Biol 6:R2–R2PubMedCrossRef Romero P, Wagg J, Green ML, Kaiser D, Krummenacker M, Karp PD (2005) Computational prediction of human metabolic pathways from the complete human genome. Genome Biol 6:R2–R2PubMedCrossRef
go back to reference Saeys Y, Inza I, Larrañaga P (2007) A review of feature selection techniques in bioinformatics. Bioinformatics 23:2507–2517PubMedCrossRef Saeys Y, Inza I, Larrañaga P (2007) A review of feature selection techniques in bioinformatics. Bioinformatics 23:2507–2517PubMedCrossRef
go back to reference Sahoo S, Franzson L, Jonsson JJ, Thiele I (2012) A compendium of inborn errors of metabolism mapped onto the human metabolic network. Mol BioSyst 8:2545–2558PubMedCrossRef Sahoo S, Franzson L, Jonsson JJ, Thiele I (2012) A compendium of inborn errors of metabolism mapped onto the human metabolic network. Mol BioSyst 8:2545–2558PubMedCrossRef
go back to reference Scholz M, Gatzek S, Sterling A, Fiehn O, Selbig J (2004) Metabolite fingerprinting: detecting biological features by independent component analysis. Bioinformatics 20:2447–2454PubMedCrossRef Scholz M, Gatzek S, Sterling A, Fiehn O, Selbig J (2004) Metabolite fingerprinting: detecting biological features by independent component analysis. Bioinformatics 20:2447–2454PubMedCrossRef
go back to reference Shen X, Gong X, Cai Y et al (2016) Normalization and integration of large-scale metabolomics data using support vector regression. Metabolomics 12:89CrossRef Shen X, Gong X, Cai Y et al (2016) Normalization and integration of large-scale metabolomics data using support vector regression. Metabolomics 12:89CrossRef
go back to reference Silva RR, Jourdan F, Salvanha DM et al (2014) ProbMetab: an R package for Bayesian probabilistic annotation of LC-MS-based metabolomics. Bioinformatics 30:1336PubMedPubMedCentralCrossRef Silva RR, Jourdan F, Salvanha DM et al (2014) ProbMetab: an R package for Bayesian probabilistic annotation of LC-MS-based metabolomics. Bioinformatics 30:1336PubMedPubMedCentralCrossRef
go back to reference Smith CA, Want EJ, O’Maille G, Abagyan R, Siuzdak G (2006) XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem 78:779PubMedCrossRef Smith CA, Want EJ, O’Maille G, Abagyan R, Siuzdak G (2006) XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem 78:779PubMedCrossRef
go back to reference Smith R, Ventura D, Prince JT (2013) LC-MS alignment in theory and practice: a comprehensive algorithmic review. Brief Bioinform 16:104–117PubMedCrossRef Smith R, Ventura D, Prince JT (2013) LC-MS alignment in theory and practice: a comprehensive algorithmic review. Brief Bioinform 16:104–117PubMedCrossRef
go back to reference Smolinska A, Blanchet L, Buydens LM, Wijmenga SS (2012) NMR and pattern recognition methods in metabolomics: from data acquisition to biomarker discovery: a review. Anal Chim Acta 750:82–97PubMedCrossRef Smolinska A, Blanchet L, Buydens LM, Wijmenga SS (2012) NMR and pattern recognition methods in metabolomics: from data acquisition to biomarker discovery: a review. Anal Chim Acta 750:82–97PubMedCrossRef
go back to reference Suhre K, Raffler J, Kastenmüller G (2016) Biochemical insights from population studies with genetics and metabolomics. Arch Biochem Biophys 589:168–176PubMedCrossRef Suhre K, Raffler J, Kastenmüller G (2016) Biochemical insights from population studies with genetics and metabolomics. Arch Biochem Biophys 589:168–176PubMedCrossRef
go back to reference Sysi-Aho M, Katajamaa M, Yetukuri L, Oresic M (2007) Normalization method for metabolomics data using optimal selection of multiple internal standards. BMC Bioinf 8:93CrossRef Sysi-Aho M, Katajamaa M, Yetukuri L, Oresic M (2007) Normalization method for metabolomics data using optimal selection of multiple internal standards. BMC Bioinf 8:93CrossRef
go back to reference Szymanska E, Davies A, Buydens L (2016) Chemometrics for ion mobility spectrometry data: recent advances and future prospects. Analyst 141(20):5689–5708PubMedCrossRef Szymanska E, Davies A, Buydens L (2016) Chemometrics for ion mobility spectrometry data: recent advances and future prospects. Analyst 141(20):5689–5708PubMedCrossRef
go back to reference Tautenhahn R, Patti GJ, Rinehart D, Siuzdak G (2012) XCMS online: a web-based platform to process untargeted metabolomic data. Anal Chem 84:5035–5039PubMedPubMedCentralCrossRef Tautenhahn R, Patti GJ, Rinehart D, Siuzdak G (2012) XCMS online: a web-based platform to process untargeted metabolomic data. Anal Chem 84:5035–5039PubMedPubMedCentralCrossRef
go back to reference Tebani A, Afonso C, Marret S, Bekri S (2016) Omics-based strategies in precision medicine: toward a paradigm shift in inborn errors of metabolism investigations. Int J Mol Sci 17(9):1555PubMedCentralCrossRef Tebani A, Afonso C, Marret S, Bekri S (2016) Omics-based strategies in precision medicine: toward a paradigm shift in inborn errors of metabolism investigations. Int J Mol Sci 17(9):1555PubMedCentralCrossRef
go back to reference Therrell BL, Padilla CD, Loeber JG et al (2015) Current status of newborn screening worldwide: 2015. Semin Perinatol 39:171–187PubMedCrossRef Therrell BL, Padilla CD, Loeber JG et al (2015) Current status of newborn screening worldwide: 2015. Semin Perinatol 39:171–187PubMedCrossRef
go back to reference Thiele I, Swainston N, Fleming RM et al (2013) A community-driven global reconstruction of human metabolism. Nat Biotechnol 31:419–425PubMedCrossRef Thiele I, Swainston N, Fleming RM et al (2013) A community-driven global reconstruction of human metabolism. Nat Biotechnol 31:419–425PubMedCrossRef
go back to reference Trygg J, Wold S (2002) Orthogonal projections to latent structures (O-PLS). J Chemom 16:119–128CrossRef Trygg J, Wold S (2002) Orthogonal projections to latent structures (O-PLS). J Chemom 16:119–128CrossRef
go back to reference Tsugawa H, Arita M, Kanazawa M, Ogiwara A, Bamba T, Fukusaki E (2013) MRMPROBS: a data assessment and metabolite identification tool for large-scale multiple reaction monitoring based widely targeted metabolomics. Anal Chem 85:5191–5199PubMedCrossRef Tsugawa H, Arita M, Kanazawa M, Ogiwara A, Bamba T, Fukusaki E (2013) MRMPROBS: a data assessment and metabolite identification tool for large-scale multiple reaction monitoring based widely targeted metabolomics. Anal Chem 85:5191–5199PubMedCrossRef
go back to reference Tsugawa H, Ohta E, Izumi Y et al (2014) MRM-DIFF: data processing strategy for differential analysis in large scale MRM-based lipidomics studies. Front Genet 5:471PubMed Tsugawa H, Ohta E, Izumi Y et al (2014) MRM-DIFF: data processing strategy for differential analysis in large scale MRM-based lipidomics studies. Front Genet 5:471PubMed
go back to reference Valcarcel B, Wurtz P, Seichalbasatena NK et al (2011) A differential network approach to exploring differences between biological states: an application to prediabetes. PLoS One 6:e24702PubMedPubMedCentralCrossRef Valcarcel B, Wurtz P, Seichalbasatena NK et al (2011) A differential network approach to exploring differences between biological states: an application to prediabetes. PLoS One 6:e24702PubMedPubMedCentralCrossRef
go back to reference van den Berg RA, Hoefsloot HC, Westerhuis JA, Smilde AK, van der Werf MJ (2006) Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics 7:142PubMedPubMedCentralCrossRef van den Berg RA, Hoefsloot HC, Westerhuis JA, Smilde AK, van der Werf MJ (2006) Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics 7:142PubMedPubMedCentralCrossRef
go back to reference van Karnebeek CD, Bonafé L, Wen X-Y et al (2016) NANS-mediated synthesis of sialic acid is required for brain and skeletal development. Nat Genet 48(7):777–784PubMedCrossRef van Karnebeek CD, Bonafé L, Wen X-Y et al (2016) NANS-mediated synthesis of sialic acid is required for brain and skeletal development. Nat Genet 48(7):777–784PubMedCrossRef
go back to reference Vettukattil R (2015) Preprocessing of raw Metabonomic data. In: Bjerrum JT (ed) Metabonomics: methods and protocols. Springer, New York, pp 123–136 Vettukattil R (2015) Preprocessing of raw Metabonomic data. In: Bjerrum JT (ed) Metabonomics: methods and protocols. Springer, New York, pp 123–136
go back to reference Wang WX, Zhou HH, Lin H et al (2003) Quantification of proteins and metabolites by mass spectrometry without isotopic labeling or spiked standards. Anal Chem 75:4818–4826PubMedCrossRef Wang WX, Zhou HH, Lin H et al (2003) Quantification of proteins and metabolites by mass spectrometry without isotopic labeling or spiked standards. Anal Chem 75:4818–4826PubMedCrossRef
go back to reference Wang G, Ding Q, Hou Z (2008) Independent component analysis and its applications in signal processing for analytical chemistry. TrAC Trends Anal Chem 27:368–376CrossRef Wang G, Ding Q, Hou Z (2008) Independent component analysis and its applications in signal processing for analytical chemistry. TrAC Trends Anal Chem 27:368–376CrossRef
go back to reference Wanichthanarak K, Fan S, Grapov D, Barupal DK, Fiehn O (2017) Metabox: a toolbox for Metabolomic data analysis, interpretation and integrative exploration. PLoS One 12:e0171046PubMedPubMedCentralCrossRef Wanichthanarak K, Fan S, Grapov D, Barupal DK, Fiehn O (2017) Metabox: a toolbox for Metabolomic data analysis, interpretation and integrative exploration. PLoS One 12:e0171046PubMedPubMedCentralCrossRef
go back to reference Westad F, Marini F (2015) Validation of chemometric models – a tutorial. Anal Chim Acta 893:14–24PubMedCrossRef Westad F, Marini F (2015) Validation of chemometric models – a tutorial. Anal Chim Acta 893:14–24PubMedCrossRef
go back to reference Winkler R (2015) An evolving computational platform for biological mass spectrometry: workflows, statistics and data mining with MASSyPup64. PeerJ 3:e1401PubMedPubMedCentralCrossRef Winkler R (2015) An evolving computational platform for biological mass spectrometry: workflows, statistics and data mining with MASSyPup64. PeerJ 3:e1401PubMedPubMedCentralCrossRef
go back to reference Winter G, Kromer JO (2013) Fluxomics — connecting ‘omics analysis and phenotypes. Environ Microbiol 15:1901–1916PubMedCrossRef Winter G, Kromer JO (2013) Fluxomics — connecting ‘omics analysis and phenotypes. Environ Microbiol 15:1901–1916PubMedCrossRef
go back to reference Wishart DS, Jewison T, Guo AC et al (2013) HMDB 3.0--the human Metabolome database in 2013. Nucleic Acids Res 41:D801–D807PubMedCrossRef Wishart DS, Jewison T, Guo AC et al (2013) HMDB 3.0--the human Metabolome database in 2013. Nucleic Acids Res 41:D801–D807PubMedCrossRef
go back to reference Wiwie C, Baumbach J, Rottger R (2015) Comparing the performance of biomedical clustering methods. Nat Methods 12:1033–1038PubMedCrossRef Wiwie C, Baumbach J, Rottger R (2015) Comparing the performance of biomedical clustering methods. Nat Methods 12:1033–1038PubMedCrossRef
go back to reference Wold S, Sjöström M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemom Intell Lab Syst 58:109–130CrossRef Wold S, Sjöström M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemom Intell Lab Syst 58:109–130CrossRef
go back to reference Wrzodek C, Eichner J, Büchel F, Zell A (2013) InCroMAP: integrated analysis of cross-platform microarray and pathway data. Bioinformatics 29:506–508PubMedCrossRef Wrzodek C, Eichner J, Büchel F, Zell A (2013) InCroMAP: integrated analysis of cross-platform microarray and pathway data. Bioinformatics 29:506–508PubMedCrossRef
go back to reference Wu Y, Li L (2016) Sample normalization methods in quantitative metabolomics. J Chromatogr A 1430:80–95PubMedCrossRef Wu Y, Li L (2016) Sample normalization methods in quantitative metabolomics. J Chromatogr A 1430:80–95PubMedCrossRef
go back to reference Xia J, Wishart DS (2010) MSEA: a web-based tool to identify biologically meaningful patterns in quantitative metabolomic data. Nucleic Acids Res 38:W71–W77PubMedPubMedCentralCrossRef Xia J, Wishart DS (2010) MSEA: a web-based tool to identify biologically meaningful patterns in quantitative metabolomic data. Nucleic Acids Res 38:W71–W77PubMedPubMedCentralCrossRef
go back to reference Yi L, Dong N, Yun Y et al (2016) Chemometric methods in data processing of mass spectrometry-based metabolomics: a review. Anal Chim Acta 914:17–34PubMedCrossRef Yi L, Dong N, Yun Y et al (2016) Chemometric methods in data processing of mass spectrometry-based metabolomics: a review. Anal Chim Acta 914:17–34PubMedCrossRef
Metadata
Title
Advances in metabolome information retrieval: turning chemistry into biology. Part II: biological information recovery
Authors
Abdellah Tebani
Carlos Afonso
Soumeya Bekri
Publication date
01-05-2018
Publisher
Springer Netherlands
Published in
Journal of Inherited Metabolic Disease / Issue 3/2018
Print ISSN: 0141-8955
Electronic ISSN: 1573-2665
DOI
https://doi.org/10.1007/s10545-017-0080-0

Other articles of this Issue 3/2018

Journal of Inherited Metabolic Disease 3/2018 Go to the issue