Skip to main content
Top
Published in: Journal of Inherited Metabolic Disease 6/2015

01-11-2015 | Original Article

Secondary NAD+ deficiency in the inherited defect of glutamine synthetase

Authors: Liyan Hu, Khalid Ibrahim, Martin Stucki, Michele Frapolli, Noora Shahbeck, Farrukh A. Chaudhry, Boris Görg, Dieter Häussinger, W. Todd Penberthy, Tawfeg Ben-Omran, Johannes Häberle

Published in: Journal of Inherited Metabolic Disease | Issue 6/2015

Login to get access

Abstract

Glutamine synthetase (GS) deficiency is an ultra-rare inborn error of amino acid metabolism that has been described in only three patients so far. The disease is characterized by neonatal onset of severe encephalopathy, low levels of glutamine in blood and cerebrospinal fluid, chronic moderate hyperammonemia, and an overall poor prognosis in the absence of an effective treatment. Recently, enteral glutamine supplementation was shown to be a safe and effective therapy for this disease but there are no data available on the long-term effects of this intervention. The amino acid glutamine, severely lacking in this disorder, is central to many metabolic pathways in the human organism and is involved in the synthesis of nicotinamide adenine dinucleotide (NAD+) starting from tryptophan or niacin as nicotinate, but not nicotinamide. Using fibroblasts, leukocytes, and immortalized peripheral blood stem cells (PBSC) from a patient carrying a GLUL gene point mutation associated with impaired GS activity, we tested whether glutamine deficiency in this patient results in NAD+ depletion and whether it can be rescued by supplementation with glutamine, nicotinamide or nicotinate. The present study shows that congenital GS deficiency is associated with NAD+ depletion in fibroblasts, leukocytes and PBSC, which may contribute to the severe clinical phenotype of the disease. Furthermore, it shows that NAD+ depletion can be rescued by nicotinamide supplementation in fibroblasts and leukocytes, which may open up potential therapeutic options for the treatment of this disorder.
Literature
go back to reference Abramson RD, Barbosa P, Kalumuck K, O’Brien WE (1991) Characterization of the human argininosuccinate lyase gene and analysis of exon skipping. Genomics 10:126–32CrossRefPubMed Abramson RD, Barbosa P, Kalumuck K, O’Brien WE (1991) Characterization of the human argininosuccinate lyase gene and analysis of exon skipping. Genomics 10:126–32CrossRefPubMed
go back to reference Bieganowski P, Pace HC, Brenner C (2003) Eukaryotic NAD+ synthetase Qns1 contains an essential, obligate intramolecular thiol glutamine amidotransferase domain related to nitrilase. J Biol Chem 278:33049–55CrossRefPubMed Bieganowski P, Pace HC, Brenner C (2003) Eukaryotic NAD+ synthetase Qns1 contains an essential, obligate intramolecular thiol glutamine amidotransferase domain related to nitrilase. J Biol Chem 278:33049–55CrossRefPubMed
go back to reference Boulland JL, Rafiki A, Levy LM, Storm-Mathisen J, Chaudhry FA (2003) Highly differential expression of SN1, a bidirectional glutamine transporter, in astroglia and endothelium in the developing rat brain. Glia 41:260–75CrossRefPubMed Boulland JL, Rafiki A, Levy LM, Storm-Mathisen J, Chaudhry FA (2003) Highly differential expression of SN1, a bidirectional glutamine transporter, in astroglia and endothelium in the developing rat brain. Glia 41:260–75CrossRefPubMed
go back to reference Bruzzone S, Fruscione F, Morando S, Ferrando T, Poggi A, Garuti A, D’Urso A, Selmo M, Benvenuto F, Cea M, Zoppoli G, Moran E, Soncini D, Ballestrero A, Sordat B, Patrone F, Mostoslavsky R, Uccelli A, Nencioni A (2009) Catastrophic NAD(+) depletion in activated T lymphocytes through Nampt inhibition reduces demyelination and disability in EAE. PLoS One 4 Bruzzone S, Fruscione F, Morando S, Ferrando T, Poggi A, Garuti A, D’Urso A, Selmo M, Benvenuto F, Cea M, Zoppoli G, Moran E, Soncini D, Ballestrero A, Sordat B, Patrone F, Mostoslavsky R, Uccelli A, Nencioni A (2009) Catastrophic NAD(+) depletion in activated T lymphocytes through Nampt inhibition reduces demyelination and disability in EAE. PLoS One 4
go back to reference Carlsson M, Carlsson A (1990) Interactions between glutamatergic and monoaminergic systems within the basal ganglia–implications for schizophrenia and Parkinson’s disease. Trends Neurosci 13:272–6CrossRefPubMed Carlsson M, Carlsson A (1990) Interactions between glutamatergic and monoaminergic systems within the basal ganglia–implications for schizophrenia and Parkinson’s disease. Trends Neurosci 13:272–6CrossRefPubMed
go back to reference Chaudhry FA, Reimer RJ, Krizaj D, Barber D, Storm-Mathisen J, Copenhagen DR, Edwards RH (1999) Molecular analysis of system N suggests novel physiological roles in nitrogen metabolism and synaptic transmission. Cell 99:769–80CrossRefPubMed Chaudhry FA, Reimer RJ, Krizaj D, Barber D, Storm-Mathisen J, Copenhagen DR, Edwards RH (1999) Molecular analysis of system N suggests novel physiological roles in nitrogen metabolism and synaptic transmission. Cell 99:769–80CrossRefPubMed
go back to reference Derouiche A, Ohm TG (1994) Glutamine synthetase immunoreactivity in the human hippocampus is lamina-specific. Neurosci Lett 165:179–82CrossRefPubMed Derouiche A, Ohm TG (1994) Glutamine synthetase immunoreactivity in the human hippocampus is lamina-specific. Neurosci Lett 165:179–82CrossRefPubMed
go back to reference Dorner M, Zucol F, Berger C, Byland R, Melroe GT, Bernasconi M, Speck RF, Nadal D (2008) Distinct ex vivo susceptibility of B-cell subsets to epstein-barr virus infection according to differentiation status and tissue origin. J Virol 82:4400–12PubMedCentralCrossRefPubMed Dorner M, Zucol F, Berger C, Byland R, Melroe GT, Bernasconi M, Speck RF, Nadal D (2008) Distinct ex vivo susceptibility of B-cell subsets to epstein-barr virus infection according to differentiation status and tissue origin. J Virol 82:4400–12PubMedCentralCrossRefPubMed
go back to reference Eid T, Thomas MJ, Spencer DD, Runden-Pran E, Lai JCK, Malthankar GV, Kim JH, Danbolt NC, Ottersen OP, de Lanerolle NC (2004) Loss of glutamine synthetase in the human epileptogenic hippocampus: possible mechanism for raised extracellular glutamate in mesial temporal lobe epilepsy. Lancet 363:28–37CrossRefPubMed Eid T, Thomas MJ, Spencer DD, Runden-Pran E, Lai JCK, Malthankar GV, Kim JH, Danbolt NC, Ottersen OP, de Lanerolle NC (2004) Loss of glutamine synthetase in the human epileptogenic hippocampus: possible mechanism for raised extracellular glutamate in mesial temporal lobe epilepsy. Lancet 363:28–37CrossRefPubMed
go back to reference Eisenberg D, Gill HS, Pfluegl GM, Rotstein SH (2000) Structure-function relationships of glutamine synthetases. Biochim Biophys Acta 1477:122–45CrossRefPubMed Eisenberg D, Gill HS, Pfluegl GM, Rotstein SH (2000) Structure-function relationships of glutamine synthetases. Biochim Biophys Acta 1477:122–45CrossRefPubMed
go back to reference Farrow NA, Kanamori K, Ross BD, Parivar F (1990) A N-15-Nmr study of cerebral, hepatic and renal nitrogen-metabolism in hyperammonaemic rats. Biochem J 270:473–481PubMedCentralCrossRefPubMed Farrow NA, Kanamori K, Ross BD, Parivar F (1990) A N-15-Nmr study of cerebral, hepatic and renal nitrogen-metabolism in hyperammonaemic rats. Biochem J 270:473–481PubMedCentralCrossRefPubMed
go back to reference Forget PP, van Oosterhout M, Bakker JA, Wermuth B, Vles JS, Spaapen LJ (1999) Partial N-acetyl-glutamate synthetase deficiency masquerading as a valproic acid-induced Reye-like syndrome. Acta Paediatr 88:1409–11CrossRefPubMed Forget PP, van Oosterhout M, Bakker JA, Wermuth B, Vles JS, Spaapen LJ (1999) Partial N-acetyl-glutamate synthetase deficiency masquerading as a valproic acid-induced Reye-like syndrome. Acta Paediatr 88:1409–11CrossRefPubMed
go back to reference Häberle J, Görg B, Rutsch F, Schmidt E, Toutain A, Benoist JF, Gelot A, Suc AL, Höhne W, Schliess F, Häussinger D, Koch HG (2005) Congenital glutamine deficiency with glutamine synthetase mutations. N Engl J Med 353:1926–33CrossRefPubMed Häberle J, Görg B, Rutsch F, Schmidt E, Toutain A, Benoist JF, Gelot A, Suc AL, Höhne W, Schliess F, Häussinger D, Koch HG (2005) Congenital glutamine deficiency with glutamine synthetase mutations. N Engl J Med 353:1926–33CrossRefPubMed
go back to reference Häberle J, Görg B, Toutain A, Rutsch F, Benoist JF, Gelot A, Suc AL, Koch HG, Schliess F, Häussinger D (2006a) Inborn error of amino acid synthesis: human glutamine synthetase deficiency. J Inherit Metab Dis 29:352–8CrossRefPubMed Häberle J, Görg B, Toutain A, Rutsch F, Benoist JF, Gelot A, Suc AL, Koch HG, Schliess F, Häussinger D (2006a) Inborn error of amino acid synthesis: human glutamine synthetase deficiency. J Inherit Metab Dis 29:352–8CrossRefPubMed
go back to reference Häberle J, Görg B, Toutain A, Schliess F, Häussinger D (2006b) Glutamine synthetase deficiency in the human. In: Häussinger D, Kircheis G, Schliess F (eds) Hepatic encephalopathy and nitrogen metabolism. Springer, Dordrecht, pp 336–348CrossRef Häberle J, Görg B, Toutain A, Schliess F, Häussinger D (2006b) Glutamine synthetase deficiency in the human. In: Häussinger D, Kircheis G, Schliess F (eds) Hepatic encephalopathy and nitrogen metabolism. Springer, Dordrecht, pp 336–348CrossRef
go back to reference Häberle J, Shahbeck N, Ibrahim K, Hoffmann GF, Ben-Omran T (2011) Natural course of glutamine synthetase deficiency in a 3 year old patient. Mol Genet Metab 103:89–91CrossRefPubMed Häberle J, Shahbeck N, Ibrahim K, Hoffmann GF, Ben-Omran T (2011) Natural course of glutamine synthetase deficiency in a 3 year old patient. Mol Genet Metab 103:89–91CrossRefPubMed
go back to reference Häberle J, Shahbeck N, Ibrahim K, Schmitt B, Scheer I, O’Gorman R, Chaudhry FA, Ben-Omran T (2012) Glutamine supplementation in a child with inherited GS deficiency improves the clinical status and partially corrects the peripheral and central amino acid imbalance. Orphanet J Rare Dis 7:48PubMedCentralCrossRefPubMed Häberle J, Shahbeck N, Ibrahim K, Schmitt B, Scheer I, O’Gorman R, Chaudhry FA, Ben-Omran T (2012) Glutamine supplementation in a child with inherited GS deficiency improves the clinical status and partially corrects the peripheral and central amino acid imbalance. Orphanet J Rare Dis 7:48PubMedCentralCrossRefPubMed
go back to reference Hara N, Yamada K, Terashima M, Osago H, Shimoyama M, Tsuchiya M (2003) Molecular identification of human glutamine- and ammonia-dependent NAD synthetases. Carbon-nitrogen hydrolase domain confers glutamine dependency. J Biol Chem 278:10914–21CrossRefPubMed Hara N, Yamada K, Terashima M, Osago H, Shimoyama M, Tsuchiya M (2003) Molecular identification of human glutamine- and ammonia-dependent NAD synthetases. Carbon-nitrogen hydrolase domain confers glutamine dependency. J Biol Chem 278:10914–21CrossRefPubMed
go back to reference Hardy J, Cowburn R (1987) Glutamate neurotoxicity and Alzheimer’s disease. Trends Neurosci 10:406CrossRef Hardy J, Cowburn R (1987) Glutamate neurotoxicity and Alzheimer’s disease. Trends Neurosci 10:406CrossRef
go back to reference Häussinger D (1998) Hepatic glutamine transport and metabolism. Adv Enzymol Relat Areas Mol Biol 72:43–86PubMed Häussinger D (1998) Hepatic glutamine transport and metabolism. Adv Enzymol Relat Areas Mol Biol 72:43–86PubMed
go back to reference Häussinger D, Sies R (1984) In: Häussinger D, Sies R (eds) Glutamine metabolism in mammalian tissues. Springer, Berlin, pp 3–15CrossRef Häussinger D, Sies R (1984) In: Häussinger D, Sies R (eds) Glutamine metabolism in mammalian tissues. Springer, Berlin, pp 3–15CrossRef
go back to reference Häussinger D, Laubenberger J, vom Dahl S, Ernst T, Bayer S, Langer M, Gerok W, Hennig J (1994) Proton magnetic resonance spectroscopy studies on human brain myo-inositol in hypo-osmolarity and hepatic encephalopathy. Gastroenterology 107:1475–80CrossRefPubMed Häussinger D, Laubenberger J, vom Dahl S, Ernst T, Bayer S, Langer M, Gerok W, Hennig J (1994) Proton magnetic resonance spectroscopy studies on human brain myo-inositol in hypo-osmolarity and hepatic encephalopathy. Gastroenterology 107:1475–80CrossRefPubMed
go back to reference He YJ, Hakvoort TBM, Kohler SE, Vermeulen JLM, de Waart DR, de Theije C, ten Have GAM, van Eijk HMH, Kunne C, Labruyere WT, Houten SM, Sokolovic M, Ruijter JM, Deutz NEP, Lamers WH (2010) Glutamine synthetase in muscle is required for glutamine production during fasting and extrahepatic ammonia detoxification. J Biol Chem 285:9516–9524PubMedCentralCrossRefPubMed He YJ, Hakvoort TBM, Kohler SE, Vermeulen JLM, de Waart DR, de Theije C, ten Have GAM, van Eijk HMH, Kunne C, Labruyere WT, Houten SM, Sokolovic M, Ruijter JM, Deutz NEP, Lamers WH (2010) Glutamine synthetase in muscle is required for glutamine production during fasting and extrahepatic ammonia detoxification. J Biol Chem 285:9516–9524PubMedCentralCrossRefPubMed
go back to reference Krajewski WW, Collins R, Holmberg-Schiavone L, Jones TA, Karlberg T, Mowbray SL (2008) Crystal structures of mammalian glutamine synthetases illustrate substrate-induced conformational changes and provide opportunities for drug and herbicide design. J Mol Biol 375:217–28CrossRefPubMed Krajewski WW, Collins R, Holmberg-Schiavone L, Jones TA, Karlberg T, Mowbray SL (2008) Crystal structures of mammalian glutamine synthetases illustrate substrate-induced conformational changes and provide opportunities for drug and herbicide design. J Mol Biol 375:217–28CrossRefPubMed
go back to reference Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–5CrossRefPubMed Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–5CrossRefPubMed
go back to reference Liaw SH, Kuo I, Eisenberg D (1995) Discovery of the ammonium substrate site on glutamine synthetase, a third cation binding site. Protein Sci 4:2358–65PubMedCentralCrossRefPubMed Liaw SH, Kuo I, Eisenberg D (1995) Discovery of the ammonium substrate site on glutamine synthetase, a third cation binding site. Protein Sci 4:2358–65PubMedCentralCrossRefPubMed
go back to reference Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–75PubMed Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–75PubMed
go back to reference Luo J, Nikolaev AY, Imai S, Chen D, Su F, Shiloh A, Guarente L, Gu W (2001) Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 107:137–48CrossRefPubMed Luo J, Nikolaev AY, Imai S, Chen D, Su F, Shiloh A, Guarente L, Gu W (2001) Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 107:137–48CrossRefPubMed
go back to reference Nissen-Meyer LS, Chaudhry FA (2013) Protein kinase C phosphorylates the system N glutamine transporter SN1 (Slc38a3) and regulates its membrane trafficking and degradation. Front Endocrinol (Lausanne) 4:138 Nissen-Meyer LS, Chaudhry FA (2013) Protein kinase C phosphorylates the system N glutamine transporter SN1 (Slc38a3) and regulates its membrane trafficking and degradation. Front Endocrinol (Lausanne) 4:138
go back to reference Spencer RL, Preiss J (1967) Biosynthesis of diphosphopyridine nucleotide. The purification and the properties of diphospyridine nucleotide synthetase from Escherichia coli b. J Biol Chem 242:385–92PubMed Spencer RL, Preiss J (1967) Biosynthesis of diphosphopyridine nucleotide. The purification and the properties of diphospyridine nucleotide synthetase from Escherichia coli b. J Biol Chem 242:385–92PubMed
go back to reference Tang K, Sham H, Hui E, Kirkland JB (2008) Niacin deficiency causes oxidative stress in rat bone marrow cells but not through decreased NADPH or glutathione status. J Nutr Biochem 19:746–753CrossRefPubMed Tang K, Sham H, Hui E, Kirkland JB (2008) Niacin deficiency causes oxidative stress in rat bone marrow cells but not through decreased NADPH or glutathione status. J Nutr Biochem 19:746–753CrossRefPubMed
go back to reference Tullius SG, Biefer HRC, Li SY, Trachtenberg AJ, Edtinger K, Quante M, Krenzien F, Uehara H, Yang XY, Kissick HT, Kuo WP, Ghiran I, de la Fuente MA, Arredouani MS, Camacho V, Tigges JC, Toxavidis V, El Fatimy R, Smith BD, Vasudevan A, ElKhal A (2014) NAD(+) protects against EAE by regulating CD4(+) T-cell differentiation. Nature Communications 5 Tullius SG, Biefer HRC, Li SY, Trachtenberg AJ, Edtinger K, Quante M, Krenzien F, Uehara H, Yang XY, Kissick HT, Kuo WP, Ghiran I, de la Fuente MA, Arredouani MS, Camacho V, Tigges JC, Toxavidis V, El Fatimy R, Smith BD, Vasudevan A, ElKhal A (2014) NAD(+) protects against EAE by regulating CD4(+) T-cell differentiation. Nature Communications 5
go back to reference Tumani H, Shen GQ, Peter JB (1995) Purification and immunocharacterization of human brain glutamine synthetase and its detection in cerebrospinal fluid and serum by a sandwich enzyme immunoassay. J Immunol Methods 188:155–63CrossRefPubMed Tumani H, Shen GQ, Peter JB (1995) Purification and immunocharacterization of human brain glutamine synthetase and its detection in cerebrospinal fluid and serum by a sandwich enzyme immunoassay. J Immunol Methods 188:155–63CrossRefPubMed
go back to reference Vermeulen T, Görg B, Vogl T, Wolf M, Varga G, Toutain A, Paul R, Schliess F, Häussinger D, Häberle J (2008) Glutamine synthetase is essential for proliferation of fetal skin fibroblasts. Arch Biochem Biophys 478:96–102CrossRefPubMed Vermeulen T, Görg B, Vogl T, Wolf M, Varga G, Toutain A, Paul R, Schliess F, Häussinger D, Häberle J (2008) Glutamine synthetase is essential for proliferation of fetal skin fibroblasts. Arch Biochem Biophys 478:96–102CrossRefPubMed
go back to reference Wu C (1977) Glutamine synthetase. IX. Purification and characterization of the enzyme from sheep spleen. Can J Biochem 55:332–9CrossRefPubMed Wu C (1977) Glutamine synthetase. IX. Purification and characterization of the enzyme from sheep spleen. Can J Biochem 55:332–9CrossRefPubMed
go back to reference Yamamoto H, Konno H, Yamamoto T, Ito K, Mizugaki M, Iwasaki Y (1987) Glutamine synthetase of the human brain: purification and characterization. J Neurochem 49:603–9CrossRefPubMed Yamamoto H, Konno H, Yamamoto T, Ito K, Mizugaki M, Iwasaki Y (1987) Glutamine synthetase of the human brain: purification and characterization. J Neurochem 49:603–9CrossRefPubMed
go back to reference Young AB, Greenamyre JT, Hollingsworth Z, Albin R, D’Amato C, Shoulson I, Penney JB (1988) NMDA receptor losses in putamen from patients with Huntington’s disease. Science 241:981–3CrossRefPubMed Young AB, Greenamyre JT, Hollingsworth Z, Albin R, D’Amato C, Shoulson I, Penney JB (1988) NMDA receptor losses in putamen from patients with Huntington’s disease. Science 241:981–3CrossRefPubMed
Metadata
Title
Secondary NAD+ deficiency in the inherited defect of glutamine synthetase
Authors
Liyan Hu
Khalid Ibrahim
Martin Stucki
Michele Frapolli
Noora Shahbeck
Farrukh A. Chaudhry
Boris Görg
Dieter Häussinger
W. Todd Penberthy
Tawfeg Ben-Omran
Johannes Häberle
Publication date
01-11-2015
Publisher
Springer Netherlands
Published in
Journal of Inherited Metabolic Disease / Issue 6/2015
Print ISSN: 0141-8955
Electronic ISSN: 1573-2665
DOI
https://doi.org/10.1007/s10545-015-9846-4

Other articles of this Issue 6/2015

Journal of Inherited Metabolic Disease 6/2015 Go to the issue