Skip to main content
Top
Published in: Journal of Inherited Metabolic Disease 1/2015

01-01-2015 | COMPLEX LIPIDS

Principles and practice of lipidomics

Authors: Frédéric M. Vaz, Mia Pras-Raves, Albert H. Bootsma, Antoine H. C. van Kampen

Published in: Journal of Inherited Metabolic Disease | Issue 1/2015

Login to get access

Abstract

The technical advances in mass spectrometry, particularly the development of (ultra)-high-resolution/mass accuracy measurement capabilities in combination with refinement of soft ionization techniques, have increased the application and success of lipidomics to answer biological questions in relation to lipid metabolism. Together with other omics technologies, lipidomics has become an important tool to practice systems biology as lipids comprise a very significant part of the metabolome and play pleiotropic roles in cellular functions. As an increasing number of disorders are linked to lipid metabolism, lipidomics is used to search for biomarkers, understand disease mechanism and follow the efficacy of therapeutic options. This review provides a first introduction to the major methodological strategies currently used for mass spectrometry-based lipidomics and associated data pre-processing and analysis.
Literature
go back to reference Abbott SK, Jenner AM, Mitchell TW, Brown SH, Halliday GM, Garner B (2013) An improved high-throughput lipid extraction method for the analysis of human brain lipids. Lipids 48:307–318PubMedCrossRef Abbott SK, Jenner AM, Mitchell TW, Brown SH, Halliday GM, Garner B (2013) An improved high-throughput lipid extraction method for the analysis of human brain lipids. Lipids 48:307–318PubMedCrossRef
go back to reference Barupal DK, Haldiya PK, Wohlgemuth G et al (2012) MetaMapp: mapping and visualizing metabolomic data by integrating information from biochemical pathways and chemical and mass spectral similarity. BMC Bioinforma 13:99CrossRef Barupal DK, Haldiya PK, Wohlgemuth G et al (2012) MetaMapp: mapping and visualizing metabolomic data by integrating information from biochemical pathways and chemical and mass spectral similarity. BMC Bioinforma 13:99CrossRef
go back to reference Berry KA, Hankin JA, Barkley RM, Spraggins JM, Caprioli RM, Murphy RC (2011) MALDI imaging of lipid biochemistry in tissues by mass spectrometry. Chem Rev 111:6491–6512PubMedCentralPubMedCrossRef Berry KA, Hankin JA, Barkley RM, Spraggins JM, Caprioli RM, Murphy RC (2011) MALDI imaging of lipid biochemistry in tissues by mass spectrometry. Chem Rev 111:6491–6512PubMedCentralPubMedCrossRef
go back to reference Bhattacharya SK (2013) Recent advances in shotgun lipidomics and their implication for vision research and ophthalmology. Curr Eye Res 38:417–427PubMedCrossRef Bhattacharya SK (2013) Recent advances in shotgun lipidomics and their implication for vision research and ophthalmology. Curr Eye Res 38:417–427PubMedCrossRef
go back to reference Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917PubMedCrossRef Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917PubMedCrossRef
go back to reference Boccard J, Veuthey JL, Rudaz S (2010) Knowledge discovery in metabolomics: an overview of MS data handling. J Sep Sci 33:290–304PubMedCrossRef Boccard J, Veuthey JL, Rudaz S (2010) Knowledge discovery in metabolomics: an overview of MS data handling. J Sep Sci 33:290–304PubMedCrossRef
go back to reference Box GEP, Hunter JS, Hunter WG (2005) Statistics for experimenters: design, innovation, and discovery.: Wiley, New York Box GEP, Hunter JS, Hunter WG (2005) Statistics for experimenters: design, innovation, and discovery.: Wiley, New York
go back to reference Brugger B (2014) Lipidomics: analysis of the lipid composition of cells and subcellular organelles by electrospray ionization mass spectrometry. Annu Rev Biochem 83:79–98PubMedCrossRef Brugger B (2014) Lipidomics: analysis of the lipid composition of cells and subcellular organelles by electrospray ionization mass spectrometry. Annu Rev Biochem 83:79–98PubMedCrossRef
go back to reference Byrdwell WC (2001) Atmospheric pressure chemical ionization mass spectrometry for analysis of lipids. Lipids 36:327–346PubMedCrossRef Byrdwell WC (2001) Atmospheric pressure chemical ionization mass spectrometry for analysis of lipids. Lipids 36:327–346PubMedCrossRef
go back to reference Chadeau-Hyam M, Campanella G, Jombart T et al (2013) Deciphering the complex: methodological overview of statistical models to derive OMICS-based biomarkers. Environ Mol Mutagen 54:542–557PubMedCrossRef Chadeau-Hyam M, Campanella G, Jombart T et al (2013) Deciphering the complex: methodological overview of statistical models to derive OMICS-based biomarkers. Environ Mol Mutagen 54:542–557PubMedCrossRef
go back to reference Ellis SR, Brown SH, In Het Panhuis M, Blanksby SJ, Mitchell TW (2013) Surface analysis of lipids by mass spectrometry: more than just imaging. Prog Lipid Res 52:329–353PubMedCrossRef Ellis SR, Brown SH, In Het Panhuis M, Blanksby SJ, Mitchell TW (2013) Surface analysis of lipids by mass spectrometry: more than just imaging. Prog Lipid Res 52:329–353PubMedCrossRef
go back to reference Fahy E, Subramaniam S, Murphy RC et al (2009) Update of the LIPID MAPS comprehensive classification system for lipids. J Lipid Res 50(Suppl):S9–14PubMedCentralPubMed Fahy E, Subramaniam S, Murphy RC et al (2009) Update of the LIPID MAPS comprehensive classification system for lipids. J Lipid Res 50(Suppl):S9–14PubMedCentralPubMed
go back to reference Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509PubMed Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509PubMed
go back to reference Fuchs B, Suss R, Schiller J (2010) An update of MALDI-TOF mass spectrometry in lipid research. Prog Lipid Res 49:450–475PubMedCrossRef Fuchs B, Suss R, Schiller J (2010) An update of MALDI-TOF mass spectrometry in lipid research. Prog Lipid Res 49:450–475PubMedCrossRef
go back to reference Han X, Yang K, Gross RW (2012) Multi-dimensional mass spectrometry-based shotgun lipidomics and novel strategies for lipidomic analyses. Mass Spectrom Rev 31:134–178PubMedCentralPubMedCrossRef Han X, Yang K, Gross RW (2012) Multi-dimensional mass spectrometry-based shotgun lipidomics and novel strategies for lipidomic analyses. Mass Spectrom Rev 31:134–178PubMedCentralPubMedCrossRef
go back to reference Hendriks MMWB, Eeuwijk FA, Jellema RH et al (2011) Data-processing strategies for metabolomics studies. TrAC Trends Anal Chem 30:1685–1698CrossRef Hendriks MMWB, Eeuwijk FA, Jellema RH et al (2011) Data-processing strategies for metabolomics studies. TrAC Trends Anal Chem 30:1685–1698CrossRef
go back to reference Hyotylainen T, Oresic M (2014) Systems biology strategies to study lipidomes in health and disease. Prog Lipid Res 55C:43–60CrossRef Hyotylainen T, Oresic M (2014) Systems biology strategies to study lipidomes in health and disease. Prog Lipid Res 55C:43–60CrossRef
go back to reference Jung HR, Sylvanne T, Koistinen KM, Tarasov K, Kauhanen D, Ekroos K (2011) High throughput quantitative molecular lipidomics. Biochim Biophys Acta 1811:925–934PubMedCrossRef Jung HR, Sylvanne T, Koistinen KM, Tarasov K, Kauhanen D, Ekroos K (2011) High throughput quantitative molecular lipidomics. Biochim Biophys Acta 1811:925–934PubMedCrossRef
go back to reference Karnovsky A, Weymouth T, Hull T et al (2012) Metscape 2 bioinformatics tool for the analysis and visualization of metabolomics and gene expression data. Bioinformatics 28:373–380PubMedCentralPubMedCrossRef Karnovsky A, Weymouth T, Hull T et al (2012) Metscape 2 bioinformatics tool for the analysis and visualization of metabolomics and gene expression data. Bioinformatics 28:373–380PubMedCentralPubMedCrossRef
go back to reference Kind T, Liu KH, Lee do Y, DeFelice B, Meissen JK, Fiehn O (2013) LipidBlast in silico tandem mass spectrometry database for lipid identification. Nat Methods 10:755–758PubMedCentralPubMedCrossRef Kind T, Liu KH, Lee do Y, DeFelice B, Meissen JK, Fiehn O (2013) LipidBlast in silico tandem mass spectrometry database for lipid identification. Nat Methods 10:755–758PubMedCentralPubMedCrossRef
go back to reference Knittelfelder OL, Weberhofer BP, Eichmann TO, Kohlwein SD, Rechberger GN (2014) A versatile ultra-high performance LC-MS method for lipid profiling. J Chromatogr B: Analyt Technol Biomed Life Sci 951–952:119–128CrossRef Knittelfelder OL, Weberhofer BP, Eichmann TO, Kohlwein SD, Rechberger GN (2014) A versatile ultra-high performance LC-MS method for lipid profiling. J Chromatogr B: Analyt Technol Biomed Life Sci 951–952:119–128CrossRef
go back to reference Kotze HL, Armitage EG, Sharkey KJ et al (2013) A novel untargeted metabolomics correlation-based network analysis incorporating human metabolic reconstructions. BMC Syst Biol 7:107PubMedCentralPubMedCrossRef Kotze HL, Armitage EG, Sharkey KJ et al (2013) A novel untargeted metabolomics correlation-based network analysis incorporating human metabolic reconstructions. BMC Syst Biol 7:107PubMedCentralPubMedCrossRef
go back to reference Li M, Yang L, Bai Y, Liu H (2014) Analytical methods in lipidomics and their applications. Anal Chem 86:161–175PubMedCrossRef Li M, Yang L, Bai Y, Liu H (2014) Analytical methods in lipidomics and their applications. Anal Chem 86:161–175PubMedCrossRef
go back to reference Liu ZY (2012) An introduction to hybrid ion trap/time-of-flight mass spectrometry coupled with liquid chromatography applied to drug metabolism studies. J Mass Spectrom 47:1627–1642PubMedCrossRef Liu ZY (2012) An introduction to hybrid ion trap/time-of-flight mass spectrometry coupled with liquid chromatography applied to drug metabolism studies. J Mass Spectrom 47:1627–1642PubMedCrossRef
go back to reference Matyash V, Liebisch G, Kurzchalia TV, Shevchenko A, Schwudke D (2008) Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J Lipid Res 49:1137–1146PubMedCentralPubMedCrossRef Matyash V, Liebisch G, Kurzchalia TV, Shevchenko A, Schwudke D (2008) Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J Lipid Res 49:1137–1146PubMedCentralPubMedCrossRef
go back to reference Mueller D, Heinzle E (2013) Stable isotope-assisted metabolomics to detect metabolic flux changes in mammalian cell cultures. Curr Opin Biotechnol 24:54–59PubMedCrossRef Mueller D, Heinzle E (2013) Stable isotope-assisted metabolomics to detect metabolic flux changes in mammalian cell cultures. Curr Opin Biotechnol 24:54–59PubMedCrossRef
go back to reference Oresic M (2011) Informatics and computational strategies for the study of lipids. Biochim Biophys Acta 1811:991–999PubMedCrossRef Oresic M (2011) Informatics and computational strategies for the study of lipids. Biochim Biophys Acta 1811:991–999PubMedCrossRef
go back to reference Peskov K, Mogilevskaya E, Demin O (2012) Kinetic modelling of central carbon metabolism in Escherichia coli. FEBS J 279:3374–3385PubMedCrossRef Peskov K, Mogilevskaya E, Demin O (2012) Kinetic modelling of central carbon metabolism in Escherichia coli. FEBS J 279:3374–3385PubMedCrossRef
go back to reference Reis A, Rudnitskaya A, Blackburn GJ, Mohd Fauzi N, Pitt AR, Spickett CM (2013) A comparison of five lipid extraction solvent systems for lipidomic studies of human LDL. J Lipid Res 54:1812–1824PubMedCentralPubMedCrossRef Reis A, Rudnitskaya A, Blackburn GJ, Mohd Fauzi N, Pitt AR, Spickett CM (2013) A comparison of five lipid extraction solvent systems for lipidomic studies of human LDL. J Lipid Res 54:1812–1824PubMedCentralPubMedCrossRef
go back to reference Saccenti E, Hoefsloot HJ, Smilde A, Westerhuis J, Hendriks MWB (2014) Reflections on univariate and multivariate analysis of metabolomics data. Metabolomics 10:361–374CrossRef Saccenti E, Hoefsloot HJ, Smilde A, Westerhuis J, Hendriks MWB (2014) Reflections on univariate and multivariate analysis of metabolomics data. Metabolomics 10:361–374CrossRef
go back to reference Sreenivasaiah PK, Rani S, Cayetano J, Arul N, Kim do H (2012) IPAVS: integrated pathway resources, analysis and visualization system. Nucleic Acids Res 40:D803–808PubMedCentralPubMedCrossRef Sreenivasaiah PK, Rani S, Cayetano J, Arul N, Kim do H (2012) IPAVS: integrated pathway resources, analysis and visualization system. Nucleic Acids Res 40:D803–808PubMedCentralPubMedCrossRef
go back to reference Theodoridis GA, Gika HG, Want EJ, Wilson ID (2012) Liquid chromatography-mass spectrometry based global metabolite profiling: a review. Anal Chim Acta 711:7–16PubMedCrossRef Theodoridis GA, Gika HG, Want EJ, Wilson ID (2012) Liquid chromatography-mass spectrometry based global metabolite profiling: a review. Anal Chim Acta 711:7–16PubMedCrossRef
go back to reference Want E, Masson P (2011) Processing and analysis of GC/LC-MS-based metabolomics data. Methods Mol Biol 708:277–298PubMedCrossRef Want E, Masson P (2011) Processing and analysis of GC/LC-MS-based metabolomics data. Methods Mol Biol 708:277–298PubMedCrossRef
go back to reference Xia J, Wishart DS (2011) Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nat Protoc 6:743–760PubMedCrossRef Xia J, Wishart DS (2011) Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nat Protoc 6:743–760PubMedCrossRef
Metadata
Title
Principles and practice of lipidomics
Authors
Frédéric M. Vaz
Mia Pras-Raves
Albert H. Bootsma
Antoine H. C. van Kampen
Publication date
01-01-2015
Publisher
Springer Netherlands
Published in
Journal of Inherited Metabolic Disease / Issue 1/2015
Print ISSN: 0141-8955
Electronic ISSN: 1573-2665
DOI
https://doi.org/10.1007/s10545-014-9792-6

Other articles of this Issue 1/2015

Journal of Inherited Metabolic Disease 1/2015 Go to the issue