Skip to main content
Top
Published in: Journal of Inherited Metabolic Disease 5/2014

01-09-2014 | Metabolic Dissertation

X-linked creatine transporter deficiency: clinical aspects and pathophysiology

Authors: Jiddeke M. van de Kamp, Grazia M. Mancini, Gajja S. Salomons

Published in: Journal of Inherited Metabolic Disease | Issue 5/2014

Login to get access

Abstract

Creatine transporter deficiency was discovered in 2001 as an X-linked cause of intellectual disability characterized by cerebral creatine deficiency. This review describes the current knowledge regarding creatine metabolism, the creatine transporter and the clinical aspects of creatine transporter deficiency. The condition mainly affects the brain while other creatine requiring organs, such as the muscles, are relatively spared. Recent studies have provided strong evidence that creatine synthesis also occurs in the brain, leading to the intriguing question of why cerebral creatine is deficient in creatine transporter deficiency. The possible mechanisms explaining the cerebral creatine deficiency are discussed. The creatine transporter knockout mouse provides a good model to study the disease. Over the past years several treatment options have been explored but no treatment has been proven effective. Understanding the pathogenesis of creatine transporter deficiency is of paramount importance in the development of an effective treatment.
Literature
go back to reference Abplanalp J, Laczko E, Philp N et al (2013) The cataract and glucosuria associated monocarboxylate transporter MCT12 is a new creatine transporter. Hum Mol Genet 22(16):3218–26PubMedCentralPubMed Abplanalp J, Laczko E, Philp N et al (2013) The cataract and glucosuria associated monocarboxylate transporter MCT12 is a new creatine transporter. Hum Mol Genet 22(16):3218–26PubMedCentralPubMed
go back to reference Adriano E, Garbati P, Damonte G, Salis A, Armirotti A, Balestrino M (2011) Searching for a therapy of creatine transporter deficiency: some effects of creatine ethyl ester in brain slices in vitro. Neuroscience 199:386–393PubMed Adriano E, Garbati P, Damonte G, Salis A, Armirotti A, Balestrino M (2011) Searching for a therapy of creatine transporter deficiency: some effects of creatine ethyl ester in brain slices in vitro. Neuroscience 199:386–393PubMed
go back to reference Alfieri RR, Bonelli MA, Cavazzoni A et al (2006) Creatine as a compatible osmolyte in muscle cells exposed to hypertonic stress. J Physiol 576(Pt 2):391–401PubMedCentralPubMed Alfieri RR, Bonelli MA, Cavazzoni A et al (2006) Creatine as a compatible osmolyte in muscle cells exposed to hypertonic stress. J Physiol 576(Pt 2):391–401PubMedCentralPubMed
go back to reference Allen PJ (2012) Creatine metabolism and psychiatric disorders: Does creatine supplementation have therapeutic value? Neurosci Biobehav Rev 36(5):1442–1462PubMedCentralPubMed Allen PJ (2012) Creatine metabolism and psychiatric disorders: Does creatine supplementation have therapeutic value? Neurosci Biobehav Rev 36(5):1442–1462PubMedCentralPubMed
go back to reference Almeida LS, Verhoeven NM, Roos B et al (2004) Creatine and guanidinoacetate: diagnostic markers for inborn errors in creatine biosynthesis and transport. Mol Genet Metab 82(3):214–219PubMed Almeida LS, Verhoeven NM, Roos B et al (2004) Creatine and guanidinoacetate: diagnostic markers for inborn errors in creatine biosynthesis and transport. Mol Genet Metab 82(3):214–219PubMed
go back to reference Almeida LS, Salomons GS, Hogenboom F, Jakobs C, Schoffelmeer ANM (2006) Exocytotic release of creatine in rat brain. Synapse 60(2):118–123PubMed Almeida LS, Salomons GS, Hogenboom F, Jakobs C, Schoffelmeer ANM (2006) Exocytotic release of creatine in rat brain. Synapse 60(2):118–123PubMed
go back to reference Andres RH, Ducray AD, Schlattner U, Wallimann T, Widmer HR (2008) Functions and effects of creatine in the central nervous system. Brain Res Bull 76(4):329–343PubMed Andres RH, Ducray AD, Schlattner U, Wallimann T, Widmer HR (2008) Functions and effects of creatine in the central nervous system. Brain Res Bull 76(4):329–343PubMed
go back to reference Anselm IA, Alkuraya FS, Salomons GS et al (2006) X-linked creatine transporter defect: a report on two unrelated boys with a severe clinical phenotype. J Inherit Metab Dis 29(1):214–219PubMedCentralPubMed Anselm IA, Alkuraya FS, Salomons GS et al (2006) X-linked creatine transporter defect: a report on two unrelated boys with a severe clinical phenotype. J Inherit Metab Dis 29(1):214–219PubMedCentralPubMed
go back to reference Anselm IA, Coulter DL, Darras BT (2008) Cardiac manifestations in a child with a novel mutation in creatine transporter gene SLC6A8. Neurology 70(18):1642–1644PubMed Anselm IA, Coulter DL, Darras BT (2008) Cardiac manifestations in a child with a novel mutation in creatine transporter gene SLC6A8. Neurology 70(18):1642–1644PubMed
go back to reference Arias A, Ormazabal A, Moreno J et al (2006) Methods for the diagnosis of creatine deficiency syndromes: a comparative study. J Neurosci Methods 156(1–2):305–309PubMed Arias A, Ormazabal A, Moreno J et al (2006) Methods for the diagnosis of creatine deficiency syndromes: a comparative study. J Neurosci Methods 156(1–2):305–309PubMed
go back to reference Arias A, Corbella M, Fons C et al (2007) Creatine transporter deficiency: prevalence among patients with mental retardation and pitfalls in metabolite screening. Clin Biochem 40(16–17):1328–1331PubMed Arias A, Corbella M, Fons C et al (2007) Creatine transporter deficiency: prevalence among patients with mental retardation and pitfalls in metabolite screening. Clin Biochem 40(16–17):1328–1331PubMed
go back to reference Barnwell LF, Chaudhuri G, Townsel JG (1995) Cloning and sequencing of a cDNA encoding a novel member of the human brain GABA/noradrenaline neurotransmitter transporter family. Gene 159(2):287–288PubMed Barnwell LF, Chaudhuri G, Townsel JG (1995) Cloning and sequencing of a cDNA encoding a novel member of the human brain GABA/noradrenaline neurotransmitter transporter family. Gene 159(2):287–288PubMed
go back to reference Battini R, Leuzzi V, Carducci C et al (2002) Creatine depletion in a new case with AGAT deficiency: clinical and genetic study in a large pedigree. Mol Genet Metab 77(4):326–331PubMed Battini R, Leuzzi V, Carducci C et al (2002) Creatine depletion in a new case with AGAT deficiency: clinical and genetic study in a large pedigree. Mol Genet Metab 77(4):326–331PubMed
go back to reference Battini R, Alessandri MG, Leuzzi V et al (2006) Arginine:glycine amidinotransferase (AGAT) deficiency in a newborn: early treatment can prevent phenotypic expression of the disease. J Pediatr 148(6):828–830PubMed Battini R, Alessandri MG, Leuzzi V et al (2006) Arginine:glycine amidinotransferase (AGAT) deficiency in a newborn: early treatment can prevent phenotypic expression of the disease. J Pediatr 148(6):828–830PubMed
go back to reference Bayou N, M’rad R, Belhaj A et al (2008) The creatine transporter gene paralogous at 16p11.2 is expressed in human brain. Comp Funct Genomics 2008:609684. doi:10.1155/2008/609684 Bayou N, M’rad R, Belhaj A et al (2008) The creatine transporter gene paralogous at 16p11.2 is expressed in human brain. Comp Funct Genomics 2008:609684. doi:10.​1155/​2008/​609684
go back to reference Belanger M, Asashima T, Ohtsuki S, Yamaguchi H, Ito S, Terasaki T (2007) Hyperammonemia induces transport of taurine and creatine and suppresses claudin-12 gene expression in brain capillary endothelial cells in vitro. Neurochem Int 50(1):95–101PubMed Belanger M, Asashima T, Ohtsuki S, Yamaguchi H, Ito S, Terasaki T (2007) Hyperammonemia induces transport of taurine and creatine and suppresses claudin-12 gene expression in brain capillary endothelial cells in vitro. Neurochem Int 50(1):95–101PubMed
go back to reference Betsalel OT, van de Kamp JM, Martinez-Munoz C et al (2008) Detection of low-level somatic and germline mosaicism by denaturing high-performance liquid chromatography in a EURO-MRX family with SLC6A8 deficiency. Neurogenetics 9(3):183–190PubMed Betsalel OT, van de Kamp JM, Martinez-Munoz C et al (2008) Detection of low-level somatic and germline mosaicism by denaturing high-performance liquid chromatography in a EURO-MRX family with SLC6A8 deficiency. Neurogenetics 9(3):183–190PubMed
go back to reference Betsalel OT, Rosenberg EH, Almeida LS et al (2011) Characterization of novel SLC6A8 variants with the use of splice-site analysis tools and implementation of a newly developed LOVD database. Eur J Hum Genet 19(1):56–63PubMedCentralPubMed Betsalel OT, Rosenberg EH, Almeida LS et al (2011) Characterization of novel SLC6A8 variants with the use of splice-site analysis tools and implementation of a newly developed LOVD database. Eur J Hum Genet 19(1):56–63PubMedCentralPubMed
go back to reference Betsalel OT, Pop A, Rosenberg EH, Fernandez-Ojeda M, Jakobs C, Salomons GS (2012) Detection of variants in SLC6A8 and functional analysis of unclassified missense variants. Mol Genet Metab 105(4):596–601PubMed Betsalel OT, Pop A, Rosenberg EH, Fernandez-Ojeda M, Jakobs C, Salomons GS (2012) Detection of variants in SLC6A8 and functional analysis of unclassified missense variants. Mol Genet Metab 105(4):596–601PubMed
go back to reference Bianchi MC, Tosetti M, Fornai F et al (2000) Reversible brain creatine deficiency in two sisters with normal blood creatine level. Ann Neurol 47(4):511–513PubMed Bianchi MC, Tosetti M, Fornai F et al (2000) Reversible brain creatine deficiency in two sisters with normal blood creatine level. Ann Neurol 47(4):511–513PubMed
go back to reference Bianchi MC, Tosetti M, Battini R et al (2007) Treatment monitoring of brain creatine deficiency syndromes: a 1H- and 31P-MR spectroscopy study. AJNR Am J Neuroradiol 28(3):548–554PubMed Bianchi MC, Tosetti M, Battini R et al (2007) Treatment monitoring of brain creatine deficiency syndromes: a 1H- and 31P-MR spectroscopy study. AJNR Am J Neuroradiol 28(3):548–554PubMed
go back to reference Bizzi A, Bugiani M, Salomons GS et al (2002) X-linked creatine deficiency syndrome: a novel mutation in creatine transporter gene SLC6A8. Ann Neurol 52(2):227–231PubMed Bizzi A, Bugiani M, Salomons GS et al (2002) X-linked creatine deficiency syndrome: a novel mutation in creatine transporter gene SLC6A8. Ann Neurol 52(2):227–231PubMed
go back to reference Bodamer OA, Bloesch SM, Gregg AR, Stockler-Ipsiroglu S, O'Brien WE (2001) Analysis of guanidinoacetate and creatine by isotope dilution electrospray tandem mass spectrometry. Clin Chim Acta 308(1–2):173–178PubMed Bodamer OA, Bloesch SM, Gregg AR, Stockler-Ipsiroglu S, O'Brien WE (2001) Analysis of guanidinoacetate and creatine by isotope dilution electrospray tandem mass spectrometry. Clin Chim Acta 308(1–2):173–178PubMed
go back to reference Bodamer OA, Iqbal F, Muhl A et al (2009) Low creatinine: the diagnostic clue for a treatable neurologic disorder. Neurology 72(9):854–855PubMed Bodamer OA, Iqbal F, Muhl A et al (2009) Low creatinine: the diagnostic clue for a treatable neurologic disorder. Neurology 72(9):854–855PubMed
go back to reference Boehm E, Chan S, Monfared M, Wallimann T, Clarke K, Neubauer S (2003) Creatine transporter activity and content in the rat heart supplemented by and depleted of creatine. Am J Physiol Endocrinol Metab 284(2):E399–E406PubMed Boehm E, Chan S, Monfared M, Wallimann T, Clarke K, Neubauer S (2003) Creatine transporter activity and content in the rat heart supplemented by and depleted of creatine. Am J Physiol Endocrinol Metab 284(2):E399–E406PubMed
go back to reference Bothwell JH, Rae C, Dixon RM, Styles P, Bhakoo KK (2001) Hypo-osmotic swelling-activated release of organic osmolytes in brain slices: implications for brain oedema in vivo. J Neurochem 77(6):1632–1640PubMed Bothwell JH, Rae C, Dixon RM, Styles P, Bhakoo KK (2001) Hypo-osmotic swelling-activated release of organic osmolytes in brain slices: implications for brain oedema in vivo. J Neurochem 77(6):1632–1640PubMed
go back to reference Bothwell JH, Styles P, Bhakoo KK (2002) Swelling-activated taurine and creatine effluxes from rat cortical astrocytes are pharmacologically distinct. J Membr Biol 185(2):157–164PubMed Bothwell JH, Styles P, Bhakoo KK (2002) Swelling-activated taurine and creatine effluxes from rat cortical astrocytes are pharmacologically distinct. J Membr Biol 185(2):157–164PubMed
go back to reference Braissant O (2012) Creatine and guanidinoacetate transport at blood–brain and blood-cerebrospinal fluid barriers. J Inherit Metab Dis 35(4):655–664PubMed Braissant O (2012) Creatine and guanidinoacetate transport at blood–brain and blood-cerebrospinal fluid barriers. J Inherit Metab Dis 35(4):655–664PubMed
go back to reference Braissant O, Henry H (2008) AGAT, GAMT and SLC6A8 distribution in the central nervous system, in relation to creatine deficiency syndromes: A review. J Inherit Metab Dis 31(2):230–9PubMed Braissant O, Henry H (2008) AGAT, GAMT and SLC6A8 distribution in the central nervous system, in relation to creatine deficiency syndromes: A review. J Inherit Metab Dis 31(2):230–9PubMed
go back to reference Braissant O, Henry H, Loup M, Eilers B, Bachmann C (2001) Endogenous synthesis and transport of creatine in the rat brain: an in situ hybridization study. Brain Res Mol Brain Res 86(1–2):193–201PubMed Braissant O, Henry H, Loup M, Eilers B, Bachmann C (2001) Endogenous synthesis and transport of creatine in the rat brain: an in situ hybridization study. Brain Res Mol Brain Res 86(1–2):193–201PubMed
go back to reference Braissant O, Henry H, Villard AM, Speer O, Wallimann T, Bachmann C (2005) Creatine synthesis and transport during rat embryogenesis: spatiotemporal expression of AGAT, GAMT and CT1. BMC Dev Biol 5:9PubMedCentralPubMed Braissant O, Henry H, Villard AM, Speer O, Wallimann T, Bachmann C (2005) Creatine synthesis and transport during rat embryogenesis: spatiotemporal expression of AGAT, GAMT and CT1. BMC Dev Biol 5:9PubMedCentralPubMed
go back to reference Braissant O, Cagnon L, Monnet-Tschudi F et al (2008) Ammonium alters creatine transport and synthesis in a 3D culture of developing brain cells, resulting in secondary cerebral creatine deficiency. Eur J Neurosci 27(7):1673–1685PubMed Braissant O, Cagnon L, Monnet-Tschudi F et al (2008) Ammonium alters creatine transport and synthesis in a 3D culture of developing brain cells, resulting in secondary cerebral creatine deficiency. Eur J Neurosci 27(7):1673–1685PubMed
go back to reference Braissant O, Beard E, Torrent C, Henry H (2010) Dissociation of AGAT, GAMT and SLC6A8 in CNS: relevance to creatine deficiency syndromes. Neurobiol Dis 37(2):423–433PubMed Braissant O, Beard E, Torrent C, Henry H (2010) Dissociation of AGAT, GAMT and SLC6A8 in CNS: relevance to creatine deficiency syndromes. Neurobiol Dis 37(2):423–433PubMed
go back to reference Braissant O, Henry H, Beard E, Uldry J (2011) Creatine deficiency syndromes and the importance of creatine synthesis in the brain. Amino Acids 40(5):1315–1324PubMed Braissant O, Henry H, Beard E, Uldry J (2011) Creatine deficiency syndromes and the importance of creatine synthesis in the brain. Amino Acids 40(5):1315–1324PubMed
go back to reference Brault JJ, Abraham KA, Terjung RL (2003) Muscle creatine uptake and creatine transporter expression in response to creatine supplementation and depletion. J Appl Physiol 94(6):2173–2180PubMed Brault JJ, Abraham KA, Terjung RL (2003) Muscle creatine uptake and creatine transporter expression in response to creatine supplementation and depletion. J Appl Physiol 94(6):2173–2180PubMed
go back to reference Brosnan JT, Brosnan ME (2007) Creatine: endogenous metabolite, dietary, and therapeutic supplement. Annu Rev Nutr 27:241–261PubMed Brosnan JT, Brosnan ME (2007) Creatine: endogenous metabolite, dietary, and therapeutic supplement. Annu Rev Nutr 27:241–261PubMed
go back to reference Brosnan JT, da Silva RP, Brosnan ME (2011) The metabolic burden of creatine synthesis. Amino Acids 40(5):1325–1331PubMed Brosnan JT, da Silva RP, Brosnan ME (2011) The metabolic burden of creatine synthesis. Amino Acids 40(5):1325–1331PubMed
go back to reference Cacciagli P, Sutera-Sardo J, Borges-Correia A et al (2013) Mutations in BCAP31 Cause a Severe X-Linked Phenotype with Deafness, Dystonia, and Central Hypomyelination and Disorganize the Golgi Apparatus. Am J Hum Genet 93(3):579–586PubMedCentralPubMed Cacciagli P, Sutera-Sardo J, Borges-Correia A et al (2013) Mutations in BCAP31 Cause a Severe X-Linked Phenotype with Deafness, Dystonia, and Central Hypomyelination and Disorganize the Golgi Apparatus. Am J Hum Genet 93(3):579–586PubMedCentralPubMed
go back to reference Caldeira Araujo H, Smit W, Verhoeven NM et al (2005) Guanidinoacetate methyltransferase deficiency identified in adults and a child with mental retardation. Am J Med Genet A 133A(2):122–127PubMed Caldeira Araujo H, Smit W, Verhoeven NM et al (2005) Guanidinoacetate methyltransferase deficiency identified in adults and a child with mental retardation. Am J Med Genet A 133A(2):122–127PubMed
go back to reference Carducci C, Birarelli M, Leuzzi V et al (2002) Guanidinoacetate and creatine plus creatinine assessment in physiologic fluids: an effective diagnostic tool for the biochemical diagnosis of arginine:glycine amidinotransferase and guanidinoacetate methyltransferase deficiencies. Clin Chem 48(10):1772–1778PubMed Carducci C, Birarelli M, Leuzzi V et al (2002) Guanidinoacetate and creatine plus creatinine assessment in physiologic fluids: an effective diagnostic tool for the biochemical diagnosis of arginine:glycine amidinotransferase and guanidinoacetate methyltransferase deficiencies. Clin Chem 48(10):1772–1778PubMed
go back to reference Carducci C, Carducci C, Santagata S et al (2012) In vitro study of uptake and synthesis of creatine and its precursors by cerebellar granule cells and astrocytes suggests some hypotheses on the physiopathology of the inherited disorders of creatine metabolism. BMC Neurosci 13:41PubMedCentralPubMed Carducci C, Carducci C, Santagata S et al (2012) In vitro study of uptake and synthesis of creatine and its precursors by cerebellar granule cells and astrocytes suggests some hypotheses on the physiopathology of the inherited disorders of creatine metabolism. BMC Neurosci 13:41PubMedCentralPubMed
go back to reference Castorino JJ, Gallagher-Colombo SM, Levin AV et al (2011) Juvenile cataract-associated mutation of solute carrier SLC16A12 impairs trafficking of the protein to the plasma membrane. Invest Ophthalmol Vis Sci 52(9):6774–6784PubMedCentralPubMed Castorino JJ, Gallagher-Colombo SM, Levin AV et al (2011) Juvenile cataract-associated mutation of solute carrier SLC16A12 impairs trafficking of the protein to the plasma membrane. Invest Ophthalmol Vis Sci 52(9):6774–6784PubMedCentralPubMed
go back to reference Cecil KM, Salomons GS, Ball WSJ et al (2001) Irreversible brain creatine deficiency with elevated serum and urine creatine: a creatine transporter defect? Ann Neurol 49(3):401–404PubMed Cecil KM, Salomons GS, Ball WSJ et al (2001) Irreversible brain creatine deficiency with elevated serum and urine creatine: a creatine transporter defect? Ann Neurol 49(3):401–404PubMed
go back to reference Cheillan D, Joncquel-Chevalier Curt M, Briand G et al (2012) Screening for primary creatine deficiencies in French patients with unexplained neurological symptoms. Orphanet J Rare Dis 7 Cheillan D, Joncquel-Chevalier Curt M, Briand G et al (2012) Screening for primary creatine deficiencies in French patients with unexplained neurological symptoms. Orphanet J Rare Dis 7
go back to reference Chen NH, Reith MEA, Quick MW (2004) Synaptic uptake and beyond: the sodium- and chloride-dependent neurotransmitter transporter family SLC6. Pflugers Arch 447(5):519–531PubMed Chen NH, Reith MEA, Quick MW (2004) Synaptic uptake and beyond: the sodium- and chloride-dependent neurotransmitter transporter family SLC6. Pflugers Arch 447(5):519–531PubMed
go back to reference Chilosi A, Leuzzi V, Battini R et al (2008) Treatment with L-arginine improves neuropsychological disorders in a child with creatine transporter defect. Neurocase 14(2):151–161PubMed Chilosi A, Leuzzi V, Battini R et al (2008) Treatment with L-arginine improves neuropsychological disorders in a child with creatine transporter defect. Neurocase 14(2):151–161PubMed
go back to reference Chilosi A, Casarano M, Comparini A et al (2012) Neuropsychological profile and clinical effects of arginine treatment in children with creatine transport deficiency. Orphanet J Rare Dis 7(1):43PubMedCentralPubMed Chilosi A, Casarano M, Comparini A et al (2012) Neuropsychological profile and clinical effects of arginine treatment in children with creatine transport deficiency. Orphanet J Rare Dis 7(1):43PubMedCentralPubMed
go back to reference Choe C, Nabuurs C, Stockebrand MC et al (2013) L-arginine:glycine amidinotransferase deficiency protects from metabolic syndrome. Hum Mol Genet 22(1):110–123PubMed Choe C, Nabuurs C, Stockebrand MC et al (2013) L-arginine:glycine amidinotransferase deficiency protects from metabolic syndrome. Hum Mol Genet 22(1):110–123PubMed
go back to reference Christie DL (2007) Functional insights into the creatine transporter. Subcell Biochem 46:99–118PubMed Christie DL (2007) Functional insights into the creatine transporter. Subcell Biochem 46:99–118PubMed
go back to reference Clark AJ, Rosenberg EH, Almeida LS et al (2006) X-linked creatine transporter (SLC6A8) mutations in about 1 % of males with mental retardation of unknown etiology. Hum Genet 119(6):604–610PubMed Clark AJ, Rosenberg EH, Almeida LS et al (2006) X-linked creatine transporter (SLC6A8) mutations in about 1 % of males with mental retardation of unknown etiology. Hum Genet 119(6):604–610PubMed
go back to reference Cullen ME, Yuen AHY, Felkin LE et al (2006) Myocardial expression of the arginine:glycine amidinotransferase gene is elevated in heart failure and normalized after recovery: potential implications for local creatine synthesis. Circulation 114(1 Suppl):I16–I20PubMed Cullen ME, Yuen AHY, Felkin LE et al (2006) Myocardial expression of the arginine:glycine amidinotransferase gene is elevated in heart failure and normalized after recovery: potential implications for local creatine synthesis. Circulation 114(1 Suppl):I16–I20PubMed
go back to reference da Silva RP, Nissim I, Brosnan ME, Brosnan JT (2009) Creatine synthesis: hepatic metabolism of guanidinoacetate and creatine in the rat in vitro and in vivo. Am J Physiol Endocrinol Metab 296(2):E256–E261PubMedCentralPubMed da Silva RP, Nissim I, Brosnan ME, Brosnan JT (2009) Creatine synthesis: hepatic metabolism of guanidinoacetate and creatine in the rat in vitro and in vivo. Am J Physiol Endocrinol Metab 296(2):E256–E261PubMedCentralPubMed
go back to reference Dai W, Vinnakota S, Qian X, Kunze DL, Sarkar HK (1999) Molecular characterization of the human CRT-1 creatine transporter expressed in Xenopus oocytes. Arch Biochem Biophys 361(1):75–84PubMed Dai W, Vinnakota S, Qian X, Kunze DL, Sarkar HK (1999) Molecular characterization of the human CRT-1 creatine transporter expressed in Xenopus oocytes. Arch Biochem Biophys 361(1):75–84PubMed
go back to reference Daly MM, Seifter S (1980) Uptake of creatine by cultured cells. Arch Biochem Biophys 203(1):317–324PubMed Daly MM, Seifter S (1980) Uptake of creatine by cultured cells. Arch Biochem Biophys 203(1):317–324PubMed
go back to reference Darrabie MD, Arciniegas AJL, Mishra R, Bowles DE, Jacobs DO, Santacruz L (2011) AMPK and substrate availability regulate creatine transport in cultured cardiomyocytes. Am J Physiol Endocrinol Metab 300(5):E870–E876PubMed Darrabie MD, Arciniegas AJL, Mishra R, Bowles DE, Jacobs DO, Santacruz L (2011) AMPK and substrate availability regulate creatine transport in cultured cardiomyocytes. Am J Physiol Endocrinol Metab 300(5):E870–E876PubMed
go back to reference de Souza CF, Kalloniatis M, Christie DL, Polkinghorne PJ, McGhee CNJ, Acosta ML (2012) Creatine transporter immunolocalization in aged human and detached retinas. Invest Ophthalmol Vis Sci 53(4):1936–1945PubMed de Souza CF, Kalloniatis M, Christie DL, Polkinghorne PJ, McGhee CNJ, Acosta ML (2012) Creatine transporter immunolocalization in aged human and detached retinas. Invest Ophthalmol Vis Sci 53(4):1936–1945PubMed
go back to reference Dechent P, Pouwels PJ, Wilken B, Hanefeld F, Frahm J (1999) Increase of total creatine in human brain after oral supplementation of creatine-monohydrate. Am J Physiol 277(3 Pt 2):R698–R704PubMed Dechent P, Pouwels PJ, Wilken B, Hanefeld F, Frahm J (1999) Increase of total creatine in human brain after oral supplementation of creatine-monohydrate. Am J Physiol 277(3 Pt 2):R698–R704PubMed
go back to reference Defalco AJ, Davies RK (1961) The synthesis of creatine by the brain of the intact rat. J Neurochem 7:308–312PubMed Defalco AJ, Davies RK (1961) The synthesis of creatine by the brain of the intact rat. J Neurochem 7:308–312PubMed
go back to reference DeGrauw TJ, Salomons GS, Cecil KM et al (2002) Congenital creatine transporter deficiency. Neuropediatrics 33(5):232–238PubMed DeGrauw TJ, Salomons GS, Cecil KM et al (2002) Congenital creatine transporter deficiency. Neuropediatrics 33(5):232–238PubMed
go back to reference Degrauw TJ, Cecil KM, Byars AW, Salomons GS, Ball WS, Jakobs C (2003) The clinical syndrome of creatine transporter deficiency. Mol Cell Biochem 244(1–2):45–48PubMed Degrauw TJ, Cecil KM, Byars AW, Salomons GS, Ball WS, Jakobs C (2003) The clinical syndrome of creatine transporter deficiency. Mol Cell Biochem 244(1–2):45–48PubMed
go back to reference Dezortova M, Jiru F, Petrasek J et al (2008) 1H MR spectroscopy as a diagnostic tool for cerebral creatine deficiency. MAGMA 21(5):327–332PubMed Dezortova M, Jiru F, Petrasek J et al (2008) 1H MR spectroscopy as a diagnostic tool for cerebral creatine deficiency. MAGMA 21(5):327–332PubMed
go back to reference Dhar SU, Scaglia F, Li FY et al (2009) Expanded clinical and molecular spectrum of guanidinoacetate methyltransferase (GAMT) deficiency. Mol Genet Metab 96(1):38–43PubMed Dhar SU, Scaglia F, Li FY et al (2009) Expanded clinical and molecular spectrum of guanidinoacetate methyltransferase (GAMT) deficiency. Mol Genet Metab 96(1):38–43PubMed
go back to reference Dodd JR, Christie DL (2005) Substituted cysteine accessibility of the third transmembrane domain of the creatine transporter: defining a transport pathway. J Biol Chem 280(38):32649–32654PubMed Dodd JR, Christie DL (2005) Substituted cysteine accessibility of the third transmembrane domain of the creatine transporter: defining a transport pathway. J Biol Chem 280(38):32649–32654PubMed
go back to reference Dodd JR, Christie DL (2007) Selective amino acid substitutions convert the creatine transporter to a gamma-aminobutyric acid transporter. J Biol Chem 282(21):15528–15533PubMed Dodd JR, Christie DL (2007) Selective amino acid substitutions convert the creatine transporter to a gamma-aminobutyric acid transporter. J Biol Chem 282(21):15528–15533PubMed
go back to reference Dodd JR, Zheng T, Christie DL (1999) Creatine accumulation and exchange by HEK293 cells stably expressing high levels of a creatine transporter. Biochim Biophys Acta 1472(1–2):128–136PubMed Dodd JR, Zheng T, Christie DL (1999) Creatine accumulation and exchange by HEK293 cells stably expressing high levels of a creatine transporter. Biochim Biophys Acta 1472(1–2):128–136PubMed
go back to reference Dodd JR, Birch NP, Waldvogel HJ, Christie DL (2010) Functional and immunocytochemical characterization of the creatine transporter in rat hippocampal neurons. J Neurochem 115(3):684–693PubMed Dodd JR, Birch NP, Waldvogel HJ, Christie DL (2010) Functional and immunocytochemical characterization of the creatine transporter in rat hippocampal neurons. J Neurochem 115(3):684–693PubMed
go back to reference Dringen R, Verleysdonk S, Hamprecht B, Willker W, Leibfritz D, Brand A (1998) Metabolism of glycine in primary astroglial cells: synthesis of creatine, serine, and glutathione. J Neurochem 70(2):835–840PubMed Dringen R, Verleysdonk S, Hamprecht B, Willker W, Leibfritz D, Brand A (1998) Metabolism of glycine in primary astroglial cells: synthesis of creatine, serine, and glutathione. J Neurochem 70(2):835–840PubMed
go back to reference Edison EE, Brosnan ME, Meyer C, Brosnan JT (2007) Creatine synthesis: production of guanidinoacetate by the rat and human kidney in vivo. Am J Physiol Renal Physiol 293(6):F1799–F1804PubMed Edison EE, Brosnan ME, Meyer C, Brosnan JT (2007) Creatine synthesis: production of guanidinoacetate by the rat and human kidney in vivo. Am J Physiol Renal Physiol 293(6):F1799–F1804PubMed
go back to reference Edvardson S, Korman SH, Livne A et al (2010) l-arginine:glycine amidinotransferase (AGAT) deficiency: clinical presentation and response to treatment in two patients with a novel mutation. Mol Genet Metab 101(2–3):228–232PubMed Edvardson S, Korman SH, Livne A et al (2010) l-arginine:glycine amidinotransferase (AGAT) deficiency: clinical presentation and response to treatment in two patients with a novel mutation. Mol Genet Metab 101(2–3):228–232PubMed
go back to reference Eichler EE, Lu F, Shen Y et al (1996) Duplication of a gene-rich cluster between 16p11.1 and Xq28: a novel pericentromeric-directed mechanism for paralogous genome evolution. Hum Mol Genet 5(7):899–912PubMed Eichler EE, Lu F, Shen Y et al (1996) Duplication of a gene-rich cluster between 16p11.1 and Xq28: a novel pericentromeric-directed mechanism for paralogous genome evolution. Hum Mol Genet 5(7):899–912PubMed
go back to reference Engelke UFH, Tassini M, Hayek J et al (2009) Guanidinoacetate methyltransferase (GAMT) deficiency diagnosed by proton NMR spectroscopy of body fluids. NMR Biomed 22(5):538–544PubMed Engelke UFH, Tassini M, Hayek J et al (2009) Guanidinoacetate methyltransferase (GAMT) deficiency diagnosed by proton NMR spectroscopy of body fluids. NMR Biomed 22(5):538–544PubMed
go back to reference Enrico A, Patrizia G, Luisa P et al (2013) Electrophysiology and biochemical analysis of cyclocreatine uptake and effect in hippocampal slices. J Integr Neurosci 12(2):285–297PubMed Enrico A, Patrizia G, Luisa P et al (2013) Electrophysiology and biochemical analysis of cyclocreatine uptake and effect in hippocampal slices. J Integr Neurosci 12(2):285–297PubMed
go back to reference Ensenauer R, Thiel T, Schwab KO et al (2004) Guanidinoacetate methyltransferase deficiency: differences of creatine uptake in human brain and muscle. Mol Genet Metab 82(3):208–213PubMed Ensenauer R, Thiel T, Schwab KO et al (2004) Guanidinoacetate methyltransferase deficiency: differences of creatine uptake in human brain and muscle. Mol Genet Metab 82(3):208–213PubMed
go back to reference Evangeliou A, Vasilaki K, Karagianni P et al (2009) Clinical applications of creatine supplementation on paediatrics. Curr Pharm Biotechnol 10(7):683–690PubMed Evangeliou A, Vasilaki K, Karagianni P et al (2009) Clinical applications of creatine supplementation on paediatrics. Curr Pharm Biotechnol 10(7):683–690PubMed
go back to reference Fons C, Sempere A, Arias A et al (2008) Arginine supplementation in four patients with X-linked creatine transporter defect. J Inherit Metab Dis 31(6):724–728PubMed Fons C, Sempere A, Arias A et al (2008) Arginine supplementation in four patients with X-linked creatine transporter defect. J Inherit Metab Dis 31(6):724–728PubMed
go back to reference Fons C, Arias A, Sempere A et al (2010) Response to creatine analogs in fibroblasts and patients with creatine transporter deficiency. Mol Genet Metab 99(3):296–299PubMed Fons C, Arias A, Sempere A et al (2010) Response to creatine analogs in fibroblasts and patients with creatine transporter deficiency. Mol Genet Metab 99(3):296–299PubMed
go back to reference Ganesan V, Johnson A, Connelly A, Eckhardt S, Surtees RA (1997) Guanidinoacetate methyltransferase deficiency: new clinical features. Pediatr Neurol 17(2):155–157PubMed Ganesan V, Johnson A, Connelly A, Eckhardt S, Surtees RA (1997) Guanidinoacetate methyltransferase deficiency: new clinical features. Pediatr Neurol 17(2):155–157PubMed
go back to reference Garcia-Delgado M, Peral MJ, Cano M et al (2001) Creatine transport in brush-border membrane vesicles isolated from rat kidney cortex. J Am Soc Nephrol 12(9):1819–1825PubMed Garcia-Delgado M, Peral MJ, Cano M et al (2001) Creatine transport in brush-border membrane vesicles isolated from rat kidney cortex. J Am Soc Nephrol 12(9):1819–1825PubMed
go back to reference Garcia-Delgado M, Garcia-Miranda P, Peral MJ et al (2007) Ontogeny up-regulates renal Na(+)/Cl(−)/creatine transporter in rat. Biochim Biophys Acta 1768(11):2841–2848PubMed Garcia-Delgado M, Garcia-Miranda P, Peral MJ et al (2007) Ontogeny up-regulates renal Na(+)/Cl(−)/creatine transporter in rat. Biochim Biophys Acta 1768(11):2841–2848PubMed
go back to reference Garcia-Miranda P, Garcia-Delgado M, Peral MJ et al (2009) Ontogeny regulates creatine metabolism in rat small and large intestine. J Physiol Pharmacol 60(3):127–133PubMed Garcia-Miranda P, Garcia-Delgado M, Peral MJ et al (2009) Ontogeny regulates creatine metabolism in rat small and large intestine. J Physiol Pharmacol 60(3):127–133PubMed
go back to reference Gerber GB, Gerber G, Koszalka TR, Miller LL (1962) The rate of creatine synthesis in the isolated, perfused rat liver. J Biol Chem 237:2246–2250PubMed Gerber GB, Gerber G, Koszalka TR, Miller LL (1962) The rate of creatine synthesis in the isolated, perfused rat liver. J Biol Chem 237:2246–2250PubMed
go back to reference Gonzalez AM, Uhl GR (1994) ‘Choline/orphan V8-2-1/creatine transporter’ mRNA is expressed in nervous, renal and gastrointestinal systems. Brain Res Mol Brain Res 23(3):266–270PubMed Gonzalez AM, Uhl GR (1994) ‘Choline/orphan V8-2-1/creatine transporter’ mRNA is expressed in nervous, renal and gastrointestinal systems. Brain Res Mol Brain Res 23(3):266–270PubMed
go back to reference Grunau C, Hindermann W, Rosenthal A (2000) Large-scale methylation analysis of human genomic DNA reveals tissue-specific differences between the methylation profiles of genes and pseudogenes. Hum Mol Genet 9(18):2651–2663PubMed Grunau C, Hindermann W, Rosenthal A (2000) Large-scale methylation analysis of human genomic DNA reveals tissue-specific differences between the methylation profiles of genes and pseudogenes. Hum Mol Genet 9(18):2651–2663PubMed
go back to reference Guerrero-Ontiveros ML, Wallimann T (1998) Creatine supplementation in health and disease. Effects of chronic creatine ingestion in vivo: down-regulation of the expression of creatine transporter isoforms in skeletal muscle. Mol Cell Biochem 184(1–2):427–437PubMed Guerrero-Ontiveros ML, Wallimann T (1998) Creatine supplementation in health and disease. Effects of chronic creatine ingestion in vivo: down-regulation of the expression of creatine transporter isoforms in skeletal muscle. Mol Cell Biochem 184(1–2):427–437PubMed
go back to reference Guimbal C, Kilimann MW (1993) A Na(+)-dependent creatine transporter in rabbit brain, muscle, heart, and kidney. cDNA cloning and functional expression. J Biol Chem 268(12):8418–8421PubMed Guimbal C, Kilimann MW (1993) A Na(+)-dependent creatine transporter in rabbit brain, muscle, heart, and kidney. cDNA cloning and functional expression. J Biol Chem 268(12):8418–8421PubMed
go back to reference Guimbal C, Kilimann MW (1994) A creatine transporter cDNA from Torpedo illustrates structure/function relationships in the GABA/noradrenaline transporter family. J Mol Biol 241(2):317–324PubMed Guimbal C, Kilimann MW (1994) A creatine transporter cDNA from Torpedo illustrates structure/function relationships in the GABA/noradrenaline transporter family. J Mol Biol 241(2):317–324PubMed
go back to reference Hahn KA, Salomons GS, Tackels-Horne D et al (2002) X-linked mental retardation with seizures and carrier manifestations is caused by a mutation in the creatine-transporter gene (SLC6A8) located in Xq28. Am J Hum Genet 70(5):1349–1356PubMedCentralPubMed Hahn KA, Salomons GS, Tackels-Horne D et al (2002) X-linked mental retardation with seizures and carrier manifestations is caused by a mutation in the creatine-transporter gene (SLC6A8) located in Xq28. Am J Hum Genet 70(5):1349–1356PubMedCentralPubMed
go back to reference Happe HK, Murrin LC (1995) In situ hybridization analysis of CHOT1, a creatine transporter, in the rat central nervous system. J Comp Neurol 351(1):94–103PubMed Happe HK, Murrin LC (1995) In situ hybridization analysis of CHOT1, a creatine transporter, in the rat central nervous system. J Comp Neurol 351(1):94–103PubMed
go back to reference Harris RC, Soderlund K, Hultman E (1992) Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Clin Sci (Lond) 83(3):367–374 Harris RC, Soderlund K, Hultman E (1992) Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Clin Sci (Lond) 83(3):367–374
go back to reference Hathaway SC, Friez M, Limbo K et al (2010) X-linked creatine transporter deficiency presenting as a mitochondrial disorder. J Child Neurol 25(8):1009–1012PubMed Hathaway SC, Friez M, Limbo K et al (2010) X-linked creatine transporter deficiency presenting as a mitochondrial disorder. J Child Neurol 25(8):1009–1012PubMed
go back to reference Hautman E, Kokenge A, Udobi K et al (2013) Female mice heterozygous for creatine transporter deficiency show moderate cognitive deficits. J Inherit Metab Dis 16(6):1383–94 Hautman E, Kokenge A, Udobi K et al (2013) Female mice heterozygous for creatine transporter deficiency show moderate cognitive deficits. J Inherit Metab Dis 16(6):1383–94
go back to reference Hinnell C, Samuel M, Alkufri F et al (2011) Creatine deficiency syndromes: diagnostic pearls and pitfalls. Can J Neurol Sci 38(5):765–767PubMed Hinnell C, Samuel M, Alkufri F et al (2011) Creatine deficiency syndromes: diagnostic pearls and pitfalls. Can J Neurol Sci 38(5):765–767PubMed
go back to reference Hoberman HD, Sims EAH, Peters JH (1948) Creatine and creatinine metabolism in the normal male adult studied with the aid of isotopic nitrogen. J Biol Chem 172(1):45–58PubMed Hoberman HD, Sims EAH, Peters JH (1948) Creatine and creatinine metabolism in the normal male adult studied with the aid of isotopic nitrogen. J Biol Chem 172(1):45–58PubMed
go back to reference Hoglund PJ, Adzic D, Scicluna SJ, Lindblom J, Fredriksson R (2005) The repertoire of solute carriers of family 6: identification of new human and rodent genes. Biochem Biophys Res Commun 336(1):175–189PubMed Hoglund PJ, Adzic D, Scicluna SJ, Lindblom J, Fredriksson R (2005) The repertoire of solute carriers of family 6: identification of new human and rodent genes. Biochem Biophys Res Commun 336(1):175–189PubMed
go back to reference Hunter A (1928) Creatine and creatinine. Longmans, Green, London Hunter A (1928) Creatine and creatinine. Longmans, Green, London
go back to reference Ipsiroglu OS, Stromberger C, Ilas J, Hoger H, Muhl A, Stockler-Ipsiroglu S (2001) Changes of tissue creatine concentrations upon oral supplementation of creatine-monohydrate in various animal species. Life Sci 69(15):1805–1815PubMed Ipsiroglu OS, Stromberger C, Ilas J, Hoger H, Muhl A, Stockler-Ipsiroglu S (2001) Changes of tissue creatine concentrations upon oral supplementation of creatine-monohydrate in various animal species. Life Sci 69(15):1805–1815PubMed
go back to reference Iqbal F, Item CB, Ratschmann R et al (2011) Molecular analysis of guanidinoacetate-n-methyltransferase (GAMT) and creatine transporter (SLC6A8) gene by using denaturing high pressure liquid chromatography (DHPLC) as a possible source of human male infertility. Pak J Pharm Sci 24(1):75–79PubMed Iqbal F, Item CB, Ratschmann R et al (2011) Molecular analysis of guanidinoacetate-n-methyltransferase (GAMT) and creatine transporter (SLC6A8) gene by using denaturing high pressure liquid chromatography (DHPLC) as a possible source of human male infertility. Pak J Pharm Sci 24(1):75–79PubMed
go back to reference Item CB, Stockler-Ipsiroglu S, Stromberger C et al (2001) Arginine:glycine amidinotransferase deficiency: the third inborn error of creatine metabolism in humans. Am J Hum Genet 69(5):1127–1133PubMedCentralPubMed Item CB, Stockler-Ipsiroglu S, Stromberger C et al (2001) Arginine:glycine amidinotransferase deficiency: the third inborn error of creatine metabolism in humans. Am J Hum Genet 69(5):1127–1133PubMedCentralPubMed
go back to reference Iyer GS, Krahe R, Goodwin LA et al (1996) Identification of a testis-expressed creatine transporter gene at 16p11.2 and confirmation of the X-linked locus to Xq28. Genomics 34(1):143–146PubMed Iyer GS, Krahe R, Goodwin LA et al (1996) Identification of a testis-expressed creatine transporter gene at 16p11.2 and confirmation of the X-linked locus to Xq28. Genomics 34(1):143–146PubMed
go back to reference Joncquel-Chevalier Curt M, Cheillan D, Briand G et al (2013) Creatine and guanidinoacetate reference values in a French population. Mol Genet Metab 110(3):263–267PubMed Joncquel-Chevalier Curt M, Cheillan D, Briand G et al (2013) Creatine and guanidinoacetate reference values in a French population. Mol Genet Metab 110(3):263–267PubMed
go back to reference Kan HE, Renema WKJ, Isbrandt D, Heerschap A (2004) Phosphorylated guanidinoacetate partly compensates for the lack of phosphocreatine in skeletal muscle of mice lacking guanidinoacetate methyltransferase. J Physiol 560(Pt 1):219–229PubMedCentralPubMed Kan HE, Renema WKJ, Isbrandt D, Heerschap A (2004) Phosphorylated guanidinoacetate partly compensates for the lack of phosphocreatine in skeletal muscle of mice lacking guanidinoacetate methyltransferase. J Physiol 560(Pt 1):219–229PubMedCentralPubMed
go back to reference Kan HE, van der Graaf M, Klomp DWJ et al (2006) Intake of 13C-4 creatine enables simultaneous assessment of creatine and phosphocreatine pools in human skeletal muscle by 13C MR spectroscopy. Magn Reson Med 56(5):953–957PubMed Kan HE, van der Graaf M, Klomp DWJ et al (2006) Intake of 13C-4 creatine enables simultaneous assessment of creatine and phosphocreatine pools in human skeletal muscle by 13C MR spectroscopy. Magn Reson Med 56(5):953–957PubMed
go back to reference Kan HE, Meeuwissen E, van Asten JJ et al (2007) Creatine uptake in brain and skeletal muscle of mice lacking guanidinoacetate methyltransferase assessed by magnetic resonance spectroscopy. J Appl Physiol 102(6):2121–2127PubMed Kan HE, Meeuwissen E, van Asten JJ et al (2007) Creatine uptake in brain and skeletal muscle of mice lacking guanidinoacetate methyltransferase assessed by magnetic resonance spectroscopy. J Appl Physiol 102(6):2121–2127PubMed
go back to reference Kato H, Miyake F, Shimbo H et al (2013) Urine screening for patients with developmental disabilities detected a patient with creatine transporter deficiency due to a novel missense mutation in SLC6A8. Brain Dev doi:10.1016/j.braindev.2013.08.004 Kato H, Miyake F, Shimbo H et al (2013) Urine screening for patients with developmental disabilities detected a patient with creatine transporter deficiency due to a novel missense mutation in SLC6A8. Brain Dev doi:10.​1016/​j.​braindev.​2013.​08.​004
go back to reference Kleefstra T, Rosenberg EH, Salomons GS et al (2005) Progressive intestinal, neurological and psychiatric problems in two adult males with cerebral creatine deficiency caused by an SLC6A8 mutation. Clin Genet 68(4):379–381PubMed Kleefstra T, Rosenberg EH, Salomons GS et al (2005) Progressive intestinal, neurological and psychiatric problems in two adult males with cerebral creatine deficiency caused by an SLC6A8 mutation. Clin Genet 68(4):379–381PubMed
go back to reference Kloeckener-Gruissem B, Vandekerckhove K, Nurnberg G et al (2008) Mutation of solute carrier SLC16A12 associates with a syndrome combining juvenile cataract with microcornea and renal glucosuria. Am J Hum Genet 82(3):772–779PubMedCentralPubMed Kloeckener-Gruissem B, Vandekerckhove K, Nurnberg G et al (2008) Mutation of solute carrier SLC16A12 associates with a syndrome combining juvenile cataract with microcornea and renal glucosuria. Am J Hum Genet 82(3):772–779PubMedCentralPubMed
go back to reference Kristensen AS, Andersen J, Jorgensen TN et al (2011) SLC6 neurotransmitter transporters: structure, function, and regulation. Pharmacol Rev 63(3):585–640PubMed Kristensen AS, Andersen J, Jorgensen TN et al (2011) SLC6 neurotransmitter transporters: structure, function, and regulation. Pharmacol Rev 63(3):585–640PubMed
go back to reference Kurosawa Y, Degrauw TJ, Lindquist DM et al (2012) Cyclocreatine treatment improves cognition in mice with creatine transporter deficiency. J Clin Invest 122(8):2837–2846PubMedCentralPubMed Kurosawa Y, Degrauw TJ, Lindquist DM et al (2012) Cyclocreatine treatment improves cognition in mice with creatine transporter deficiency. J Clin Invest 122(8):2837–2846PubMedCentralPubMed
go back to reference Leuzzi V, Bianchi MC, Tosetti M et al (2000) Brain creatine depletion: guanidinoacetate methyltransferase deficiency (improving with creatine supplementation). Neurology 55(9):1407–1409PubMed Leuzzi V, Bianchi MC, Tosetti M et al (2000) Brain creatine depletion: guanidinoacetate methyltransferase deficiency (improving with creatine supplementation). Neurology 55(9):1407–1409PubMed
go back to reference Leuzzi V, Alessandri MG, Casarano M et al (2008) Arginine and glycine stimulate creatine synthesis in creatine transporter 1-deficient lymphoblasts. Anal Biochem 375(1):153–155PubMed Leuzzi V, Alessandri MG, Casarano M et al (2008) Arginine and glycine stimulate creatine synthesis in creatine transporter 1-deficient lymphoblasts. Anal Biochem 375(1):153–155PubMed
go back to reference Li H, Thali RF, Smolak C et al (2010) Regulation of the creatine transporter by AMP-activated protein kinase in kidney epithelial cells. Am J Physiol Renal Physiol 299(1):F167–F177PubMedCentralPubMed Li H, Thali RF, Smolak C et al (2010) Regulation of the creatine transporter by AMP-activated protein kinase in kidney epithelial cells. Am J Physiol Renal Physiol 299(1):F167–F177PubMedCentralPubMed
go back to reference Lion-Francois L, Cheillan D, Pitelet G et al (2006) High frequency of creatine deficiency syndromes in patients with unexplained mental retardation. Neurology 67(9):1713–1714PubMed Lion-Francois L, Cheillan D, Pitelet G et al (2006) High frequency of creatine deficiency syndromes in patients with unexplained mental retardation. Neurology 67(9):1713–1714PubMed
go back to reference Loike JD, Zalutsky DL, Kaback E, Miranda AF, Silverstein SC (1988) Extracellular creatine regulates creatine transport in rat and human muscle cells. Proc Natl Acad Sci U S A 85(3):807–811PubMedCentralPubMed Loike JD, Zalutsky DL, Kaback E, Miranda AF, Silverstein SC (1988) Extracellular creatine regulates creatine transport in rat and human muscle cells. Proc Natl Acad Sci U S A 85(3):807–811PubMedCentralPubMed
go back to reference Lunardi G, Parodi A, Perasso L et al (2006) The creatine transporter mediates the uptake of creatine by brain tissue, but not the uptake of two creatine-derived compounds. Neuroscience 142(4):991–997PubMed Lunardi G, Parodi A, Perasso L et al (2006) The creatine transporter mediates the uptake of creatine by brain tissue, but not the uptake of two creatine-derived compounds. Neuroscience 142(4):991–997PubMed
go back to reference Lygate CA, Aksentijevic D, Dawson D et al (2013) Living without creatine: unchanged exercise capacity and response to chronic myocardial infarction in creatine-deficient mice. Circ Res 112(6):945–955PubMed Lygate CA, Aksentijevic D, Dawson D et al (2013) Living without creatine: unchanged exercise capacity and response to chronic myocardial infarction in creatine-deficient mice. Circ Res 112(6):945–955PubMed
go back to reference Mak CSW, Waldvogel HJ, Dodd JR et al (2009) Immunohistochemical localisation of the creatine transporter in the rat brain. Neuroscience 163(2):571–585PubMed Mak CSW, Waldvogel HJ, Dodd JR et al (2009) Immunohistochemical localisation of the creatine transporter in the rat brain. Neuroscience 163(2):571–585PubMed
go back to reference Mancardi MM, Caruso U, Schiaffino MC et al (2007) Severe epilepsy in X-linked creatine transporter defect (CRTR-D). Epilepsia 48(6):1211–1213PubMed Mancardi MM, Caruso U, Schiaffino MC et al (2007) Severe epilepsy in X-linked creatine transporter defect (CRTR-D). Epilepsia 48(6):1211–1213PubMed
go back to reference Mancini GMS, Catsman-Berrevoets CE, de Coo IFM et al (2005) Two novel mutations in SLC6A8 cause creatine transporter defect and distinctive X-linked mental retardation in two unrelated Dutch families. Am J Med Genet A 132A(3):288–295PubMed Mancini GMS, Catsman-Berrevoets CE, de Coo IFM et al (2005) Two novel mutations in SLC6A8 cause creatine transporter defect and distinctive X-linked mental retardation in two unrelated Dutch families. Am J Med Genet A 132A(3):288–295PubMed
go back to reference Marescau B, Deshmukh DR, Kockx M et al (1992) Guanidino compounds in serum, urine, liver, kidney, and brain of man and some ureotelic animals. Metabolism 41(5):526–532PubMed Marescau B, Deshmukh DR, Kockx M et al (1992) Guanidino compounds in serum, urine, liver, kidney, and brain of man and some ureotelic animals. Metabolism 41(5):526–532PubMed
go back to reference Martinez-Munoz C, Rosenberg EH, Jakobs C, Salomons GS (2008) Identification, characterization and cloning of SLC6A8C, a novel splice variant of the creatine transporter gene. Gene 418(1–2):53–59PubMed Martinez-Munoz C, Rosenberg EH, Jakobs C, Salomons GS (2008) Identification, characterization and cloning of SLC6A8C, a novel splice variant of the creatine transporter gene. Gene 418(1–2):53–59PubMed
go back to reference McGuire DM, Gross MD, Van Pilsum JF et al (1984) Repression of rat kidney L-arginine:glycine amidinotransferase synthesis by creatine at a pretranslational level. J Biol Chem 259(19):12034–12038PubMed McGuire DM, Gross MD, Van Pilsum JF et al (1984) Repression of rat kidney L-arginine:glycine amidinotransferase synthesis by creatine at a pretranslational level. J Biol Chem 259(19):12034–12038PubMed
go back to reference Mencarelli MA, Tassini M, Pollazzon M et al (2011) Creatine transporter defect diagnosed by proton NMR spectroscopy in males with intellectual disability. Am J Med Genet A 155A(10):2446–2452PubMed Mencarelli MA, Tassini M, Pollazzon M et al (2011) Creatine transporter defect diagnosed by proton NMR spectroscopy in males with intellectual disability. Am J Med Genet A 155A(10):2446–2452PubMed
go back to reference Mercimek-Mahmutoglu S, Muehl A, Salomons G et al (2006) GAMT deficiency: features, treatment, and outcome in an inborn error of creatine synthesis. Neurology 67(3):480–484PubMed Mercimek-Mahmutoglu S, Muehl A, Salomons G et al (2006) GAMT deficiency: features, treatment, and outcome in an inborn error of creatine synthesis. Neurology 67(3):480–484PubMed
go back to reference Mercimek-Mahmutoglu S et al (2009) Screening for X-linked creatine transporter (SLC6A8) deficiency via simultaneous determination of urinary creatine to creatinine ratio by tandem mass-spectrometry. Mol Genet Metab 101:409–12 Mercimek-Mahmutoglu S et al (2009) Screening for X-linked creatine transporter (SLC6A8) deficiency via simultaneous determination of urinary creatine to creatinine ratio by tandem mass-spectrometry. Mol Genet Metab 101:409–12
go back to reference Mercimek-Mahmutoglu S, Connolly M, Poskitt K et al (2010) Treatment of intractable epilepsy in a female with SLC6A8 deficiency. Mol Genet Metab 101(4):409–412PubMed Mercimek-Mahmutoglu S, Connolly M, Poskitt K et al (2010) Treatment of intractable epilepsy in a female with SLC6A8 deficiency. Mol Genet Metab 101(4):409–412PubMed
go back to reference Mercimek-Mahmutoglu S, Al-Thihli K, Roland E (2012) Is low serum creatine kinase a nonspecific screening marker for creatine deficiency syndromes? Mol Genet Metab 106(2):251–252PubMed Mercimek-Mahmutoglu S, Al-Thihli K, Roland E (2012) Is low serum creatine kinase a nonspecific screening marker for creatine deficiency syndromes? Mol Genet Metab 106(2):251–252PubMed
go back to reference Mercimek-Mahmutoglu S, Ndika J, Kanhai W et al (2014) Thirteen new patients with guanidinoacetate methyltransferase deficiency and functional characterization of nineteen novel missense variants in the GAMT gene. Hum Mutat 35(4):462–469PubMed Mercimek-Mahmutoglu S, Ndika J, Kanhai W et al (2014) Thirteen new patients with guanidinoacetate methyltransferase deficiency and functional characterization of nineteen novel missense variants in the GAMT gene. Hum Mutat 35(4):462–469PubMed
go back to reference Möller A, Hamprecht B (1989) Creatine transport in cultured cells of rat and mouse brain. J Neurochem 52(2):544–550PubMed Möller A, Hamprecht B (1989) Creatine transport in cultured cells of rat and mouse brain. J Neurochem 52(2):544–550PubMed
go back to reference Morris AAM, Appleton RE, Power B et al (2007) Guanidinoacetate methyltransferase deficiency masquerading as a mitochondrial encephalopathy. J Inherit Metab Dis 30(1):100PubMed Morris AAM, Appleton RE, Power B et al (2007) Guanidinoacetate methyltransferase deficiency masquerading as a mitochondrial encephalopathy. J Inherit Metab Dis 30(1):100PubMed
go back to reference Moxon-Lester L, Takamoto K, Colditz PB et al (2009) S-adenosyl-L-methionine restores photoreceptor function following acute retinal ischemia. Vis Neurosci 26(5–6):429–441PubMed Moxon-Lester L, Takamoto K, Colditz PB et al (2009) S-adenosyl-L-methionine restores photoreceptor function following acute retinal ischemia. Vis Neurosci 26(5–6):429–441PubMed
go back to reference Nabuurs CI, Choe CU, Veltien A et al (2013) Disturbed energy metabolism and muscular dystrophy caused by pure creatine deficiency are reversible by creatine intake. J Physiol 591(Pt 2):571–592PubMedCentralPubMed Nabuurs CI, Choe CU, Veltien A et al (2013) Disturbed energy metabolism and muscular dystrophy caused by pure creatine deficiency are reversible by creatine intake. J Physiol 591(Pt 2):571–592PubMedCentralPubMed
go back to reference Nakashima T, Tomi M, Tachikawa M et al (2005) Evidence for creatine biosynthesis in Muller glia. Glia 52(1):47–52PubMed Nakashima T, Tomi M, Tachikawa M et al (2005) Evidence for creatine biosynthesis in Muller glia. Glia 52(1):47–52PubMed
go back to reference Nash SR, Giros B, Kingsmore SF et al (1994) Cloning, pharmacological characterization, and genomic localization of the human creatine transporter. Receptors Channels 2(2):165–174PubMed Nash SR, Giros B, Kingsmore SF et al (1994) Cloning, pharmacological characterization, and genomic localization of the human creatine transporter. Receptors Channels 2(2):165–174PubMed
go back to reference Nasrallah F, Feki M, Briand G, Kaabachi N (2010) GC/MS determination of guanidinoacetate and creatine in urine: A routine method for creatine deficiency syndrome diagnosis. Clin Biochem 43(16–17):1356–1361PubMed Nasrallah F, Feki M, Briand G, Kaabachi N (2010) GC/MS determination of guanidinoacetate and creatine in urine: A routine method for creatine deficiency syndrome diagnosis. Clin Biochem 43(16–17):1356–1361PubMed
go back to reference Nasrallah F, Kraoua I, Joncquel-Chevalier Curt M et al (2012) Guanidinoacetate methyltransferase (GAMT) deficiency in two Tunisian siblings: clinical and biochemical features. Clin Lab 58(5–6):427–432PubMed Nasrallah F, Kraoua I, Joncquel-Chevalier Curt M et al (2012) Guanidinoacetate methyltransferase (GAMT) deficiency in two Tunisian siblings: clinical and biochemical features. Clin Lab 58(5–6):427–432PubMed
go back to reference Ndika JDT, Johnston K, Barkovich JA et al (2012) Developmental progress and creatine restoration upon long-term creatine supplementation of a patient with arginine:glycine amidinotransferase deficiency. Mol Genet Metab 106(1):48–54PubMed Ndika JDT, Johnston K, Barkovich JA et al (2012) Developmental progress and creatine restoration upon long-term creatine supplementation of a patient with arginine:glycine amidinotransferase deficiency. Mol Genet Metab 106(1):48–54PubMed
go back to reference Ndika J, Lusink V, Beaubrun C et al (2013) Cloning and characterization of the promoter regions from the parent and paralogous creatine transporter genes. Gene 12(23):3681–8 Ndika J, Lusink V, Beaubrun C et al (2013) Cloning and characterization of the promoter regions from the parent and paralogous creatine transporter genes. Gene 12(23):3681–8
go back to reference Newmeyer A, Cecil KM, Schapiro M, Clark JF, Degrauw TJ (2005) Incidence of brain creatine transporter deficiency in males with developmental delay referred for brain magnetic resonance imaging. J Dev Behav Pediatr 26(4):276–282PubMed Newmeyer A, Cecil KM, Schapiro M, Clark JF, Degrauw TJ (2005) Incidence of brain creatine transporter deficiency in males with developmental delay referred for brain magnetic resonance imaging. J Dev Behav Pediatr 26(4):276–282PubMed
go back to reference Newmeyer A, de Grauw T, Clark J, Chuck G, Salomons G (2007) Screening of male patients with autism spectrum disorder for creatine transporter deficiency. Neuropediatrics 38(6):310–312PubMed Newmeyer A, de Grauw T, Clark J, Chuck G, Salomons G (2007) Screening of male patients with autism spectrum disorder for creatine transporter deficiency. Neuropediatrics 38(6):310–312PubMed
go back to reference Nouioua S, Cheillan D, Zaouidi S et al (2013) Creatine deficiency syndrome. A treatable myopathy due to arginine-glycine amidinotransferase (AGAT) deficiency. Neuromuscul Disord doi:10.1016/j.nmd.2013.04.011 Nouioua S, Cheillan D, Zaouidi S et al (2013) Creatine deficiency syndrome. A treatable myopathy due to arginine-glycine amidinotransferase (AGAT) deficiency. Neuromuscul Disord doi:10.​1016/​j.​nmd.​2013.​04.​011
go back to reference Odoom JE, Kemp GJ, Radda GK (1996) The regulation of total creatine content in a myoblast cell line. Mol Cell Biochem 158(2):179–188PubMed Odoom JE, Kemp GJ, Radda GK (1996) The regulation of total creatine content in a myoblast cell line. Mol Cell Biochem 158(2):179–188PubMed
go back to reference Ohtsuki S, Tachikawa M, Takanaga H et al (2002) The blood–brain barrier creatine transporter is a major pathway for supplying creatine to the brain. J Cereb Blood Flow Metab 22(11):1327–1335PubMed Ohtsuki S, Tachikawa M, Takanaga H et al (2002) The blood–brain barrier creatine transporter is a major pathway for supplying creatine to the brain. J Cereb Blood Flow Metab 22(11):1327–1335PubMed
go back to reference Omerovic E, Bollano E, Lorentzon M, Walser M, Mattsson-Hulten L, Isgaard J (2003) Growth hormone induces myocardial expression of creatine transporter and decreases plasma levels of IL-1beta in rats during early postinfarct cardiac remodeling. Growth Horm IGF Res 13(5):239–245PubMed Omerovic E, Bollano E, Lorentzon M, Walser M, Mattsson-Hulten L, Isgaard J (2003) Growth hormone induces myocardial expression of creatine transporter and decreases plasma levels of IL-1beta in rats during early postinfarct cardiac remodeling. Growth Horm IGF Res 13(5):239–245PubMed
go back to reference O'Rourke DJ, Ryan S, Salomons G et al (2009) Guanidinoacetate methyltransferase (GAMT) deficiency: late onset of movement disorder and preserved expressive language. Dev Med Child Neurol 51(5):404–407PubMed O'Rourke DJ, Ryan S, Salomons G et al (2009) Guanidinoacetate methyltransferase (GAMT) deficiency: late onset of movement disorder and preserved expressive language. Dev Med Child Neurol 51(5):404–407PubMed
go back to reference Orsenigo MN, Faelli A, De Biasi S et al (2005) Jejunal creatine absorption: what is the role of the basolateral membrane? J Membr Biol 207(3):183–195PubMed Orsenigo MN, Faelli A, De Biasi S et al (2005) Jejunal creatine absorption: what is the role of the basolateral membrane? J Membr Biol 207(3):183–195PubMed
go back to reference Osaka H, Takagi A, Tsuyusaki Y et al (2012) Contiguous deletion of SLC6A8 and BAP31 in a patient with severe dystonia and sensorineural deafness. Mol Genet Metab 106(1):43–47PubMed Osaka H, Takagi A, Tsuyusaki Y et al (2012) Contiguous deletion of SLC6A8 and BAP31 in a patient with severe dystonia and sensorineural deafness. Mol Genet Metab 106(1):43–47PubMed
go back to reference Peral MJ, Garcia-Delgado M, Calonge ML et al (2002) Human, rat and chicken small intestinal Na + − Cl- -creatine transporter: functional, molecular characterization and localization. J Physiol 545(Pt 1):133–144PubMedCentralPubMed Peral MJ, Garcia-Delgado M, Calonge ML et al (2002) Human, rat and chicken small intestinal Na + − Cl- -creatine transporter: functional, molecular characterization and localization. J Physiol 545(Pt 1):133–144PubMedCentralPubMed
go back to reference Peral MJ, Galvez M, Soria ML, Ilundain AA (2005) Developmental decrease in rat small intestinal creatine uptake. Mech Ageing Dev 126(4):523–530PubMed Peral MJ, Galvez M, Soria ML, Ilundain AA (2005) Developmental decrease in rat small intestinal creatine uptake. Mech Ageing Dev 126(4):523–530PubMed
go back to reference Peral MJ, Vazquez-Carretero MD, Ilundain AA (2010) Na(+)/Cl(−)/creatine transporter activity and expression in rat brain synaptosomes. Neuroscience 165(1):53–60PubMed Peral MJ, Vazquez-Carretero MD, Ilundain AA (2010) Na(+)/Cl(−)/creatine transporter activity and expression in rat brain synaptosomes. Neuroscience 165(1):53–60PubMed
go back to reference Perasso L, Cupello A, Lunardi GL, Principato C, Gandolfo C, Balestrino M (2003) Kinetics of creatine in blood and brain after intraperitoneal injection in the rat. Brain Res 974(1–2):37–42PubMed Perasso L, Cupello A, Lunardi GL, Principato C, Gandolfo C, Balestrino M (2003) Kinetics of creatine in blood and brain after intraperitoneal injection in the rat. Brain Res 974(1–2):37–42PubMed
go back to reference Perasso L, Adriano E, Ruggeri P et al (2009) In vivo neuroprotection by a creatine-derived compound: phosphocreatine-Mg-complex acetate. Brain Res 1285:158–163PubMed Perasso L, Adriano E, Ruggeri P et al (2009) In vivo neuroprotection by a creatine-derived compound: phosphocreatine-Mg-complex acetate. Brain Res 1285:158–163PubMed
go back to reference Poo-Arguelles P, Arias A, Vilaseca MA et al (2006) X-Linked creatine transporter deficiency in two patients with severe mental retardation and autism. J Inherit Metab Dis 29(1):220–223PubMed Poo-Arguelles P, Arias A, Vilaseca MA et al (2006) X-Linked creatine transporter deficiency in two patients with severe mental retardation and autism. J Inherit Metab Dis 29(1):220–223PubMed
go back to reference Pouwels PJ, Brockmann K, Kruse B et al (1999) Regional age dependence of human brain metabolites from infancy to adulthood as detected by quantitative localized proton MRS. Pediatr Res 46(4):474–485PubMed Pouwels PJ, Brockmann K, Kruse B et al (1999) Regional age dependence of human brain metabolites from infancy to adulthood as detected by quantitative localized proton MRS. Pediatr Res 46(4):474–485PubMed
go back to reference Puusepp H, Kall K, Salomons G et al (2009) The screening of SLC6A8 deficiency among Estonian families with X-linked mental retardation. J Inherit Metab Dis 33 Suppl 3:S5-11 Puusepp H, Kall K, Salomons G et al (2009) The screening of SLC6A8 deficiency among Estonian families with X-linked mental retardation. J Inherit Metab Dis 33 Suppl 3:S5-11
go back to reference Pyne-Geithman GJ, Degrauw TJ, Cecil KM et al (2004) Presence of normal creatine in the muscle of a patient with a mutation in the creatine transporter: a case study. Mol Cell Biochem 262(1–2):35–39PubMed Pyne-Geithman GJ, Degrauw TJ, Cecil KM et al (2004) Presence of normal creatine in the muscle of a patient with a mutation in the creatine transporter: a case study. Mol Cell Biochem 262(1–2):35–39PubMed
go back to reference Queiroz MS, Shao Y, Berkich DA, Lanoue KF, Ismail-Beigi F (2002) Thyroid hormone regulation of cardiac bioenergetics: role of intracellular creatine. Am J Physiol Heart Circ Physiol 283(6):H2527–H2533PubMed Queiroz MS, Shao Y, Berkich DA, Lanoue KF, Ismail-Beigi F (2002) Thyroid hormone regulation of cardiac bioenergetics: role of intracellular creatine. Am J Physiol Heart Circ Physiol 283(6):H2527–H2533PubMed
go back to reference Renema WKJ, Schmidt A, van Asten JJA et al (2003) MR spectroscopy of muscle and brain in guanidinoacetate methyltransferase (GAMT)-deficient mice: validation of an animal model to study creatine deficiency. Magn Reson Med 50(5):936–943PubMed Renema WKJ, Schmidt A, van Asten JJA et al (2003) MR spectroscopy of muscle and brain in guanidinoacetate methyltransferase (GAMT)-deficient mice: validation of an animal model to study creatine deficiency. Magn Reson Med 50(5):936–943PubMed
go back to reference Rosenberg EH, Almeida LS, Kleefstra T et al (2004) High prevalence of SLC6A8 deficiency in X-linked mental retardation. Am J Hum Genet 75(1):97–105PubMedCentralPubMed Rosenberg EH, Almeida LS, Kleefstra T et al (2004) High prevalence of SLC6A8 deficiency in X-linked mental retardation. Am J Hum Genet 75(1):97–105PubMedCentralPubMed
go back to reference Rosenberg EH, Martinez Munoz C, Betsalel OT et al (2007) Functional characterization of missense variants in the creatine transporter gene (SLC6A8): improved diagnostic application. Hum Mutat 28(9):890–896PubMed Rosenberg EH, Martinez Munoz C, Betsalel OT et al (2007) Functional characterization of missense variants in the creatine transporter gene (SLC6A8): improved diagnostic application. Hum Mutat 28(9):890–896PubMed
go back to reference Salomons GS, van Dooren SJ, Verhoeven NM et al (2001) X-linked creatine-transporter gene (SLC6A8) defect: a new creatine-deficiency syndrome. Am J Hum Genet 68(6):1497–1500PubMedCentralPubMed Salomons GS, van Dooren SJ, Verhoeven NM et al (2001) X-linked creatine-transporter gene (SLC6A8) defect: a new creatine-deficiency syndrome. Am J Hum Genet 68(6):1497–1500PubMedCentralPubMed
go back to reference Salomons GS, van Dooren SJM, Verhoeven NM et al (2003) X-linked creatine transporter defect: an overview. J Inherit Metab Dis 26(2–3):309–318PubMed Salomons GS, van Dooren SJM, Verhoeven NM et al (2003) X-linked creatine transporter defect: an overview. J Inherit Metab Dis 26(2–3):309–318PubMed
go back to reference Saltarelli MD, Bauman AL, Moore KR et al (1996) Expression of the rat brain creatine transporter in situ and in transfected HeLa cells. Dev Neurosci 18(5–6):524–534PubMed Saltarelli MD, Bauman AL, Moore KR et al (1996) Expression of the rat brain creatine transporter in situ and in transfected HeLa cells. Dev Neurosci 18(5–6):524–534PubMed
go back to reference Schiaffino MC, Bellini C, Costabello L et al (2005) X-linked creatine transporter deficiency: clinical description of a patient with a novel SLC6A8 gene mutation. Neurogenetics 6(3):165–168PubMed Schiaffino MC, Bellini C, Costabello L et al (2005) X-linked creatine transporter deficiency: clinical description of a patient with a novel SLC6A8 gene mutation. Neurogenetics 6(3):165–168PubMed
go back to reference Schloss P, Mayser W, Betz H (1994) The putative rat choline transporter CHOT1 transports creatine and is highly expressed in neural and muscle-rich tissues. Biochem Biophys Res Commun 198(2):637–645PubMed Schloss P, Mayser W, Betz H (1994) The putative rat choline transporter CHOT1 transports creatine and is highly expressed in neural and muscle-rich tissues. Biochem Biophys Res Commun 198(2):637–645PubMed
go back to reference Schmidt A, Marescau B, Boehm EA et al (2004) Severely altered guanidino compound levels, disturbed body weight homeostasis and impaired fertility in a mouse model of guanidinoacetate N-methyltransferase (GAMT) deficiency. Hum Mol Genet 13(9):905–921PubMed Schmidt A, Marescau B, Boehm EA et al (2004) Severely altered guanidino compound levels, disturbed body weight homeostasis and impaired fertility in a mouse model of guanidinoacetate N-methyltransferase (GAMT) deficiency. Hum Mol Genet 13(9):905–921PubMed
go back to reference Schulze A, Hess T, Wevers R et al (1997) Creatine deficiency syndrome caused by guanidinoacetate methyltransferase deficiency: diagnostic tools for a new inborn error of metabolism. J Pediatr 131(4):626–631PubMed Schulze A, Hess T, Wevers R et al (1997) Creatine deficiency syndrome caused by guanidinoacetate methyltransferase deficiency: diagnostic tools for a new inborn error of metabolism. J Pediatr 131(4):626–631PubMed
go back to reference Schulze A, Bachert P, Schlemmer H et al (2003) Lack of creatine in muscle and brain in an adult with GAMT deficiency. Ann Neurol 53(2):248–251PubMed Schulze A, Bachert P, Schlemmer H et al (2003) Lack of creatine in muscle and brain in an adult with GAMT deficiency. Ann Neurol 53(2):248–251PubMed
go back to reference Schulze A, Hoffmann GF, Bachert P et al (2006) Presymptomatic treatment of neonatal guanidinoacetate methyltransferase deficiency. Neurology 67(4):719–721PubMed Schulze A, Hoffmann GF, Bachert P et al (2006) Presymptomatic treatment of neonatal guanidinoacetate methyltransferase deficiency. Neurology 67(4):719–721PubMed
go back to reference Shojaiefard M, Christie DL, Lang F (2005) Stimulation of the creatine transporter SLC6A8 by the protein kinases SGK1 and SGK3. Biochem Biophys Res Commun 334(3):742–746PubMed Shojaiefard M, Christie DL, Lang F (2005) Stimulation of the creatine transporter SLC6A8 by the protein kinases SGK1 and SGK3. Biochem Biophys Res Commun 334(3):742–746PubMed
go back to reference Shojaiefard M, Christie DL, Lang F (2006) Stimulation of the creatine transporter SLC6A8 by the protein kinase mTOR. Biochem Biophys Res Commun 341(4):945–949PubMed Shojaiefard M, Christie DL, Lang F (2006) Stimulation of the creatine transporter SLC6A8 by the protein kinase mTOR. Biochem Biophys Res Commun 341(4):945–949PubMed
go back to reference Shojaiefard M, Hosseinzadeh Z, Bhavsar SK, Lang F (2012) Downregulation of the creatine transporter SLC6A8 by JAK2. J Membr Biol 245(3):157–163PubMed Shojaiefard M, Hosseinzadeh Z, Bhavsar SK, Lang F (2012) Downregulation of the creatine transporter SLC6A8 by JAK2. J Membr Biol 245(3):157–163PubMed
go back to reference Sijens PE, Verbruggen KT, Oudkerk M et al (2005) 1H MR spectroscopy of the brain in Cr transporter defect. Mol Genet Metab 86(3):421–422PubMed Sijens PE, Verbruggen KT, Oudkerk M et al (2005) 1H MR spectroscopy of the brain in Cr transporter defect. Mol Genet Metab 86(3):421–422PubMed
go back to reference Sitte HH, Farhan H, Javitch JA (2004) Sodium-dependent neurotransmitter transporters: oligomerization as a determinant of transporter function and trafficking. Mol Interv 4(1):38–47PubMed Sitte HH, Farhan H, Javitch JA (2004) Sodium-dependent neurotransmitter transporters: oligomerization as a determinant of transporter function and trafficking. Mol Interv 4(1):38–47PubMed
go back to reference Skelton MR, Schaefer TL, Graham DL et al (2011) Creatine transporter (CrT; Slc6a8) knockout mice as a model of human CrT deficiency. PLoS ONE 6(1):e16187PubMedCentralPubMed Skelton MR, Schaefer TL, Graham DL et al (2011) Creatine transporter (CrT; Slc6a8) knockout mice as a model of human CrT deficiency. PLoS ONE 6(1):e16187PubMedCentralPubMed
go back to reference Snow RJ, Murphy RM (2001) Creatine and the creatine transporter: a review. Mol Cell Biochem 224(1–2):169–181PubMed Snow RJ, Murphy RM (2001) Creatine and the creatine transporter: a review. Mol Cell Biochem 224(1–2):169–181PubMed
go back to reference Sora I, Richman J, Santoro G et al (1994) The cloning and expression of a human creatine transporter. Biochem Biophys Res Commun 204(1):419–427PubMed Sora I, Richman J, Santoro G et al (1994) The cloning and expression of a human creatine transporter. Biochem Biophys Res Commun 204(1):419–427PubMed
go back to reference Speer O, Neukomm LJ, Murphy RM et al (2004) Creatine transporters: a reappraisal. Mol Cell Biochem 256–257(1–2):407–424PubMed Speer O, Neukomm LJ, Murphy RM et al (2004) Creatine transporters: a reappraisal. Mol Cell Biochem 256–257(1–2):407–424PubMed
go back to reference Stead LM, Au KP, Jacobs RL, Brosnan ME, Brosnan JT (2001) Methylation demand and homocysteine metabolism: effects of dietary provision of creatine and guanidinoacetate. Am J Physiol Endocrinol Metab 281(5):E1095–E1100PubMed Stead LM, Au KP, Jacobs RL, Brosnan ME, Brosnan JT (2001) Methylation demand and homocysteine metabolism: effects of dietary provision of creatine and guanidinoacetate. Am J Physiol Endocrinol Metab 281(5):E1095–E1100PubMed
go back to reference Stead LM, Brosnan JT, Brosnan ME, Vance DE, Jacobs RL (2006) Is it time to reevaluate methyl balance in humans? Am J Clin Nutr 83(1):5–10PubMed Stead LM, Brosnan JT, Brosnan ME, Vance DE, Jacobs RL (2006) Is it time to reevaluate methyl balance in humans? Am J Clin Nutr 83(1):5–10PubMed
go back to reference Steenge GR, Lambourne J, Casey A, Macdonald IA, Greenhaff PL (1998) Stimulatory effect of insulin on creatine accumulation in human skeletal muscle. Am J Physiol 275(6 Pt 1):E974–E979PubMed Steenge GR, Lambourne J, Casey A, Macdonald IA, Greenhaff PL (1998) Stimulatory effect of insulin on creatine accumulation in human skeletal muscle. Am J Physiol 275(6 Pt 1):E974–E979PubMed
go back to reference Stockler S, Holzbach U, Hanefeld F et al (1994) Creatine deficiency in the brain: a new, treatable inborn error of metabolism. Pediatr Res 36(3):409–413PubMed Stockler S, Holzbach U, Hanefeld F et al (1994) Creatine deficiency in the brain: a new, treatable inborn error of metabolism. Pediatr Res 36(3):409–413PubMed
go back to reference Stockler S, Hanefeld F, Frahm J (1996) Creatine replacement therapy in guanidinoacetate methyltransferase deficiency, a novel inborn error of metabolism. Lancet 348(9030):789–790PubMed Stockler S, Hanefeld F, Frahm J (1996) Creatine replacement therapy in guanidinoacetate methyltransferase deficiency, a novel inborn error of metabolism. Lancet 348(9030):789–790PubMed
go back to reference Stockler-Ipsiroglu S, van Karnebeek C, Longo N et al (2014) Guanidinoacetate methyltransferase (GAMT) deficiency: outcomes in 48 individuals and recommendations for diagnosis, treatment and monitoring. Mol Genet Metab 111(1):16–25PubMed Stockler-Ipsiroglu S, van Karnebeek C, Longo N et al (2014) Guanidinoacetate methyltransferase (GAMT) deficiency: outcomes in 48 individuals and recommendations for diagnosis, treatment and monitoring. Mol Genet Metab 111(1):16–25PubMed
go back to reference Stromberger C, Bodamer OA, Stockler-Ipsiroglu S (2003) Clinical characteristics and diagnostic clues in inborn errors of creatine metabolism. J Inherit Metab Dis 26(2–3):299–308PubMed Stromberger C, Bodamer OA, Stockler-Ipsiroglu S (2003) Clinical characteristics and diagnostic clues in inborn errors of creatine metabolism. J Inherit Metab Dis 26(2–3):299–308PubMed
go back to reference Strutz-Seebohm N, Shojaiefard M, Christie D et al (2007) PIKfyve in the SGK1 mediated regulation of the creatine transporter SLC6A8. Cell Physiol Biochem 20(6):729–734PubMed Strutz-Seebohm N, Shojaiefard M, Christie D et al (2007) PIKfyve in the SGK1 mediated regulation of the creatine transporter SLC6A8. Cell Physiol Biochem 20(6):729–734PubMed
go back to reference Tachikawa M, Hosoya KI (2011) Transport characteristics of guanidino compounds at the blood–brain barrier and blood-cerebrospinal fluid barrier: relevance to neural disorders. Fluids Barriers CNS 8(1):13PubMedCentralPubMed Tachikawa M, Hosoya KI (2011) Transport characteristics of guanidino compounds at the blood–brain barrier and blood-cerebrospinal fluid barrier: relevance to neural disorders. Fluids Barriers CNS 8(1):13PubMedCentralPubMed
go back to reference Tachikawa M, Fukaya M, Terasaki T, Ohtsuki S, Watanabe M (2004) Distinct cellular expressions of creatine synthetic enzyme GAMT and creatine kinases uCK-Mi and CK-B suggest a novel neuron-glial relationship for brain energy homeostasis. Eur J Neurosci 20(1):144–160PubMed Tachikawa M, Fukaya M, Terasaki T, Ohtsuki S, Watanabe M (2004) Distinct cellular expressions of creatine synthetic enzyme GAMT and creatine kinases uCK-Mi and CK-B suggest a novel neuron-glial relationship for brain energy homeostasis. Eur J Neurosci 20(1):144–160PubMed
go back to reference Tachikawa M, Hosoya KI, Ohtsuki S, Terasaki T (2007) A novel relationship between creatine transport at the blood–brain and blood-retinal barriers, creatine biosynthesis, and its use for brain and retinal energy homeostasis. Subcell Biochem 46:83–98PubMed Tachikawa M, Hosoya KI, Ohtsuki S, Terasaki T (2007) A novel relationship between creatine transport at the blood–brain and blood-retinal barriers, creatine biosynthesis, and its use for brain and retinal energy homeostasis. Subcell Biochem 46:83–98PubMed
go back to reference Tachikawa M, Kasai Y, Yokoyama R (2009) The blood–brain barrier transport and cerebral distribution of guanidinoacetate in rats: involvement of creatine and taurine transporters. J Neurochem 111(2):499–509PubMed Tachikawa M, Kasai Y, Yokoyama R (2009) The blood–brain barrier transport and cerebral distribution of guanidinoacetate in rats: involvement of creatine and taurine transporters. J Neurochem 111(2):499–509PubMed
go back to reference Tarnopolsky M, Parise G, Fu MH (2003) Acute and moderate-term creatine monohydrate supplementation does not affect creatine transporter mRNA or protein content in either young or elderly humans. Mol Cell Biochem 244(1–2):159–166PubMed Tarnopolsky M, Parise G, Fu MH (2003) Acute and moderate-term creatine monohydrate supplementation does not affect creatine transporter mRNA or protein content in either young or elderly humans. Mol Cell Biochem 244(1–2):159–166PubMed
go back to reference Torremans A, Marescau B, Possemiers I (2005) Biochemical and behavioural phenotyping of a mouse model for GAMT deficiency. J Neurol Sci 231(1–2):49–55PubMed Torremans A, Marescau B, Possemiers I (2005) Biochemical and behavioural phenotyping of a mouse model for GAMT deficiency. J Neurol Sci 231(1–2):49–55PubMed
go back to reference Torres GE, Gainetdinov RR, Caron MG (2003) Plasma membrane monoamine transporters: structure, regulation and function. Nat Rev Neurosci 4(1):13–25PubMed Torres GE, Gainetdinov RR, Caron MG (2003) Plasma membrane monoamine transporters: structure, regulation and function. Nat Rev Neurosci 4(1):13–25PubMed
go back to reference Tosco M, Faelli A, Sironi C, Gastaldi G, Orsenigo MN (2004) A creatine transporter is operative at the brush border level of the rat jejunal enterocyte. J Membr Biol 202(2):85–95PubMed Tosco M, Faelli A, Sironi C, Gastaldi G, Orsenigo MN (2004) A creatine transporter is operative at the brush border level of the rat jejunal enterocyte. J Membr Biol 202(2):85–95PubMed
go back to reference Trotier-Faurion A, Dezard S, Taran F et al (2013) Synthesis and biological evaluation of new creatine Fatty esters revealed dodecyl creatine ester as a promising drug candidate for the treatment of the creatine transporter deficiency. J Med Chem 56(12):5173–5181PubMed Trotier-Faurion A, Dezard S, Taran F et al (2013) Synthesis and biological evaluation of new creatine Fatty esters revealed dodecyl creatine ester as a promising drug candidate for the treatment of the creatine transporter deficiency. J Med Chem 56(12):5173–5181PubMed
go back to reference Valayannopoulos V, Boddaert N, Chabli A et al (2012) Treatment by oral creatine, L-arginine and L-glycine in six severely affected patients with creatine transporter defect. J Inherit Metab Dis 35(1):151–157PubMed Valayannopoulos V, Boddaert N, Chabli A et al (2012) Treatment by oral creatine, L-arginine and L-glycine in six severely affected patients with creatine transporter defect. J Inherit Metab Dis 35(1):151–157PubMed
go back to reference Valayannopoulos V, Bakouh N, Mazzuca M et al (2013) Functional and electrophysiological characterization of four non-truncating mutations responsible for creatine transporter (SLC6A8) deficiency syndrome. J Inherit Metab Dis 36(1):103–112PubMed Valayannopoulos V, Bakouh N, Mazzuca M et al (2013) Functional and electrophysiological characterization of four non-truncating mutations responsible for creatine transporter (SLC6A8) deficiency syndrome. J Inherit Metab Dis 36(1):103–112PubMed
go back to reference Valongo C, Cardoso ML, Domingues P et al (2004) Age related reference values for urine creatine and guanidinoacetic acid concentration in children and adolescents by gas chromatography–mass spectrometry. Clin Chim Acta 348(1–2):155–161PubMed Valongo C, Cardoso ML, Domingues P et al (2004) Age related reference values for urine creatine and guanidinoacetic acid concentration in children and adolescents by gas chromatography–mass spectrometry. Clin Chim Acta 348(1–2):155–161PubMed
go back to reference van de Kamp JM, Mancini GMS, Pouwels PJW et al (2011) Clinical features and X-inactivation in females heterozygous for creatine transporter defect. Clin Genet 79(3):264–272PubMed van de Kamp JM, Mancini GMS, Pouwels PJW et al (2011) Clinical features and X-inactivation in females heterozygous for creatine transporter defect. Clin Genet 79(3):264–272PubMed
go back to reference van de Kamp JM, Pouwels PJW, Aarsen FK (2012) Long-term follow-up and treatment in nine boys with X-linked creatine transporter defect. J Inherit Metab Dis 35(1):141–149PubMedCentralPubMed van de Kamp JM, Pouwels PJW, Aarsen FK (2012) Long-term follow-up and treatment in nine boys with X-linked creatine transporter defect. J Inherit Metab Dis 35(1):141–149PubMedCentralPubMed
go back to reference van de Kamp JM, Betsalel OT, Mercimek-Mahmutoglu S et al (2013a) Phenotype and genotype in 101 males with X-linked creatine transporter deficiency. J Med Genet 50(7):463–472PubMed van de Kamp JM, Betsalel OT, Mercimek-Mahmutoglu S et al (2013a) Phenotype and genotype in 101 males with X-linked creatine transporter deficiency. J Med Genet 50(7):463–472PubMed
go back to reference van de Kamp JM, Jakobs C, Gibson KM, Salomons GS (2013b) New insights into creatine transporter deficiency: the importance of recycling creatine in the brain. J Inherit Metab Dis 36(1):155–156PubMed van de Kamp JM, Jakobs C, Gibson KM, Salomons GS (2013b) New insights into creatine transporter deficiency: the importance of recycling creatine in the brain. J Inherit Metab Dis 36(1):155–156PubMed
go back to reference van de Kamp JM, Errami A, Howidi M et al (2014) Genotype–phenotype correlation of contiguous gene deletions of SLC6A8,BCAP31 and ABCD1. Clin Genet doi:10.1111/cge.12355 van de Kamp JM, Errami A, Howidi M et al (2014) Genotype–phenotype correlation of contiguous gene deletions of SLC6A8,BCAP31 and ABCD1. Clin Genet doi:10.​1111/​cge.​12355
go back to reference van der Knaap MS, Verhoeven NM, Maaswinkel-Mooij P et al (2000) Mental retardation and behavioral problems as presenting signs of a creatine synthesis defect. Ann Neurol 47(4):540–543PubMed van der Knaap MS, Verhoeven NM, Maaswinkel-Mooij P et al (2000) Mental retardation and behavioral problems as presenting signs of a creatine synthesis defect. Ann Neurol 47(4):540–543PubMed
go back to reference Van Pilsum JF, Olsen B, Taylor D, Rozycki T, Pierce JC et al (1963) Transamidinase activities, in vitro, of tissues from various mammals and from rats fed protein-free, creatine-supplemented and normal diets. Arch Biochem Biophys 100:520–524 Van Pilsum JF, Olsen B, Taylor D, Rozycki T, Pierce JC et al (1963) Transamidinase activities, in vitro, of tissues from various mammals and from rats fed protein-free, creatine-supplemented and normal diets. Arch Biochem Biophys 100:520–524
go back to reference Van Pilsum JF, Stephens GC, Taylor D (1972) Distribution of creatine, guanidinoacetate and the enzymes for their biosynthesis in the animal kingdom. Implications for phylogeny. Biochem J 126(2):325–345PubMedCentral Van Pilsum JF, Stephens GC, Taylor D (1972) Distribution of creatine, guanidinoacetate and the enzymes for their biosynthesis in the animal kingdom. Implications for phylogeny. Biochem J 126(2):325–345PubMedCentral
go back to reference Verbruggen KT, Knijff WA, Soorani-Lunsing RJ et al (2007a) Global developmental delay in guanidionacetate methyltransferase deficiency: differences in formal testing and clinical observation. Eur J Pediatr 166(9):921–925PubMed Verbruggen KT, Knijff WA, Soorani-Lunsing RJ et al (2007a) Global developmental delay in guanidionacetate methyltransferase deficiency: differences in formal testing and clinical observation. Eur J Pediatr 166(9):921–925PubMed
go back to reference Verbruggen KT, Sijens PE, Schulze A et al (2007b) Successful treatment of a guanidinoacetate methyltransferase deficient patient: findings with relevance to treatment strategy and pathophysiology. Mol Genet Metab 91(3):294–296PubMed Verbruggen KT, Sijens PE, Schulze A et al (2007b) Successful treatment of a guanidinoacetate methyltransferase deficient patient: findings with relevance to treatment strategy and pathophysiology. Mol Genet Metab 91(3):294–296PubMed
go back to reference Verhoeven NM, Guerand WS, Struys EA, Bouman AA, van der Knaap MS, Jakobs C (2000) Plasma creatinine assessment in creatine deficiency: a diagnostic pitfall. J Inherit Metab Dis 23(8):835–840PubMed Verhoeven NM, Guerand WS, Struys EA, Bouman AA, van der Knaap MS, Jakobs C (2000) Plasma creatinine assessment in creatine deficiency: a diagnostic pitfall. J Inherit Metab Dis 23(8):835–840PubMed
go back to reference Verhoeven NM, Salomons GS, Jakobs C (2005) Laboratory diagnosis of defects of creatine biosynthesis and transport. Clin Chim Acta 361(1–2):1–9PubMed Verhoeven NM, Salomons GS, Jakobs C (2005) Laboratory diagnosis of defects of creatine biosynthesis and transport. Clin Chim Acta 361(1–2):1–9PubMed
go back to reference Verma A (2010) Arginine:glycine amidinotransferase deficiency: a treatable metabolic encephalomyopathy. Neurology 75(2):186–188PubMed Verma A (2010) Arginine:glycine amidinotransferase deficiency: a treatable metabolic encephalomyopathy. Neurology 75(2):186–188PubMed
go back to reference Villar C, Campistol J, Fons C et al (2012) Glycine and L-arginine treatment causes hyperhomocysteinemia in cerebral creatine transporter deficiency patients. JIMD Rep 4:13–16PubMedCentralPubMed Villar C, Campistol J, Fons C et al (2012) Glycine and L-arginine treatment causes hyperhomocysteinemia in cerebral creatine transporter deficiency patients. JIMD Rep 4:13–16PubMedCentralPubMed
go back to reference Vodopiutz J, Item CB, Hausler M, Korall H, Bodamer OA (2007) Severe speech delay as the presenting symptom of guanidinoacetate methyltransferase deficiency. J Child Neurol 22(6):773–774PubMed Vodopiutz J, Item CB, Hausler M, Korall H, Bodamer OA (2007) Severe speech delay as the presenting symptom of guanidinoacetate methyltransferase deficiency. J Child Neurol 22(6):773–774PubMed
go back to reference Walker JB (1979) Creatine: biosynthesis, regulation, and function. Adv Enzymol Relat Areas Mol Biol 50:177–242PubMed Walker JB (1979) Creatine: biosynthesis, regulation, and function. Adv Enzymol Relat Areas Mol Biol 50:177–242PubMed
go back to reference Wallimann T, Tokarska-Schlattner M, Schlattner U (2011) The creatine kinase system and pleiotropic effects of creatine. Amino Acids 40(5):1271–1296PubMedCentralPubMed Wallimann T, Tokarska-Schlattner M, Schlattner U (2011) The creatine kinase system and pleiotropic effects of creatine. Amino Acids 40(5):1271–1296PubMedCentralPubMed
go back to reference Wallis J, Lygate CA, Fischer A et al (2005) Supranormal myocardial creatine and phosphocreatine concentrations lead to cardiac hypertrophy and heart failure: insights from creatine transporter-overexpressing transgenic mice. Circulation 112(20):3131–3139PubMed Wallis J, Lygate CA, Fischer A et al (2005) Supranormal myocardial creatine and phosphocreatine concentrations lead to cardiac hypertrophy and heart failure: insights from creatine transporter-overexpressing transgenic mice. Circulation 112(20):3131–3139PubMed
go back to reference Wyss M, Kaddurah-Daouk R (2000) Creatine and creatinine metabolism. Physiol Rev 80(3):1107–1213PubMed Wyss M, Kaddurah-Daouk R (2000) Creatine and creatinine metabolism. Physiol Rev 80(3):1107–1213PubMed
go back to reference Yamashita A, Singh SK, Kawate T, Jin Y, Gouaux E et al (2005) Crystal structure of a bacterial homologue of Na+/Cl–dependent neurotransmitter transporters. Nature 437(7056):215–223PubMed Yamashita A, Singh SK, Kawate T, Jin Y, Gouaux E et al (2005) Crystal structure of a bacterial homologue of Na+/Cl–dependent neurotransmitter transporters. Nature 437(7056):215–223PubMed
go back to reference Zuercher J, Neidhardt J, Magyar I et al (2010) Alterations of the 5’untranslated region of SLC16A12 lead to age-related cataract. Invest Ophthalmol Vis Sci 51(7):3354–3361PubMedCentralPubMed Zuercher J, Neidhardt J, Magyar I et al (2010) Alterations of the 5’untranslated region of SLC16A12 lead to age-related cataract. Invest Ophthalmol Vis Sci 51(7):3354–3361PubMedCentralPubMed
Metadata
Title
X-linked creatine transporter deficiency: clinical aspects and pathophysiology
Authors
Jiddeke M. van de Kamp
Grazia M. Mancini
Gajja S. Salomons
Publication date
01-09-2014
Publisher
Springer Netherlands
Published in
Journal of Inherited Metabolic Disease / Issue 5/2014
Print ISSN: 0141-8955
Electronic ISSN: 1573-2665
DOI
https://doi.org/10.1007/s10545-014-9713-8

Other articles of this Issue 5/2014

Journal of Inherited Metabolic Disease 5/2014 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.