Skip to main content
Top
Published in: Journal of Inherited Metabolic Disease 6/2012

01-11-2012 | Original Article

Urinary AASA excretion is elevated in patients with molybdenum cofactor deficiency and isolated sulphite oxidase deficiency

Authors: Philippa B. Mills, Emma J. Footitt, Serkan Ceyhan, Paula J. Waters, Cornelis Jakobs, Peter T. Clayton, Eduard A. Struys

Published in: Journal of Inherited Metabolic Disease | Issue 6/2012

Login to get access

Abstract

Analysis of α-aminoadipic semialdehyde is an important tool in the diagnosis of antiquitin deficiency (pyridoxine-dependent epilepsy). However continuing use of this test has revealed that elevated urinary excretion of α-aminoadipic semialdehyde is not only found in patients with pyridoxine-dependent epilepsy but is also seen in patients with molybdenum cofactor deficiency and isolated sulphite oxidase deficiency. This should be taken into account when interpreting the laboratory data. Sulphite was shown to inhibit α-aminoadipic semialdehyde dehydrogenase in vitro.
Literature
go back to reference Calabrese E, Sacco C, Moore G, DiNardi S (1981) Sulfite oxidase deficiency: a high risk factor in SO2, sulfite, and bisulfite toxicity? Med Hypotheses 7:133–145PubMedCrossRef Calabrese E, Sacco C, Moore G, DiNardi S (1981) Sulfite oxidase deficiency: a high risk factor in SO2, sulfite, and bisulfite toxicity? Med Hypotheses 7:133–145PubMedCrossRef
go back to reference Chang YE (1978) Lysine metabolism in the rat brain: the pipecolic acid-forming pathway. J Neurochem 30:347–354PubMedCrossRef Chang YE (1978) Lysine metabolism in the rat brain: the pipecolic acid-forming pathway. J Neurochem 30:347–354PubMedCrossRef
go back to reference Ciaccio EI (1966) The inhibition of lactate dehydrogenase by 3-acetylpyridine adenine dinucleotide and bisulfite. J Biol Chem 241:1581–1586PubMed Ciaccio EI (1966) The inhibition of lactate dehydrogenase by 3-acetylpyridine adenine dinucleotide and bisulfite. J Biol Chem 241:1581–1586PubMed
go back to reference Dodt G, Kim DG, Reimann SA, Reuber BE, McCabe K, Gould SJ, Mihalik SJ (2000) L-Pipecolic acid oxidase, a human enzyme essential for the degradation of L-pipecolic acid, is most similar to the monomeric sarcosine oxidases. Biochem J 345:487–494PubMedCrossRef Dodt G, Kim DG, Reimann SA, Reuber BE, McCabe K, Gould SJ, Mihalik SJ (2000) L-Pipecolic acid oxidase, a human enzyme essential for the degradation of L-pipecolic acid, is most similar to the monomeric sarcosine oxidases. Biochem J 345:487–494PubMedCrossRef
go back to reference Footitt EJ, Heales SJ, Mills PB, Allen GF, Oppenheim M, Clayton PT (2011) Pyridoxal 5′-phosphate in cerebrospinal fluid; factors affecting concentration. J Inherit Metab Dis 34:529–538PubMedCrossRef Footitt EJ, Heales SJ, Mills PB, Allen GF, Oppenheim M, Clayton PT (2011) Pyridoxal 5′-phosphate in cerebrospinal fluid; factors affecting concentration. J Inherit Metab Dis 34:529–538PubMedCrossRef
go back to reference Heales S, Hyland K (1989) Determination of quinonoid dihydrobiopterin by high-performance liquid chromatography and electrochemical detection. J Chromatogr 494:77–85PubMedCrossRef Heales S, Hyland K (1989) Determination of quinonoid dihydrobiopterin by high-performance liquid chromatography and electrochemical detection. J Chromatogr 494:77–85PubMedCrossRef
go back to reference Houtkooper RH, Cantó C, Wanders RJ, Auwerx J (2010) The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. Endocr Rev 31:194–223PubMedCrossRef Houtkooper RH, Cantó C, Wanders RJ, Auwerx J (2010) The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. Endocr Rev 31:194–223PubMedCrossRef
go back to reference Johnson JL, Duran M (2011) Molybdenum cofactor deficiency and isolated sulfite oxidase deficiency. In: Valle D, Beaudet, Vogelstein, Kinzler, Antonarakis Ballabio (eds) The online metabolic & molecular bases of inherited disease, Ch 128 Johnson JL, Duran M (2011) Molybdenum cofactor deficiency and isolated sulfite oxidase deficiency. In: Valle D, Beaudet, Vogelstein, Kinzler, Antonarakis Ballabio (eds) The online metabolic & molecular bases of inherited disease, Ch 128
go back to reference Johnson SL, Smith KW (1976) The interaction of borate and sulphite with pyridine nucleotides. Biochemistry 15:553–559PubMedCrossRef Johnson SL, Smith KW (1976) The interaction of borate and sulphite with pyridine nucleotides. Biochemistry 15:553–559PubMedCrossRef
go back to reference Kasahara T, Kato T (2003) Nutritional biochemistry: A new redox-cofactor vitamin for mammals. Nature 422:832PubMedCrossRef Kasahara T, Kato T (2003) Nutritional biochemistry: A new redox-cofactor vitamin for mammals. Nature 422:832PubMedCrossRef
go back to reference Kimura M, Kanehira K, Yokoi K (1996) Highly sensitive and simple liquid chromatographic determination in plasma of B6 vitamers, especially pyridoxal 5′-phosphate. J Chromatogr A 722:295–301PubMedCrossRef Kimura M, Kanehira K, Yokoi K (1996) Highly sensitive and simple liquid chromatographic determination in plasma of B6 vitamers, especially pyridoxal 5′-phosphate. J Chromatogr A 722:295–301PubMedCrossRef
go back to reference Mills PB, Struys E, Jakobs C, Plecko B, Baxter P, Baumgartner M, Willemsen MA, Omran H, Tacke U, Uhlenberg B, Weschke B, Clayton PT (2006) Mutations in antiquitin in individuals with pyridoxine-dependent seizures. Nat Med 12:307–309PubMedCrossRef Mills PB, Struys E, Jakobs C, Plecko B, Baxter P, Baumgartner M, Willemsen MA, Omran H, Tacke U, Uhlenberg B, Weschke B, Clayton PT (2006) Mutations in antiquitin in individuals with pyridoxine-dependent seizures. Nat Med 12:307–309PubMedCrossRef
go back to reference Mills PB, Footitt EJ, Mills KA, Tuschl K, Aylett S, Varadkar S, Hemingway C, Marlow N, Rennie J, Baxter P, Dulac O, Nabbout R, Craigen WJ, Schmitt B, Feillet F, Christensen E, De Lonlay P, Pike MG, Hughes MI, Struys EA, Jakobs C, Zuberi SM, Clayton PT (2010) Genotypic and phenotypic spectrum of pyridoxine-dependent epilepsy (ALDH7A1 deficiency). Brain 133:2148–2159PubMedCrossRef Mills PB, Footitt EJ, Mills KA, Tuschl K, Aylett S, Varadkar S, Hemingway C, Marlow N, Rennie J, Baxter P, Dulac O, Nabbout R, Craigen WJ, Schmitt B, Feillet F, Christensen E, De Lonlay P, Pike MG, Hughes MI, Struys EA, Jakobs C, Zuberi SM, Clayton PT (2010) Genotypic and phenotypic spectrum of pyridoxine-dependent epilepsy (ALDH7A1 deficiency). Brain 133:2148–2159PubMedCrossRef
go back to reference Peduto A, Baumgartner MR, Verhoeven NM, Rabier D, Spada M, Nassogne MC, Poll-The BT, Bonetti G, Jakobs C, Saudubray JM (2004) Hyperpipecolic acidaemia: a diagnostic tool for peroxisomal disorders. Mol Genet Metab 82:224–230PubMedCrossRef Peduto A, Baumgartner MR, Verhoeven NM, Rabier D, Spada M, Nassogne MC, Poll-The BT, Bonetti G, Jakobs C, Saudubray JM (2004) Hyperpipecolic acidaemia: a diagnostic tool for peroxisomal disorders. Mol Genet Metab 82:224–230PubMedCrossRef
go back to reference Plecko B, Hikel C, Korenke GC, Schmitt B, Baumgartner M, Baumeister F, Jakobs C, Struys E, Erwa W, Stöckler-Ipsiroglu S (2005) Pipecolic acid as a diagnostic marker of pyridoxine-dependent epilepsy. Neuropediatrics 36:200–205PubMedCrossRef Plecko B, Hikel C, Korenke GC, Schmitt B, Baumgartner M, Baumeister F, Jakobs C, Struys E, Erwa W, Stöckler-Ipsiroglu S (2005) Pipecolic acid as a diagnostic marker of pyridoxine-dependent epilepsy. Neuropediatrics 36:200–205PubMedCrossRef
go back to reference Sauer SW, Opp S, Hoffmann GF, Koeller DM, Okun JG, Kölker S (2011) Therapeutic modulation of cerebral L-lysine metabolism in a mouse model for glutaric aciduria type I. Brain 134:157–170PubMedCrossRef Sauer SW, Opp S, Hoffmann GF, Koeller DM, Okun JG, Kölker S (2011) Therapeutic modulation of cerebral L-lysine metabolism in a mouse model for glutaric aciduria type I. Brain 134:157–170PubMedCrossRef
go back to reference Struys EA, Jakobs C (2010) Metabolism of lysine in alpha-aminoadipic semialdehyde dehydrogenase-deficient fibroblasts: evidence for an alternative pathway of pipecolic acid formation. FEBS Lett 584:181–186PubMedCrossRef Struys EA, Jakobs C (2010) Metabolism of lysine in alpha-aminoadipic semialdehyde dehydrogenase-deficient fibroblasts: evidence for an alternative pathway of pipecolic acid formation. FEBS Lett 584:181–186PubMedCrossRef
go back to reference Tan WH, Eichler FS, Hoda S, Lee MS, Baris H, Hanley CA, Grant PE, Krishnamoorthy KS, Shih VE (2005) Isolated sulfite oxidase deficiency: a case report with a novel mutation and review of the literature. Pediatrics 116:757–766PubMedCrossRef Tan WH, Eichler FS, Hoda S, Lee MS, Baris H, Hanley CA, Grant PE, Krishnamoorthy KS, Shih VE (2005) Isolated sulfite oxidase deficiency: a case report with a novel mutation and review of the literature. Pediatrics 116:757–766PubMedCrossRef
go back to reference Tang WK, Cheng CH, Fong WP (2002) First purification of the antiquitin protein and demonstration of its enzymatic activity. FEBS Lett 516:183–186PubMedCrossRef Tang WK, Cheng CH, Fong WP (2002) First purification of the antiquitin protein and demonstration of its enzymatic activity. FEBS Lett 516:183–186PubMedCrossRef
go back to reference Tuazon PT, Johnson SL (1977) Free radical and ionic reaction of bisulfite with reduced nicotinamide adenine dinucleotide and its analogues. Biochemistry 16:1183–1888PubMedCrossRef Tuazon PT, Johnson SL (1977) Free radical and ionic reaction of bisulfite with reduced nicotinamide adenine dinucleotide and its analogues. Biochemistry 16:1183–1888PubMedCrossRef
go back to reference Veldman A, Santamaria-Araujo JA, Sollazzo S, Pitt J, Gianello R, Yaplito-Lee J, Wong F, Ramsden CA, Reiss J, Cook I, Fairweather J, Schwarz G (2010) Successful treatment of molybdenum cofactor deficiency type A with cPMP. Pediatrics 125:e1249–1254PubMedCrossRef Veldman A, Santamaria-Araujo JA, Sollazzo S, Pitt J, Gianello R, Yaplito-Lee J, Wong F, Ramsden CA, Reiss J, Cook I, Fairweather J, Schwarz G (2010) Successful treatment of molybdenum cofactor deficiency type A with cPMP. Pediatrics 125:e1249–1254PubMedCrossRef
go back to reference Zhang X, Vincent AS, Halliwell B, Wong KP (2004) A mechanism of sulfite neurotoxicity: direct inhibition of glutamate dehydrogenase. J Biol Chem 279:43035–43045PubMedCrossRef Zhang X, Vincent AS, Halliwell B, Wong KP (2004) A mechanism of sulfite neurotoxicity: direct inhibition of glutamate dehydrogenase. J Biol Chem 279:43035–43045PubMedCrossRef
Metadata
Title
Urinary AASA excretion is elevated in patients with molybdenum cofactor deficiency and isolated sulphite oxidase deficiency
Authors
Philippa B. Mills
Emma J. Footitt
Serkan Ceyhan
Paula J. Waters
Cornelis Jakobs
Peter T. Clayton
Eduard A. Struys
Publication date
01-11-2012
Publisher
Springer Netherlands
Published in
Journal of Inherited Metabolic Disease / Issue 6/2012
Print ISSN: 0141-8955
Electronic ISSN: 1573-2665
DOI
https://doi.org/10.1007/s10545-012-9466-1

Other articles of this Issue 6/2012

Journal of Inherited Metabolic Disease 6/2012 Go to the issue