Skip to main content
Top
Published in: Journal of Inherited Metabolic Disease 1/2012

01-01-2012 | Original Article

Combined OXPHOS complex I and IV defect, due to mutated complex I assembly factor C20ORF7

Authors: Ann Saada, Shimon Edvardson, Avraham Shaag, Wendy K. Chung, Reeval Segel, Chaya Miller, Chaim Jalas, Orly Elpeleg

Published in: Journal of Inherited Metabolic Disease | Issue 1/2012

Login to get access

Abstract

Defects of the mitochondrial oxidative phosphorylation (OXPHOS) system are frequent causes of neurological disorders in children. Linkage analysis and DNA sequencing identified a new founder p.G250V substitution in the C20ORF7 complex I chaperone in five Ashkenazi Jewish patients from two families with a combined OXPHOS complex I and IV defect presenting with Leigh's syndrome in infancy. Complementation with the wild type gene restored complex I, but only partially complex IV activity. Although the pathogenic mechanism remains elusive, a C20ORF7 defect should be considered not only in isolated complex I deficiency, but also in combination with decreased complex IV. Given the significant 1:290 carrier rate for the p.G250V mutation among Ashkenazi Jews, this mutation should be screened in all Ashkenazi patients with Leigh's syndrome prior to muscle biopsy.
Appendix
Available only for authorised users
Literature
go back to reference Barghuti F, Elian K, Gomori JM et al. (2008) The unique neuroradiology of complex I deficiency due to NDUFA12L defect. Mol Genet Metab 94:78–82PubMedCrossRef Barghuti F, Elian K, Gomori JM et al. (2008) The unique neuroradiology of complex I deficiency due to NDUFA12L defect. Mol Genet Metab 94:78–82PubMedCrossRef
go back to reference Calvo SE, Tucker EJ, Compton AG et al. (2010) High-throughput, pooled sequencing identifies mutations in NUBPL and FOXRED1 in human complex I deficiency. Nat Genet 42:851–858PubMedCrossRef Calvo SE, Tucker EJ, Compton AG et al. (2010) High-throughput, pooled sequencing identifies mutations in NUBPL and FOXRED1 in human complex I deficiency. Nat Genet 42:851–858PubMedCrossRef
go back to reference Carroll J, Fearnley IM, Skehel JM et al. (2005) The post-translational modifications of the nuclear encoded subunits of complex I from bovine heart mitochondria. Mol Cell Proteomics 4:693–699PubMedCrossRef Carroll J, Fearnley IM, Skehel JM et al. (2005) The post-translational modifications of the nuclear encoded subunits of complex I from bovine heart mitochondria. Mol Cell Proteomics 4:693–699PubMedCrossRef
go back to reference Carroll J, Fearnley IM, Skehel JM, Shannon RJ, Hirst J, Walker JE (2006) Bovine complex I is a complex of 45 different subunits. J Biol Chem 281:32724–132727PubMedCrossRef Carroll J, Fearnley IM, Skehel JM, Shannon RJ, Hirst J, Walker JE (2006) Bovine complex I is a complex of 45 different subunits. J Biol Chem 281:32724–132727PubMedCrossRef
go back to reference Dunning CJ, McKenzie M, Sugiana C (2007) Human CIA30 is involved in the early assembly of mitochondrial complex I and mutations in its gene cause disease. EMBO J 26:3227–3237PubMedCrossRef Dunning CJ, McKenzie M, Sugiana C (2007) Human CIA30 is involved in the early assembly of mitochondrial complex I and mutations in its gene cause disease. EMBO J 26:3227–3237PubMedCrossRef
go back to reference Edvardson S, Shaag A, Kolesnikova O et al. (2007) Deleterious mutation in the mitochondrial arginyl-transfer RNA synthetase gene is associated with pontocerebellar hypoplasia. Am J Hum Genet 81:857–862PubMedCrossRef Edvardson S, Shaag A, Kolesnikova O et al. (2007) Deleterious mutation in the mitochondrial arginyl-transfer RNA synthetase gene is associated with pontocerebellar hypoplasia. Am J Hum Genet 81:857–862PubMedCrossRef
go back to reference Fassone E, Duncan AJ, Taanman JW, Pagnamenta AT, Sadowski MI, Holand T, Qasim W, Rutland P, Calvo SE, Mootha VK, Bitner-Glindzicz M, Rahman S (2010) FOXRED1, encoding an FAD-dependent oxidoreductase complex-I-specific molecular chaperone, is mutated in infantile-onset mitochondrial encephalopathy. Hum Mol Genet 19:4837–4847PubMedCrossRef Fassone E, Duncan AJ, Taanman JW, Pagnamenta AT, Sadowski MI, Holand T, Qasim W, Rutland P, Calvo SE, Mootha VK, Bitner-Glindzicz M, Rahman S (2010) FOXRED1, encoding an FAD-dependent oxidoreductase complex-I-specific molecular chaperone, is mutated in infantile-onset mitochondrial encephalopathy. Hum Mol Genet 19:4837–4847PubMedCrossRef
go back to reference Gerards M, Sluiter W, van den Bosch BJ et al. (2010) Defective complex I assembly due to C20orf7 mutations as a new cause of Leigh syndrome. J Med Genet 47:507–551PubMedCrossRef Gerards M, Sluiter W, van den Bosch BJ et al. (2010) Defective complex I assembly due to C20orf7 mutations as a new cause of Leigh syndrome. J Med Genet 47:507–551PubMedCrossRef
go back to reference Gerards M, van den Bosch BJ, Danhauser K, Serre V, van Weeghel M, Wanders RJ, Nicolaes GA, Sluiter W, Schoonderwoerd K, Scholte HR, Prokisch H, Rötig A, de Coo IF, Smeets HJ (2011) Riboflavin-responsive oxidative phosphorylation complex I deficiency caused by defective ACAD9: new function for an old gene. Brain 134:210–209PubMedCrossRef Gerards M, van den Bosch BJ, Danhauser K, Serre V, van Weeghel M, Wanders RJ, Nicolaes GA, Sluiter W, Schoonderwoerd K, Scholte HR, Prokisch H, Rötig A, de Coo IF, Smeets HJ (2011) Riboflavin-responsive oxidative phosphorylation complex I deficiency caused by defective ACAD9: new function for an old gene. Brain 134:210–209PubMedCrossRef
go back to reference Haack TB, Danhauser K, Haberberger B et al. (2010) Exome sequencing identifies ACAD9 mutations as a cause of complex I deficiency. Nat Genet 42:1131–1134PubMedCrossRef Haack TB, Danhauser K, Haberberger B et al. (2010) Exome sequencing identifies ACAD9 mutations as a cause of complex I deficiency. Nat Genet 42:1131–1134PubMedCrossRef
go back to reference Janssen RJ, Nijtmans LG, van den Heuvel LP, Smeitink JA (2006) Mitochondrial complex I: structure, function and pathology. J Inherit Metab Dis 29:499–51PubMedCrossRef Janssen RJ, Nijtmans LG, van den Heuvel LP, Smeitink JA (2006) Mitochondrial complex I: structure, function and pathology. J Inherit Metab Dis 29:499–51PubMedCrossRef
go back to reference Jones CN, Miller C, Tenenbaum A, Spremulli LL, Saada A (2009) Antibiotic effects on mitochondrial translation and in patients with mitochondrial translational defects. Mitochondrion 9:429–437PubMedCrossRef Jones CN, Miller C, Tenenbaum A, Spremulli LL, Saada A (2009) Antibiotic effects on mitochondrial translation and in patients with mitochondrial translational defects. Mitochondrion 9:429–437PubMedCrossRef
go back to reference Kirby DM, Crawford M, Cleary MA, Dahl HH, Dennett X, Thorburn DR (1999) Respiratory chain complex I deficiency: an underdiagnosed energy generation isorder. Neurology 52:1255–1264PubMed Kirby DM, Crawford M, Cleary MA, Dahl HH, Dennett X, Thorburn DR (1999) Respiratory chain complex I deficiency: an underdiagnosed energy generation isorder. Neurology 52:1255–1264PubMed
go back to reference Lazarou M, Thorburn DR, Ryan MT, McKenzie M (2009) Assembly of mitochondrial complex I and defects in disease. Biochim Biophys Acta 1793:78–88PubMedCrossRef Lazarou M, Thorburn DR, Ryan MT, McKenzie M (2009) Assembly of mitochondrial complex I and defects in disease. Biochim Biophys Acta 1793:78–88PubMedCrossRef
go back to reference Mckenzie M, Ryan MT (2010) Assembly factors of human mitochondrial complex I and their defects in disease. IUBMB Life 62:497–502PubMedCrossRef Mckenzie M, Ryan MT (2010) Assembly factors of human mitochondrial complex I and their defects in disease. IUBMB Life 62:497–502PubMedCrossRef
go back to reference Nouws J, Nijtmans L, Houten SM et al. (2010) Acyl-CoA dehydrogenase 9 is required for the biogenesis of oxidative phosphorylation complex I. Cell Metab 12:283–294PubMedCrossRef Nouws J, Nijtmans L, Houten SM et al. (2010) Acyl-CoA dehydrogenase 9 is required for the biogenesis of oxidative phosphorylation complex I. Cell Metab 12:283–294PubMedCrossRef
go back to reference Ogilvie I, Kennaway NG, Shoubridge EA (2005) A molecular chaperone for mitochondrial complex I assembly is mutated in a progressive encephalopathy. J Clin Invest 115:2784–2792PubMedCrossRef Ogilvie I, Kennaway NG, Shoubridge EA (2005) A molecular chaperone for mitochondrial complex I assembly is mutated in a progressive encephalopathy. J Clin Invest 115:2784–2792PubMedCrossRef
go back to reference Pagliarini DJ, Calvo SE, Chang B et al. (2008) A mitochondrial protein compendium elucidates complex I disease biology. Cell 134:112–12324PubMedCrossRef Pagliarini DJ, Calvo SE, Chang B et al. (2008) A mitochondrial protein compendium elucidates complex I disease biology. Cell 134:112–12324PubMedCrossRef
go back to reference Pogozelski WK, Hamel CJ, Woeller CF et al. (2003) Quantification of total mitochondrial DNA and the 4977-bp common deletion in Pearson's syndrome lymphoblasts using a fluorogenic 5'-nuclease (TaqMan) real-time polymerase chain reaction assay and plasmid external calibration standards. Mitochondrion 2:415–427PubMedCrossRef Pogozelski WK, Hamel CJ, Woeller CF et al. (2003) Quantification of total mitochondrial DNA and the 4977-bp common deletion in Pearson's syndrome lymphoblasts using a fluorogenic 5'-nuclease (TaqMan) real-time polymerase chain reaction assay and plasmid external calibration standards. Mitochondrion 2:415–427PubMedCrossRef
go back to reference Saada A, Bar-Meir M, Belaiche C, Miller C, Elpeleg O (2004) Evaluation of enzymatic assays and compounds affecting ATP production in mitochondrial respiratory chain complex I deficiency. Anal Biochem 335:66–72PubMedCrossRef Saada A, Bar-Meir M, Belaiche C, Miller C, Elpeleg O (2004) Evaluation of enzymatic assays and compounds affecting ATP production in mitochondrial respiratory chain complex I deficiency. Anal Biochem 335:66–72PubMedCrossRef
go back to reference Saada A, Edvardson S, Rapoport M et al. (2008) C6ORF66 is an assembly factor of mitochondrial complex I. Am J Hum Genet 82:32–38PubMedCrossRef Saada A, Edvardson S, Rapoport M et al. (2008) C6ORF66 is an assembly factor of mitochondrial complex I. Am J Hum Genet 82:32–38PubMedCrossRef
go back to reference Saada A, Vogel RO, Hoefs SJ et al. (2009) Mutations in NDUFAF3 (C3ORF60), encoding an NDUFAF4 (C6ORF66)-interacting complex I assembly protein, cause fatal neonatal mitochondrial disease. Am J Hum Genet 84:718–727PubMedCrossRef Saada A, Vogel RO, Hoefs SJ et al. (2009) Mutations in NDUFAF3 (C3ORF60), encoding an NDUFAF4 (C6ORF66)-interacting complex I assembly protein, cause fatal neonatal mitochondrial disease. Am J Hum Genet 84:718–727PubMedCrossRef
go back to reference Schaefer AM, McFarland R, Blakely EL et al. (2008) Prevalence of mitochondrial DNA disease in adults. Ann Neurol 63:35–39PubMedCrossRef Schaefer AM, McFarland R, Blakely EL et al. (2008) Prevalence of mitochondrial DNA disease in adults. Ann Neurol 63:35–39PubMedCrossRef
go back to reference Sheftel AD, Stehling O, Pierik AJ et al. (2009) Human ind1, an iron-sulfur cluster assembly factor for respiratory complex I. Mol Cell Biol 29:6059–6073PubMedCrossRef Sheftel AD, Stehling O, Pierik AJ et al. (2009) Human ind1, an iron-sulfur cluster assembly factor for respiratory complex I. Mol Cell Biol 29:6059–6073PubMedCrossRef
go back to reference Skladal D, Halliday J, Thorburn DR (2003) Minimum birth prevalence of mitochondrial respiratory chain disorders in children. Brain 126:1905–1912PubMedCrossRef Skladal D, Halliday J, Thorburn DR (2003) Minimum birth prevalence of mitochondrial respiratory chain disorders in children. Brain 126:1905–1912PubMedCrossRef
go back to reference Sugiana C, Pagliarini DJ, McKenzie M et al. (2008) Mutation of C20orf7 disrupts complex I assembly and causes lethal neonatal mitochondrial disease. Am J Hum Genet 83:468–478PubMedCrossRef Sugiana C, Pagliarini DJ, McKenzie M et al. (2008) Mutation of C20orf7 disrupts complex I assembly and causes lethal neonatal mitochondrial disease. Am J Hum Genet 83:468–478PubMedCrossRef
go back to reference Vince JE, Wong WW, Khan N et al. (2007) IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis. Cell 131:682–693PubMedCrossRef Vince JE, Wong WW, Khan N et al. (2007) IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis. Cell 131:682–693PubMedCrossRef
Metadata
Title
Combined OXPHOS complex I and IV defect, due to mutated complex I assembly factor C20ORF7
Authors
Ann Saada
Shimon Edvardson
Avraham Shaag
Wendy K. Chung
Reeval Segel
Chaya Miller
Chaim Jalas
Orly Elpeleg
Publication date
01-01-2012
Publisher
Springer Netherlands
Published in
Journal of Inherited Metabolic Disease / Issue 1/2012
Print ISSN: 0141-8955
Electronic ISSN: 1573-2665
DOI
https://doi.org/10.1007/s10545-011-9348-y

Other articles of this Issue 1/2012

Journal of Inherited Metabolic Disease 1/2012 Go to the issue