Skip to main content
Top
Published in: Journal of Inherited Metabolic Disease 6/2010

01-12-2010 | Editorial

Advances and challenges in phenylketonuria

Authors: Cary O. Harding, Nenad Blau

Published in: Journal of Inherited Metabolic Disease | Issue 6/2010

Login to get access

Excerpt

Phenylketonuria (PKU; OMIM 262600), one of the most common inborn errors of metabolism, is caused by recessively inherited deficiency of the enzyme phenylalanine hydroxylase (PAH; EC 1.14.16.1) (Blau et al. 2010). PAH catalyses the irreversible hydroxylation of phenylalanine (Phe) to tyrosine. PAH is expressed primarily in the liver but also in the kidney and pancreas, and its activity requires the unconjugated pterin co-factor, tetrahydrobiopterin (BH4). PAH deficiency causes hyperphenylalaninaemia, but hyperphenylalaninaemia can also be caused by inherited deficiency of enzymes involved in BH4 synthesis or recycling (Blau et al. 2010). Chronic, untreated, severe hyperphenylalaninaemia in infants and children leads to seizures and mental retardation. Newborn screening and early initiation of PKU therapy has eliminated the major manifestations of the disease, but shortcomings in our current therapeutic approach remain. …
Literature
go back to reference Anon (2001) National institutes of health consensus development conference statement: phenylketonuria: screening and management, October 16–18, 2000. Pediatrics 108(4): 972–982 Anon (2001) National institutes of health consensus development conference statement: phenylketonuria: screening and management, October 16–18, 2000. Pediatrics 108(4): 972–982
go back to reference Azen C et al (1996) Summary of findings from the United States collaborative study of children treated for phenylketonuria. Eur J Pediatr 155 Suppl 1:S29–S32CrossRefPubMed Azen C et al (1996) Summary of findings from the United States collaborative study of children treated for phenylketonuria. Eur J Pediatr 155 Suppl 1:S29–S32CrossRefPubMed
go back to reference Blau N (2010) Sapropterin dihydrochloride for phenylketonuria and tetrahydrobiopterin deficiency. Expert Rev Endocrinol Metab 5(4):483–494CrossRef Blau N (2010) Sapropterin dihydrochloride for phenylketonuria and tetrahydrobiopterin deficiency. Expert Rev Endocrinol Metab 5(4):483–494CrossRef
go back to reference Blau N et al (2009) Optimizing the use of sapropterin (BH4) in the management of phenylketonuria. Mol Genet Metab 96:158–163CrossRefPubMed Blau N et al (2009) Optimizing the use of sapropterin (BH4) in the management of phenylketonuria. Mol Genet Metab 96:158–163CrossRefPubMed
go back to reference Blau N et al (2004) The metabolic and molecular bases of tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency. Mol Genet Metab 82:101–111CrossRefPubMed Blau N et al (2004) The metabolic and molecular bases of tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency. Mol Genet Metab 82:101–111CrossRefPubMed
go back to reference Blau N et al. (2001) Disorders of tetrahydrobiopterin and related biogenic amines. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease. New York, McGraw-Hill, pp 1725–1776 Blau N et al. (2001) Disorders of tetrahydrobiopterin and related biogenic amines. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease. New York, McGraw-Hill, pp 1725–1776
go back to reference Ding Z et al (2006) Administration-route and gender-independent long-term therapeutic correction of phenylketonuria (PKU) in a mouse model by recombinant adeno-associated virus 8 pseudotyped vector-mediated gene transfer. Gene Ther 13(7):587–593CrossRefPubMed Ding Z et al (2006) Administration-route and gender-independent long-term therapeutic correction of phenylketonuria (PKU) in a mouse model by recombinant adeno-associated virus 8 pseudotyped vector-mediated gene transfer. Gene Ther 13(7):587–593CrossRefPubMed
go back to reference Ding Z et al (2008) Correction of murine PKU following AAV-mediated intramuscular expression of a complete phenylalanine hydroxylating system. Mol Ther 16(4):673–681CrossRefPubMed Ding Z et al (2008) Correction of murine PKU following AAV-mediated intramuscular expression of a complete phenylalanine hydroxylating system. Mol Ther 16(4):673–681CrossRefPubMed
go back to reference Fang B et al (1994) Gene therapy for phenylketonuria: phenotypic correction in a genetically deficient mouse model by adenovirus-mediated hepatic gene therapy. Gene Ther 1:247–254PubMed Fang B et al (1994) Gene therapy for phenylketonuria: phenotypic correction in a genetically deficient mouse model by adenovirus-mediated hepatic gene therapy. Gene Ther 1:247–254PubMed
go back to reference Fiege B et al (2007) Assessment of tetrahydrobiopterin (BH4)-responsiveness in phenylketonuria. J Pediatr 150:627–630CrossRefPubMed Fiege B et al (2007) Assessment of tetrahydrobiopterin (BH4)-responsiveness in phenylketonuria. J Pediatr 150:627–630CrossRefPubMed
go back to reference Gersting SW et al (2008) Loss of function in phenylketonuria is caused by impaired molecular motions and conformational instability. Am J Hum Genet 83(1):5–17CrossRefPubMed Gersting SW et al (2008) Loss of function in phenylketonuria is caused by impaired molecular motions and conformational instability. Am J Hum Genet 83(1):5–17CrossRefPubMed
go back to reference Hamman K et al (2005) Low therapeutic threshold for hepatocyte replacement in murine phenylketonuria. Mol Ther 12(2):337–344CrossRefPubMed Hamman K et al (2005) Low therapeutic threshold for hepatocyte replacement in murine phenylketonuria. Mol Ther 12(2):337–344CrossRefPubMed
go back to reference Harding C (2008) Progress toward cell-directed therapy for phenylketonuria. Clin Genet 74(2):97–104CrossRefPubMed Harding C (2008) Progress toward cell-directed therapy for phenylketonuria. Clin Genet 74(2):97–104CrossRefPubMed
go back to reference Harding CO (2010) New era in treatment for phenylketonuria: pharmacologic therapy with sapropterin dihydrochloride. Biologics 4:231–236PubMed Harding CO (2010) New era in treatment for phenylketonuria: pharmacologic therapy with sapropterin dihydrochloride. Biologics 4:231–236PubMed
go back to reference Harding CO et al. (2010) Therapeutic liver repopulation for phenylketonuria. J Inherit Metab Dis (in press) Harding CO et al. (2010) Therapeutic liver repopulation for phenylketonuria. J Inherit Metab Dis (in press)
go back to reference Harding CO et al (2006) Complete correction of hyperphenylalaninemia following liver-directed, recombinant AAV2/8 vector-mediated gene therapy in murine phenylketonuria. Gene Ther 13(5):457–462CrossRefPubMed Harding CO et al (2006) Complete correction of hyperphenylalaninemia following liver-directed, recombinant AAV2/8 vector-mediated gene therapy in murine phenylketonuria. Gene Ther 13(5):457–462CrossRefPubMed
go back to reference Kure S et al (1999) Tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency. J Pediatr 135(3):375–378CrossRefPubMed Kure S et al (1999) Tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency. J Pediatr 135(3):375–378CrossRefPubMed
go back to reference Levy HL et al (2003) Pregnancy experiences in the woman with mild hyperphenylalaninemia. Pediatrics 112(6 Pt 2):1548–1552PubMed Levy HL et al (2003) Pregnancy experiences in the woman with mild hyperphenylalaninemia. Pediatrics 112(6 Pt 2):1548–1552PubMed
go back to reference McDonald JD et al (2002) The phenylketonuria mouse model: a meeting review. Mol Genet Metab 76(4):256–261CrossRefPubMed McDonald JD et al (2002) The phenylketonuria mouse model: a meeting review. Mol Genet Metab 76(4):256–261CrossRefPubMed
go back to reference McDonald JD et al (1997) Characterization of mutations at the mouse phenylalanine hydroxylase locus. Genomics 39(3):402–405CrossRefPubMed McDonald JD et al (1997) Characterization of mutations at the mouse phenylalanine hydroxylase locus. Genomics 39(3):402–405CrossRefPubMed
go back to reference Pey AL et al (2004) Mechanisms underlying responsiveness to tetrahydrobiopterin in mild phenylketonuria mutations. Hum Mutat 24(5):388–399CrossRefPubMed Pey AL et al (2004) Mechanisms underlying responsiveness to tetrahydrobiopterin in mild phenylketonuria mutations. Hum Mutat 24(5):388–399CrossRefPubMed
go back to reference Pey AL et al (2007) Predicted effects of missense mutations on native-state stability account for phenotypic outcome in phenylketonuria, a paradigm of misfolding diseases. Am J Hum Genet 81(5):1006–1024CrossRefPubMed Pey AL et al (2007) Predicted effects of missense mutations on native-state stability account for phenotypic outcome in phenylketonuria, a paradigm of misfolding diseases. Am J Hum Genet 81(5):1006–1024CrossRefPubMed
go back to reference Rebuffat A et al (2010) Comparison of adeno-associated virus pseudotype 1, 2, and 8 vectors administered by intramuscular injection in the treatment of murine phenylketonuria. Hum Gene Ther 21(4):463–477CrossRefPubMed Rebuffat A et al (2010) Comparison of adeno-associated virus pseudotype 1, 2, and 8 vectors administered by intramuscular injection in the treatment of murine phenylketonuria. Hum Gene Ther 21(4):463–477CrossRefPubMed
go back to reference Sarkissian CN et al (2005) Phenylalanine ammonia lyase, enzyme substitution therapy for phenylketonuria, where are we now? Mol Genet Metab 86 Suppl 1:S22–S26CrossRefPubMed Sarkissian CN et al (2005) Phenylalanine ammonia lyase, enzyme substitution therapy for phenylketonuria, where are we now? Mol Genet Metab 86 Suppl 1:S22–S26CrossRefPubMed
go back to reference Sarkissian CN et al (2008) Preclinical evaluation of multiple species of PEGylated recombinant phenylalanine ammonia lyase for the treatment of phenylketonuria. Proc Natl Acad Sci USA 105(52):20894–20899CrossRefPubMed Sarkissian CN et al (2008) Preclinical evaluation of multiple species of PEGylated recombinant phenylalanine ammonia lyase for the treatment of phenylketonuria. Proc Natl Acad Sci USA 105(52):20894–20899CrossRefPubMed
go back to reference Thöny B et al (2000) Tetrahydrobiopterin biosynthesis, regeneration, and functions. Biochem J 347:1–26CrossRefPubMed Thöny B et al (2000) Tetrahydrobiopterin biosynthesis, regeneration, and functions. Biochem J 347:1–26CrossRefPubMed
go back to reference Thöny B et al (2006) Mutations in the BH4-metabolizing genes GTP cyclohydroalse I, 6-pyruvoyl-tetrahydropterin synthase, sepiapterin reductase, carbinolamine-4a-dehydratase, and dihydropteridine reductase genes. Human Mutat 27:870–878CrossRef Thöny B et al (2006) Mutations in the BH4-metabolizing genes GTP cyclohydroalse I, 6-pyruvoyl-tetrahydropterin synthase, sepiapterin reductase, carbinolamine-4a-dehydratase, and dihydropteridine reductase genes. Human Mutat 27:870–878CrossRef
go back to reference Woo SL et al (1983) Cloned human phenylalanine hydroxylase gene allows prenatal diagnosis and carrier detection of classical phenylketonuria. Nature 306(5939):151–155CrossRefPubMed Woo SL et al (1983) Cloned human phenylalanine hydroxylase gene allows prenatal diagnosis and carrier detection of classical phenylketonuria. Nature 306(5939):151–155CrossRefPubMed
Metadata
Title
Advances and challenges in phenylketonuria
Authors
Cary O. Harding
Nenad Blau
Publication date
01-12-2010
Publisher
Springer Netherlands
Published in
Journal of Inherited Metabolic Disease / Issue 6/2010
Print ISSN: 0141-8955
Electronic ISSN: 1573-2665
DOI
https://doi.org/10.1007/s10545-010-9247-7

Other articles of this Issue 6/2010

Journal of Inherited Metabolic Disease 6/2010 Go to the issue