Skip to main content
Top
Published in: Journal of Inherited Metabolic Disease 3/2010

01-12-2010 | Research Report

A neonatal-onset succinyl-CoA:3-ketoacid CoA transferase (SCOT)-deficient patient with T435N and c.658-666dupAACGTGATT p.N220_I222dup mutations in the OXCT1 gene

Authors: Toshiyuki Fukao, Tomohiro Ishii, Naoko Amano, Petri Kursula, Masaki Takayanagi, Keiko Murase, Naomi Sakaguchi, Naomi Kondo, Tomonobu Hasegawa

Published in: Journal of Inherited Metabolic Disease | Special Issue 3/2010

Login to get access

Abstract

Succinyl-CoA:3-ketoacid CoA transferase (SCOT) deficiency causes episodic ketoacidotic crises and no apparent symptoms between them. Here, we report a Japanese case of neonatal-onset SCOT deficiency. The male patient presented a severe ketoacidotic crisis, with blood pH of 7.072 and bicarbonate of 5.8 mmol/L at the age of 2 days and was successfully treated with intravenous infusion of glucose and sodium bicarbonate. He was diagnosed as SCOT deficient by enzymatic assay and mutation analysis. At the age of 7 months, he developed a second ketoacidotic crisis, with blood pH of 7.059, bicarbonate of 5.4 mmol/L, and total ketone bodies of 29.1 mmol/L. He experienced two milder ketoacidotic crises at the ages of 1 year and 7 months and 3 years and 7 months. His urinary ketone bodies usually range from negative to 1+ but sometimes show 3+ (ketostix) without any symptoms. Hence, this patient does not show permanent ketonuria, which is characteristic of typical SCOT-deficient patients. He is a compound heterozygote of c.1304C > A (T435N) and c.658-666dupAACGTGATT p.N220_I222dup. mutations in the OXCT1 gene. The T435N mutation was previously reported as one which retained significant residual activity. The latter novel mutation was revealed to retain no residual activity by transient expression analysis. Both T435N and N220_I222 lie close to the SCOT dimerization interface and are not directly connected to the active site in the tertiary structure of a human SCOT dimer. In transient expression analysis, no apparent interallelic complementation or dominant negative effects were observed. Significant residual activity from the T435N mutant allele may prevent the patient from developing permanent ketonuria.
Literature
go back to reference Adams PD, Afonine PV, Bunkoczi G et al (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66:213–221PubMedCrossRef Adams PD, Afonine PV, Bunkoczi G et al (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66:213–221PubMedCrossRef
go back to reference Berry GT, Fukao T, Mitchell GA et al (2001) Neonatal hypoglycaemia in severe succinyl-CoA: 3-oxoacid CoA-transferase deficiency. J Inherit Metab Dis 24:587–595PubMedCrossRef Berry GT, Fukao T, Mitchell GA et al (2001) Neonatal hypoglycaemia in severe succinyl-CoA: 3-oxoacid CoA-transferase deficiency. J Inherit Metab Dis 24:587–595PubMedCrossRef
go back to reference Bonnefont JP, Specola NB, Vassault A et al (1990) The fasting test in paediatrics: application to the diagnosis of pathological hypo- and hyperketotic states. Eur J Pediatr 150:80–85PubMedCrossRef Bonnefont JP, Specola NB, Vassault A et al (1990) The fasting test in paediatrics: application to the diagnosis of pathological hypo- and hyperketotic states. Eur J Pediatr 150:80–85PubMedCrossRef
go back to reference Cornblath M, Gingell RL, Fleming GA, Tildon JT, Leffler AT, Wapnir RA (1971) A new syndrome of ketoacidosis in infancy. J Pediatr 79:413–418PubMedCrossRef Cornblath M, Gingell RL, Fleming GA, Tildon JT, Leffler AT, Wapnir RA (1971) A new syndrome of ketoacidosis in infancy. J Pediatr 79:413–418PubMedCrossRef
go back to reference Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126–2132PubMedCrossRef Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126–2132PubMedCrossRef
go back to reference Fukao T, Song XQ, Watanabe H et al (1996) Prenatal diagnosis of succinyl-coenzyme A:3-ketoacid coenzyme A transferase deficiency. Prenat Diagn 16:471–474PubMedCrossRef Fukao T, Song XQ, Watanabe H et al (1996) Prenatal diagnosis of succinyl-coenzyme A:3-ketoacid coenzyme A transferase deficiency. Prenat Diagn 16:471–474PubMedCrossRef
go back to reference Fukao T, Song XQ, Mitchell GA et al (1997) Enzymes of ketone body utilization in human tissues: protein and messenger RNA levels of succinyl-coenzyme A (CoA):3-ketoacid CoA transferase and mitochondrial and cytosolic acetoacetyl-CoA thiolases. Pediatr Res 42:498–502PubMedCrossRef Fukao T, Song XQ, Mitchell GA et al (1997) Enzymes of ketone body utilization in human tissues: protein and messenger RNA levels of succinyl-coenzyme A (CoA):3-ketoacid CoA transferase and mitochondrial and cytosolic acetoacetyl-CoA thiolases. Pediatr Res 42:498–502PubMedCrossRef
go back to reference Fukao T, Mitchell GA, Song XQ et al (2000) Succinyl-CoA:3-ketoacid CoA transferase (SCOT): cloning of the human SCOT gene, tertiary structural modeling of the human SCOT monomer, and characterization of three pathogenic mutations. Genomics 68:144–151PubMedCrossRef Fukao T, Mitchell GA, Song XQ et al (2000) Succinyl-CoA:3-ketoacid CoA transferase (SCOT): cloning of the human SCOT gene, tertiary structural modeling of the human SCOT monomer, and characterization of three pathogenic mutations. Genomics 68:144–151PubMedCrossRef
go back to reference Fukao T, Shintaku H, Kusubae R et al (2004) Patients homozygous for the T435N mutation of succinyl-CoA:3-ketoacid CoA Transferase (SCOT) do not show permanent ketosis. Pediatr Res 56:858–863PubMedCrossRef Fukao T, Shintaku H, Kusubae R et al (2004) Patients homozygous for the T435N mutation of succinyl-CoA:3-ketoacid CoA Transferase (SCOT) do not show permanent ketosis. Pediatr Res 56:858–863PubMedCrossRef
go back to reference Fukao T, Sakurai S, Rolland MO et al (2006) A 6-bp deletion at the splice donor site of the first intron resulted in aberrant splicing using a cryptic splice site within exon 1 in a patient with succinyl-CoA: 3-Ketoacid CoA transferase (SCOT) deficiency. Mol Genet Metab 89:280–282PubMedCrossRef Fukao T, Sakurai S, Rolland MO et al (2006) A 6-bp deletion at the splice donor site of the first intron resulted in aberrant splicing using a cryptic splice site within exon 1 in a patient with succinyl-CoA: 3-Ketoacid CoA transferase (SCOT) deficiency. Mol Genet Metab 89:280–282PubMedCrossRef
go back to reference Fukao T, Kursula P, Owen EP, Kondo N (2007) Identification and characterization of a temperature-sensitive R268H mutation in the human succinyl-CoA:3-ketoacid CoA transferase (SCOT) gene. Mol Genet Metab 92:216–221PubMedCrossRef Fukao T, Kursula P, Owen EP, Kondo N (2007) Identification and characterization of a temperature-sensitive R268H mutation in the human succinyl-CoA:3-ketoacid CoA transferase (SCOT) gene. Mol Genet Metab 92:216–221PubMedCrossRef
go back to reference Kassovska-Bratinova S, Fukao T, Song XQ et al (1996) Succinyl CoA: 3-oxoacid CoA transferase (SCOT): human cDNA cloning, human chromosomal mapping to 5p13, and mutation detection in a SCOT-deficient patient. Am J Hum Genet 59:519–528PubMed Kassovska-Bratinova S, Fukao T, Song XQ et al (1996) Succinyl CoA: 3-oxoacid CoA transferase (SCOT): human cDNA cloning, human chromosomal mapping to 5p13, and mutation detection in a SCOT-deficient patient. Am J Hum Genet 59:519–528PubMed
go back to reference Longo N, Fukao T, Singh R et al (2004) Succinyl-CoA:3-ketoacid transferase (SCOT) deficiency in a new patient homozygous for an R217X mutation. J Inherit Metab Dis 27:691–692PubMedCrossRef Longo N, Fukao T, Singh R et al (2004) Succinyl-CoA:3-ketoacid transferase (SCOT) deficiency in a new patient homozygous for an R217X mutation. J Inherit Metab Dis 27:691–692PubMedCrossRef
go back to reference Merron S, Akhtar R (2009) Management and communication problems in a patient with succinyl-CoA transferase deficiency in pregnancy and labour. Int J Obstet Anesth 18:280–283PubMedCrossRef Merron S, Akhtar R (2009) Management and communication problems in a patient with succinyl-CoA transferase deficiency in pregnancy and labour. Int J Obstet Anesth 18:280–283PubMedCrossRef
go back to reference Mitchell GA, Fukao T (2001) Chapter 102. Inborn errors of ketone body catabolism. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) Metabolic and molecular bases of inherited disease, 8th edn. McGraw-Hill Inc, New York, pp 2327–2356 Mitchell GA, Fukao T (2001) Chapter 102. Inborn errors of ketone body catabolism. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) Metabolic and molecular bases of inherited disease, 8th edn. McGraw-Hill Inc, New York, pp 2327–2356
go back to reference Niezen-Koning KE, Wanders RJ, Ruiter JP et al (1997) Succinyl-CoA:acetoacetate transferase deficiency: identification of a new patient with a neonatal onset and review of the literature. Eur J Pediatr 156:870–873PubMedCrossRef Niezen-Koning KE, Wanders RJ, Ruiter JP et al (1997) Succinyl-CoA:acetoacetate transferase deficiency: identification of a new patient with a neonatal onset and review of the literature. Eur J Pediatr 156:870–873PubMedCrossRef
go back to reference Perez-Cerda C, Merinero B, Sanz P et al (1992) A new case of succinyl-CoA: acetoacetate transferase deficiency. J Inherit Metab Dis 15:371–373PubMedCrossRef Perez-Cerda C, Merinero B, Sanz P et al (1992) A new case of succinyl-CoA: acetoacetate transferase deficiency. J Inherit Metab Dis 15:371–373PubMedCrossRef
go back to reference Pretorius CJ, Loy Son GG, Bonnici F, Harley EH (1996) Two siblings with episodic ketoacidosis and decreased activity of succinyl-CoA:3-ketoacid CoA-transferase in cultured fibroblasts. J Inherit Metab Dis 19:296–300PubMedCrossRef Pretorius CJ, Loy Son GG, Bonnici F, Harley EH (1996) Two siblings with episodic ketoacidosis and decreased activity of succinyl-CoA:3-ketoacid CoA-transferase in cultured fibroblasts. J Inherit Metab Dis 19:296–300PubMedCrossRef
go back to reference Rolland MO, Guffon N, Mandon G, Divry P (1998) Succinyl-CoA:acetoacetate transferase deficiency. Identification of a new case; prenatal exclusion in three further pregnancies. J Inherit Metab Dis 21:687–688PubMedCrossRef Rolland MO, Guffon N, Mandon G, Divry P (1998) Succinyl-CoA:acetoacetate transferase deficiency. Identification of a new case; prenatal exclusion in three further pregnancies. J Inherit Metab Dis 21:687–688PubMedCrossRef
go back to reference Sakazaki H, Hirayama K, Murakami S et al (1995) A new Japanese case of succinyl-CoA: 3-ketoacid CoA-transferase deficiency. J Inherit Metab Dis 18:323–325PubMedCrossRef Sakazaki H, Hirayama K, Murakami S et al (1995) A new Japanese case of succinyl-CoA: 3-ketoacid CoA-transferase deficiency. J Inherit Metab Dis 18:323–325PubMedCrossRef
go back to reference Saudubray JM, Specola N, Middleton B, Lombes A, Bonnefont JP, Jakobs C, Vassault A, Charpentier C, Day R (1987) Hyperketotic states due to inherited defects of ketolysis. Enzyme 38:80–90PubMed Saudubray JM, Specola N, Middleton B, Lombes A, Bonnefont JP, Jakobs C, Vassault A, Charpentier C, Day R (1987) Hyperketotic states due to inherited defects of ketolysis. Enzyme 38:80–90PubMed
go back to reference Snyderman SE, Sansaricq C, Middleton B (1998) Succinyl-CoA:3-ketoacid CoA-transferase deficiency. Pediatrics 101:709–711PubMedCrossRef Snyderman SE, Sansaricq C, Middleton B (1998) Succinyl-CoA:3-ketoacid CoA-transferase deficiency. Pediatrics 101:709–711PubMedCrossRef
go back to reference Song XQ, Fukao T, Yamaguchi S, Miyazawa S, Hashimoto T, Orii T (1994) Molecular cloning and nucleotide sequence of complementary DNA for human hepatic cytosolic acetoacetyl-coenzyme A thiolase. Biochem Biophys Res Commun 201:478–485PubMedCrossRef Song XQ, Fukao T, Yamaguchi S, Miyazawa S, Hashimoto T, Orii T (1994) Molecular cloning and nucleotide sequence of complementary DNA for human hepatic cytosolic acetoacetyl-coenzyme A thiolase. Biochem Biophys Res Commun 201:478–485PubMedCrossRef
go back to reference Song XQ, Fukao T, Mitchell GA et al (1997) Succinyl-CoA:3-ketoacid coenzyme A transferase (SCOT): development of an antibody to human SCOT and diagnostic use in hereditary SCOT deficiency. Biochim Biophys Acta 1360:151–156PubMedCrossRef Song XQ, Fukao T, Mitchell GA et al (1997) Succinyl-CoA:3-ketoacid coenzyme A transferase (SCOT): development of an antibody to human SCOT and diagnostic use in hereditary SCOT deficiency. Biochim Biophys Acta 1360:151–156PubMedCrossRef
go back to reference Song XQ, Fukao T, Watanabe H et al (1998) Succinyl-CoA:3-ketoacid CoA transferase (SCOT) deficiency: two pathogenic mutations, V133E and C456F, in Japanese siblings. Hum Mutat 12:83–88PubMedCrossRef Song XQ, Fukao T, Watanabe H et al (1998) Succinyl-CoA:3-ketoacid CoA transferase (SCOT) deficiency: two pathogenic mutations, V133E and C456F, in Japanese siblings. Hum Mutat 12:83–88PubMedCrossRef
go back to reference Tildon JT, Cornblath M (1972) Succinyl-CoA: 3-ketoacid CoA-transferase deficiency. A cause for ketoacidosis in infancy. J Clin Invest 51:493–498PubMedCrossRef Tildon JT, Cornblath M (1972) Succinyl-CoA: 3-ketoacid CoA-transferase deficiency. A cause for ketoacidosis in infancy. J Clin Invest 51:493–498PubMedCrossRef
go back to reference Yamada K, Fukao T, Zhang G et al (2007) Single-base substitution at the last nucleotide of exon 6 (c.671G > A), resulting in the skipping of exon 6, and exons 6 and 7 in human succinyl-CoA:3-ketoacid CoA transferase (SCOT) gene. Mol Genet Metab 90:291–297PubMedCrossRef Yamada K, Fukao T, Zhang G et al (2007) Single-base substitution at the last nucleotide of exon 6 (c.671G > A), resulting in the skipping of exon 6, and exons 6 and 7 in human succinyl-CoA:3-ketoacid CoA transferase (SCOT) gene. Mol Genet Metab 90:291–297PubMedCrossRef
Metadata
Title
A neonatal-onset succinyl-CoA:3-ketoacid CoA transferase (SCOT)-deficient patient with T435N and c.658-666dupAACGTGATT p.N220_I222dup mutations in the OXCT1 gene
Authors
Toshiyuki Fukao
Tomohiro Ishii
Naoko Amano
Petri Kursula
Masaki Takayanagi
Keiko Murase
Naomi Sakaguchi
Naomi Kondo
Tomonobu Hasegawa
Publication date
01-12-2010
Publisher
Springer Netherlands
Published in
Journal of Inherited Metabolic Disease / Issue Special Issue 3/2010
Print ISSN: 0141-8955
Electronic ISSN: 1573-2665
DOI
https://doi.org/10.1007/s10545-010-9168-5

Other articles of this Special Issue 3/2010

Journal of Inherited Metabolic Disease 3/2010 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.