Skip to main content
Top
Published in: Journal of Inherited Metabolic Disease 3/2009

01-06-2009 | Original Article

The pharmacological chaperone 1-deoxygalactonojirimycin increases α-galactosidase A levels in Fabry patient cell lines

Authors: E. R. Benjamin, J. J. Flanagan, A. Schilling, H. H. Chang, L. Agarwal, E. Katz, X. Wu, C. Pine, B. Wustman, R. J. Desnick, D. J. Lockhart, K. J. Valenzano

Published in: Journal of Inherited Metabolic Disease | Issue 3/2009

Login to get access

Summary

Fabry disease is an X-linked lysosomal storage disorder caused by mutations in the gene encoding α-galactosidase A (α-Gal A), with consequent accumulation of its major glycosphingolipid substrate, globotriaosylceramide (GL-3). Over 500 Fabry mutations have been reported; approximately 60% are missense. The iminosugar 1-deoxygalactonojirimycin (DGJ, migalastat hydrochloride, AT1001) is a pharmacological chaperone that selectively binds α-Gal A, increasing physical stability, lysosomal trafficking, and cellular activity. To identify DGJ-responsive mutant forms of α-Gal A, the effect of DGJ incubation on α-Gal A levels was assessed in cultured lymphoblasts from males with Fabry disease representing 75 different missense mutations, one insertion, and one splice-site mutation. Baseline α-Gal A levels ranged from 0 to 52% of normal. Increases in α-Gal A levels (1.5- to 28-fold) after continuous DGJ incubation for 5 days were seen for 49 different missense mutant forms with varying EC50 values (820 nmol/L to >1 mmol/L). Amino acid substitutions in responsive forms were located throughout both structural domains of the enzyme. Half of the missense mutant forms associated with classic (early-onset) Fabry disease and a majority (90%) associated with later-onset Fabry disease were responsive. In cultured fibroblasts from males with Fabry disease, the responses to DGJ were comparable to those of lymphoblasts with the same mutation. Importantly, elevated GL-3 levels in responsive Fabry fibroblasts were reduced after DGJ incubation, indicating that increased mutant α-Gal A levels can reduce accumulated substrate. These data indicate that DGJ merits further evaluation as a treatment for patients with Fabry disease with various missense mutations.
Literature
go back to reference Bekri S, Enica A, Ghafari T, et al (2005) Fabry disease in patients with end-stage renal failure: the potential benefits of screening. Nephron Clin Pract 101: c33–38. doi:10.1159/000085709.CrossRef Bekri S, Enica A, Ghafari T, et al (2005) Fabry disease in patients with end-stage renal failure: the potential benefits of screening. Nephron Clin Pract 101: c33–38. doi:10.​1159/​000085709.CrossRef
go back to reference Bishop D, Grabowski G, Desnick R (1981) Fabry disease: An asymptomatic hemizygote with significant residual alpha-galactosidase A activity. Am J Hum Genet 33: 71A. Bishop D, Grabowski G, Desnick R (1981) Fabry disease: An asymptomatic hemizygote with significant residual alpha-galactosidase A activity. Am J Hum Genet 33: 71A.
go back to reference Brady RO, Gal AE, Bradley RM, Martensson E, Warshaw AL, Laster L (1967) Enzymatic defect in Fabry’s disease: ceramidetrihexosidase deficiency. N Engl J Med 276: 1163–1167.PubMed Brady RO, Gal AE, Bradley RM, Martensson E, Warshaw AL, Laster L (1967) Enzymatic defect in Fabry’s disease: ceramidetrihexosidase deficiency. N Engl J Med 276: 1163–1167.PubMed
go back to reference Desnick R, Ioannou Y, Eng C (2001) alpha-Galactosidase A deficiency; Fabry disease. In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds; Childs B, Kinzler KW, Vogelstein B, assoc. eds. The Metabolic and Molecular Bases of Inherited Disease, 8th edn. New York: McGraw-Hill, 3507–3534. Desnick R, Ioannou Y, Eng C (2001) alpha-Galactosidase A deficiency; Fabry disease. In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds; Childs B, Kinzler KW, Vogelstein B, assoc. eds. The Metabolic and Molecular Bases of Inherited Disease, 8th edn. New York: McGraw-Hill, 3507–3534.
go back to reference Fan J-Q, Ishii S, Asano N, Suzuki Y (1999) Accelerated transport and maturation of lysosomal α-galactosidase A in Fabry lymphoblasts by an enzyme inhibitor. Nature Med 5: 112–115. doi:10.1038/4801.PubMedCrossRef Fan J-Q, Ishii S, Asano N, Suzuki Y (1999) Accelerated transport and maturation of lysosomal α-galactosidase A in Fabry lymphoblasts by an enzyme inhibitor. Nature Med 5: 112–115. doi:10.​1038/​4801.PubMedCrossRef
go back to reference Ioannou YA, Bishop DF, Desnick RJ (1992) Overexpression of human alpha-galactosidase A results in its intracellular aggregation, crystallization in lysosomes, and selective secretion. J Cell Biol 119: 1137–1150. doi:10.1083/jcb.119.5.1137.PubMedCrossRef Ioannou YA, Bishop DF, Desnick RJ (1992) Overexpression of human alpha-galactosidase A results in its intracellular aggregation, crystallization in lysosomes, and selective secretion. J Cell Biol 119: 1137–1150. doi:10.​1083/​jcb.​119.​5.​1137.PubMedCrossRef
go back to reference Ioannou YA, Zeidner KM, Grace ME, Desnick R (1998) Human alpha-galactosidase A: glycosylation site 3 is essential for enzyme solubility. Biochem J 332: 789–797.PubMed Ioannou YA, Zeidner KM, Grace ME, Desnick R (1998) Human alpha-galactosidase A: glycosylation site 3 is essential for enzyme solubility. Biochem J 332: 789–797.PubMed
go back to reference Ishii S, Chang HH, Kawasaki K, et al (2007) Mutant alpha-galacatosidase A enzymes identified in Fabry patients with residual enzyme activity: Biochemical characterization and restoration of normal intracellular processing by 1-deoxygalactonojirimycin. Biochem J 406: 285–295. doi:10.1042/BJ20070479.PubMedCrossRef Ishii S, Chang HH, Kawasaki K, et al (2007) Mutant alpha-galacatosidase A enzymes identified in Fabry patients with residual enzyme activity: Biochemical characterization and restoration of normal intracellular processing by 1-deoxygalactonojirimycin. Biochem J 406: 285–295. doi:10.​1042/​BJ20070479.PubMedCrossRef
go back to reference Ishii S, Chang H, Yoshioka H, et al (2009) Preclinical efficacy and safety of 1-deoxygalactonojirimycin in mice for Fabry disease. J Pharmacol Exp Ther 328(3): 723–731.PubMedCrossRef Ishii S, Chang H, Yoshioka H, et al (2009) Preclinical efficacy and safety of 1-deoxygalactonojirimycin in mice for Fabry disease. J Pharmacol Exp Ther 328(3): 723–731.PubMedCrossRef
go back to reference Khanna R, Benjamin ER, Soska R, et al (2007) The pharmacological chaperone AT1001 reduces globotriaosylceramide substrate levels in Fabry transgenic mice and increases α-galactosidase. A levels in vitro, in vivo and in healthy volunteers. Abstract 2250/W. Presented at the American Society of Human Genetics Conference, San Diego, October 23–27, 2007. Khanna R, Benjamin ER, Soska R, et al (2007) The pharmacological chaperone AT1001 reduces globotriaosylceramide substrate levels in Fabry transgenic mice and increases α-galactosidase. A levels in vitro, in vivo and in healthy volunteers. Abstract 2250/W. Presented at the American Society of Human Genetics Conference, San Diego, October 23–27, 2007.
go back to reference Lemansky P, Bishop D, Desnick R, Hasilik A, von Figura K (1987) Synthesis and processing of alpha-galactosidase A in human fibroblasts. Evidence for different mutations in Fabry disease. J Biol Chem 262: 2062–2065.PubMed Lemansky P, Bishop D, Desnick R, Hasilik A, von Figura K (1987) Synthesis and processing of alpha-galactosidase A in human fibroblasts. Evidence for different mutations in Fabry disease. J Biol Chem 262: 2062–2065.PubMed
go back to reference Schiffmann R, Germain DP, Castelli J, et al (2008) Phase 2 clinical trials of the pharmacological chaperone AT1001 for the treatment of Fabry disease. Abstract 768/T. Presented at the American Society of Human Genetics Conference, Philadelphia, November 11–15, 2008. Schiffmann R, Germain DP, Castelli J, et al (2008) Phase 2 clinical trials of the pharmacological chaperone AT1001 for the treatment of Fabry disease. Abstract 768/T. Presented at the American Society of Human Genetics Conference, Philadelphia, November 11–15, 2008.
go back to reference Shabbeer J, Yasuda M, Benson S, Desnick R (2006) Fabry disease: Identification of 50 novel α-galactosidase A mutations causing the classic phenotype and three-dimensional structural analysis of 29 missense mutations. Hum Genomics 2: 297–309.PubMed Shabbeer J, Yasuda M, Benson S, Desnick R (2006) Fabry disease: Identification of 50 novel α-galactosidase A mutations causing the classic phenotype and three-dimensional structural analysis of 29 missense mutations. Hum Genomics 2: 297–309.PubMed
go back to reference von Scheidt W, Eng C, Fitzmaurice T, et al (1991) An atypical variant of Fabry’s disease with manifestations confined to the myocardium. N Engl J Med 324: 395–399. von Scheidt W, Eng C, Fitzmaurice T, et al (1991) An atypical variant of Fabry’s disease with manifestations confined to the myocardium. N Engl J Med 324: 395–399.
go back to reference Yam GH, Bosshard N, Zuber C, Steinmann B, Roth J (2006) Pharmacological chaperone corrects lysosomal storage in Fabry disease caused by trafficking-incompetent variants. Am J Physiol Cell Physiol 290: C1076–1082. doi:10.1152/ajpcell.00426.2005.CrossRef Yam GH, Bosshard N, Zuber C, Steinmann B, Roth J (2006) Pharmacological chaperone corrects lysosomal storage in Fabry disease caused by trafficking-incompetent variants. Am J Physiol Cell Physiol 290: C1076–1082. doi:10.​1152/​ajpcell.​00426.​2005.CrossRef
Metadata
Title
The pharmacological chaperone 1-deoxygalactonojirimycin increases α-galactosidase A levels in Fabry patient cell lines
Authors
E. R. Benjamin
J. J. Flanagan
A. Schilling
H. H. Chang
L. Agarwal
E. Katz
X. Wu
C. Pine
B. Wustman
R. J. Desnick
D. J. Lockhart
K. J. Valenzano
Publication date
01-06-2009
Publisher
Springer Netherlands
Published in
Journal of Inherited Metabolic Disease / Issue 3/2009
Print ISSN: 0141-8955
Electronic ISSN: 1573-2665
DOI
https://doi.org/10.1007/s10545-009-1077-0

Other articles of this Issue 3/2009

Journal of Inherited Metabolic Disease 3/2009 Go to the issue