Skip to main content
Top
Published in: Angiogenesis 4/2022

Open Access 20-07-2022 | Obesity | Review Paper

Angiogenesis in adipose tissue and obesity

Authors: Silvia Corvera, Javier Solivan-Rivera, Zinger Yang Loureiro

Published in: Angiogenesis | Issue 4/2022

Login to get access

Abstract

While most tissues exhibit their greatest growth during development, adipose tissue is capable of additional massive expansion in adults. Adipose tissue expandability is advantageous when temporarily storing fuel for use during fasting, but becomes pathological upon continuous food intake, leading to obesity and its many comorbidities. The dense vasculature of adipose tissue provides necessary oxygen and nutrients, and supports delivery of fuel to and from adipocytes under fed or fasting conditions. Moreover, the vasculature of adipose tissue comprises a major niche for multipotent progenitor cells, which give rise to new adipocytes and are necessary for tissue repair. Given the multiple, pivotal roles of the adipose tissue vasculature, impairments in angiogenic capacity may underlie obesity-associated diseases such as diabetes and cardiometabolic disease. Exciting new studies on the single-cell and single-nuclei composition of adipose tissues in mouse and humans are providing new insights into mechanisms of adipose tissue angiogenesis. Moreover, new modes of intercellular communication involving micro vesicle and exosome transfer of proteins, nucleic acids and organelles are also being recognized to play key roles. This review focuses on new insights on the cellular and signaling mechanisms underlying adipose tissue angiogenesis, and on their impact on obesity and its pathophysiological consequences.
Literature
1.
go back to reference Stieber C et al (2019) Human perivascular adipose tissue as a regulator of the vascular microenvironment and diseases of the coronary artery and aorta. J Cardiol Cardiovasc Sci 3(4):10–15PubMedPubMedCentralCrossRef Stieber C et al (2019) Human perivascular adipose tissue as a regulator of the vascular microenvironment and diseases of the coronary artery and aorta. J Cardiol Cardiovasc Sci 3(4):10–15PubMedPubMedCentralCrossRef
2.
go back to reference Bradford ST et al (2019) Methylome and transcriptome maps of human visceral and subcutaneous adipocytes reveal key epigenetic differences at developmental genes. Sci Rep 9(1):9511PubMedPubMedCentralCrossRef Bradford ST et al (2019) Methylome and transcriptome maps of human visceral and subcutaneous adipocytes reveal key epigenetic differences at developmental genes. Sci Rep 9(1):9511PubMedPubMedCentralCrossRef
4.
5.
go back to reference Li Y, Meng Y, Yu X (2019) The unique metabolic characteristics of bone marrow adipose tissue. Front Endocrinol (Lausanne) 10:69CrossRef Li Y, Meng Y, Yu X (2019) The unique metabolic characteristics of bone marrow adipose tissue. Front Endocrinol (Lausanne) 10:69CrossRef
6.
go back to reference Tencerova M, Ferencakova M, Kassem M (2021) Bone marrow adipose tissue: role in bone remodeling and energy metabolism. Best Pract Res Clin Endocrinol Metab 35(4):101545PubMedCrossRef Tencerova M, Ferencakova M, Kassem M (2021) Bone marrow adipose tissue: role in bone remodeling and energy metabolism. Best Pract Res Clin Endocrinol Metab 35(4):101545PubMedCrossRef
7.
go back to reference Krotkiewski M et al (1983) Impact of obesity on metabolism in men and women. Importance of regional adipose tissue distribution. J Clin Investig 72(3):1150–62PubMedPubMedCentralCrossRef Krotkiewski M et al (1983) Impact of obesity on metabolism in men and women. Importance of regional adipose tissue distribution. J Clin Investig 72(3):1150–62PubMedPubMedCentralCrossRef
8.
go back to reference Piche ME, Tchernof A, Despres JP (2020) Obesity phenotypes, diabetes, and cardiovascular diseases. Circ Res 126(11):1477–1500PubMedCrossRef Piche ME, Tchernof A, Despres JP (2020) Obesity phenotypes, diabetes, and cardiovascular diseases. Circ Res 126(11):1477–1500PubMedCrossRef
10.
go back to reference Gray SL, Vidal-Puig AJ (2007) Adipose tissue expandability in the maintenance of metabolic homeostasis. Nutr Rev 65(6 Pt 2):S7-12PubMedCrossRef Gray SL, Vidal-Puig AJ (2007) Adipose tissue expandability in the maintenance of metabolic homeostasis. Nutr Rev 65(6 Pt 2):S7-12PubMedCrossRef
11.
go back to reference Dai H et al (2020) The global burden of disease attributable to high body mass index in 195 countries and territories, 1990–2017: an analysis of the global burden of disease study. PLoS Med 17(7):e1003198PubMedPubMedCentralCrossRef Dai H et al (2020) The global burden of disease attributable to high body mass index in 195 countries and territories, 1990–2017: an analysis of the global burden of disease study. PLoS Med 17(7):e1003198PubMedPubMedCentralCrossRef
12.
go back to reference Larsson SC, Burgess S (2021) Causal role of high body mass index in multiple chronic diseases: a systematic review and meta-analysis of Mendelian randomization studies. BMC Med 19(1):320PubMedPubMedCentralCrossRef Larsson SC, Burgess S (2021) Causal role of high body mass index in multiple chronic diseases: a systematic review and meta-analysis of Mendelian randomization studies. BMC Med 19(1):320PubMedPubMedCentralCrossRef
13.
14.
go back to reference Serra MC et al (2015) High adipose LPL activity and adipocyte hypertrophy reduce visceral fat and metabolic risk in obese, older women. Obesity (Silver Spring) 23(3):602–607CrossRef Serra MC et al (2015) High adipose LPL activity and adipocyte hypertrophy reduce visceral fat and metabolic risk in obese, older women. Obesity (Silver Spring) 23(3):602–607CrossRef
15.
go back to reference Heinonen S et al (2014) Adipocyte morphology and implications for metabolic derangements in acquired obesity. Int J Obes (Lond) 38(11):1423–1431CrossRef Heinonen S et al (2014) Adipocyte morphology and implications for metabolic derangements in acquired obesity. Int J Obes (Lond) 38(11):1423–1431CrossRef
16.
go back to reference Cifarelli V et al (2020) Decreased adipose tissue oxygenation associates with insulin resistance in individuals with obesity. J Clin Investig 130(12):6688–6699PubMedPubMedCentralCrossRef Cifarelli V et al (2020) Decreased adipose tissue oxygenation associates with insulin resistance in individuals with obesity. J Clin Investig 130(12):6688–6699PubMedPubMedCentralCrossRef
17.
go back to reference Lempesis IG et al (2020) Oxygenation of adipose tissue: a human perspective. Acta Physiol (Oxf) 228(1):e13298CrossRef Lempesis IG et al (2020) Oxygenation of adipose tissue: a human perspective. Acta Physiol (Oxf) 228(1):e13298CrossRef
19.
go back to reference Crandall DL, Hausman GJ, Kral JG (1997) A review of the microcirculation of adipose tissue: anatomic, metabolic, and angiogenic perspectives. Microcirculation 4(2):211–232PubMedCrossRef Crandall DL, Hausman GJ, Kral JG (1997) A review of the microcirculation of adipose tissue: anatomic, metabolic, and angiogenic perspectives. Microcirculation 4(2):211–232PubMedCrossRef
20.
go back to reference Poissonnet CM, Burdi AR, Bookstein FL (1983) Growth and development of human adipose tissue during early gestation. Early Hum Dev 8(1):1–11PubMedCrossRef Poissonnet CM, Burdi AR, Bookstein FL (1983) Growth and development of human adipose tissue during early gestation. Early Hum Dev 8(1):1–11PubMedCrossRef
21.
go back to reference Poissonnet CM, Burdi AR, Garn SM (1984) The chronology of adipose tissue appearance and distribution in the human fetus. Early Hum Dev 10(1–2):1–11PubMedCrossRef Poissonnet CM, Burdi AR, Garn SM (1984) The chronology of adipose tissue appearance and distribution in the human fetus. Early Hum Dev 10(1–2):1–11PubMedCrossRef
23.
go back to reference Cho SW et al (2007) Engineered adipose tissue formation enhanced by basic fibroblast growth factor and a mechanically stable environment. Cell Transplant 16(4):421–434PubMedCrossRef Cho SW et al (2007) Engineered adipose tissue formation enhanced by basic fibroblast growth factor and a mechanically stable environment. Cell Transplant 16(4):421–434PubMedCrossRef
24.
go back to reference Han J et al (2011) The spatiotemporal development of adipose tissue. Development 138(22):5027–5037PubMedCrossRef Han J et al (2011) The spatiotemporal development of adipose tissue. Development 138(22):5027–5037PubMedCrossRef
25.
go back to reference Xue Y et al (2009) Hypoxia-independent angiogenesis in adipose tissues during cold acclimation. Cell Metab 9(1):99–109PubMedCrossRef Xue Y et al (2009) Hypoxia-independent angiogenesis in adipose tissues during cold acclimation. Cell Metab 9(1):99–109PubMedCrossRef
26.
go back to reference Lee YH et al (2015) Cellular origins of cold-induced brown adipocytes in adult mice. FASEB J 29(1):286–299PubMedCrossRef Lee YH et al (2015) Cellular origins of cold-induced brown adipocytes in adult mice. FASEB J 29(1):286–299PubMedCrossRef
29.
go back to reference Vishvanath L et al (2016) Pdgfrbeta+ mural preadipocytes contribute to adipocyte hyperplasia induced by high-fat-diet feeding and prolonged cold exposure in adult mice. Cell Metab 23(2):350–359PubMedCrossRef Vishvanath L et al (2016) Pdgfrbeta+ mural preadipocytes contribute to adipocyte hyperplasia induced by high-fat-diet feeding and prolonged cold exposure in adult mice. Cell Metab 23(2):350–359PubMedCrossRef
30.
go back to reference Berry DC, Jiang Y, Graff JM (2016) Emerging roles of adipose progenitor cells in tissue development, homeostasis, expansion and thermogenesis. Trends Endocrinol Metab 27(8):574–585PubMedCrossRef Berry DC, Jiang Y, Graff JM (2016) Emerging roles of adipose progenitor cells in tissue development, homeostasis, expansion and thermogenesis. Trends Endocrinol Metab 27(8):574–585PubMedCrossRef
31.
33.
34.
go back to reference Hong KY et al (2015) Perilipin+ embryonic preadipocytes actively proliferate along growing vasculatures for adipose expansion. Development 142(15):2623–2632PubMedCrossRef Hong KY et al (2015) Perilipin+ embryonic preadipocytes actively proliferate along growing vasculatures for adipose expansion. Development 142(15):2623–2632PubMedCrossRef
35.
go back to reference Gealekman O et al (2014) Control of adipose tissue expandability in response to high fat diet by the insulin-like growth factor-binding protein-4. J Biol Chem 289(26):18327–18338PubMedPubMedCentralCrossRef Gealekman O et al (2014) Control of adipose tissue expandability in response to high fat diet by the insulin-like growth factor-binding protein-4. J Biol Chem 289(26):18327–18338PubMedPubMedCentralCrossRef
36.
go back to reference Min SY et al (2016) Human ‘brite/beige’ adipocytes develop from capillary networks, and their implantation improves metabolic homeostasis in mice. Nat Med 22(3):312–318PubMedPubMedCentralCrossRef Min SY et al (2016) Human ‘brite/beige’ adipocytes develop from capillary networks, and their implantation improves metabolic homeostasis in mice. Nat Med 22(3):312–318PubMedPubMedCentralCrossRef
37.
go back to reference Tchoukalova YD et al (2010) Regional differences in cellular mechanisms of adipose tissue gain with overfeeding. Proc Natl Acad Sci USA 107(42):18226–18231PubMedPubMedCentralCrossRef Tchoukalova YD et al (2010) Regional differences in cellular mechanisms of adipose tissue gain with overfeeding. Proc Natl Acad Sci USA 107(42):18226–18231PubMedPubMedCentralCrossRef
38.
go back to reference Ye RZ et al (2022) Fat cell size: measurement methods, pathophysiological origins, and relationships with metabolic dysregulations. Endocr Rev 43(1):35–60PubMedCrossRef Ye RZ et al (2022) Fat cell size: measurement methods, pathophysiological origins, and relationships with metabolic dysregulations. Endocr Rev 43(1):35–60PubMedCrossRef
39.
go back to reference Zhang Y et al (2014) Fat cell size and adipokine expression in relation to gender, depot, and metabolic risk factors in morbidly obese adolescents. Obesity (Silver Spring) 22(3):691–697CrossRef Zhang Y et al (2014) Fat cell size and adipokine expression in relation to gender, depot, and metabolic risk factors in morbidly obese adolescents. Obesity (Silver Spring) 22(3):691–697CrossRef
40.
go back to reference Ukropec J et al (2008) Adipokine protein expression pattern in growth hormone deficiency predisposes to the increased fat cell size and the whole body metabolic derangements. J Clin Endocrinol Metab 93(6):2255–2262PubMedCrossRef Ukropec J et al (2008) Adipokine protein expression pattern in growth hormone deficiency predisposes to the increased fat cell size and the whole body metabolic derangements. J Clin Endocrinol Metab 93(6):2255–2262PubMedCrossRef
41.
go back to reference Maffeis C et al (2007) Fat cell size, insulin sensitivity, and inflammation in obese children. J Pediatr 151(6):647–652PubMedCrossRef Maffeis C et al (2007) Fat cell size, insulin sensitivity, and inflammation in obese children. J Pediatr 151(6):647–652PubMedCrossRef
42.
go back to reference Andersson DP et al (2017) Abdominal subcutaneous adipose tissue cellularity in men and women. Int J Obes (Lond) 41(10):1564–1569CrossRef Andersson DP et al (2017) Abdominal subcutaneous adipose tissue cellularity in men and women. Int J Obes (Lond) 41(10):1564–1569CrossRef
43.
go back to reference Fried SK, Lee MJ, Karastergiou K (2015) Shaping fat distribution: new insights into the molecular determinants of depot- and sex-dependent adipose biology. Obesity (Silver Spring) 23(7):1345–1352CrossRef Fried SK, Lee MJ, Karastergiou K (2015) Shaping fat distribution: new insights into the molecular determinants of depot- and sex-dependent adipose biology. Obesity (Silver Spring) 23(7):1345–1352CrossRef
44.
go back to reference Eriksson-Hogling D et al (2015) Adipose tissue morphology predicts improved insulin sensitivity following moderate or pronounced weight loss. Int J Obes (Lond) 39(6):893–898CrossRef Eriksson-Hogling D et al (2015) Adipose tissue morphology predicts improved insulin sensitivity following moderate or pronounced weight loss. Int J Obes (Lond) 39(6):893–898CrossRef
45.
go back to reference Michaud A et al (2014) Abdominal subcutaneous and omental adipocyte morphology and its relation to gene expression, lipolysis and adipocytokine levels in women. Metabolism 63(3):372–381PubMedCrossRef Michaud A et al (2014) Abdominal subcutaneous and omental adipocyte morphology and its relation to gene expression, lipolysis and adipocytokine levels in women. Metabolism 63(3):372–381PubMedCrossRef
46.
go back to reference Gesta S et al (2006) Evidence for a role of developmental genes in the origin of obesity and body fat distribution. Proc Natl Acad Sci USA 103(17):6676–6681PubMedPubMedCentralCrossRef Gesta S et al (2006) Evidence for a role of developmental genes in the origin of obesity and body fat distribution. Proc Natl Acad Sci USA 103(17):6676–6681PubMedPubMedCentralCrossRef
47.
go back to reference Xue Y et al (2008) FOXC2 controls Ang-2 expression and modulates angiogenesis, vascular patterning, remodeling, and functions in adipose tissue. Proc Natl Acad Sci USA 105(29):10167–10172PubMedPubMedCentralCrossRef Xue Y et al (2008) FOXC2 controls Ang-2 expression and modulates angiogenesis, vascular patterning, remodeling, and functions in adipose tissue. Proc Natl Acad Sci USA 105(29):10167–10172PubMedPubMedCentralCrossRef
48.
go back to reference Cederberg A et al (2001) FOXC2 is a winged helix gene that counteracts obesity, hypertriglyceridemia, and diet-induced insulin resistance. Cell 106(5):563–573PubMedCrossRef Cederberg A et al (2001) FOXC2 is a winged helix gene that counteracts obesity, hypertriglyceridemia, and diet-induced insulin resistance. Cell 106(5):563–573PubMedCrossRef
50.
go back to reference Chaves-Almagro C et al (2015) Apelin receptors: from signaling to antidiabetic strategy. Eur J Pharmacol 763(Pt B):149–159PubMedCrossRef Chaves-Almagro C et al (2015) Apelin receptors: from signaling to antidiabetic strategy. Eur J Pharmacol 763(Pt B):149–159PubMedCrossRef
51.
go back to reference Hu H et al (2016) Apelin/APJ system as a therapeutic target in diabetes and its complications. Mol Genet Metab 119(1–2):20–27PubMedCrossRef Hu H et al (2016) Apelin/APJ system as a therapeutic target in diabetes and its complications. Mol Genet Metab 119(1–2):20–27PubMedCrossRef
52.
go back to reference Li C et al (2022) The role of apelin-APJ system in diabetes and obesity. Front Endocrinol (Lausanne) 13:820002CrossRef Li C et al (2022) The role of apelin-APJ system in diabetes and obesity. Front Endocrinol (Lausanne) 13:820002CrossRef
54.
go back to reference Al-Samerria S, Radovick S (2021) The role of insulin-like growth factor-1 (IGF-1) in the control of neuroendocrine regulation of growth. Cells 10(10):2664PubMedPubMedCentralCrossRef Al-Samerria S, Radovick S (2021) The role of insulin-like growth factor-1 (IGF-1) in the control of neuroendocrine regulation of growth. Cells 10(10):2664PubMedPubMedCentralCrossRef
55.
go back to reference Kim HS, Richardson RL, Hausman GJ (1998) The expression of insulin-like growth factor-1 during adipogenesis in vivo: effect of thyroxine. Gen Comp Endocrinol 112(1):38–45PubMedCrossRef Kim HS, Richardson RL, Hausman GJ (1998) The expression of insulin-like growth factor-1 during adipogenesis in vivo: effect of thyroxine. Gen Comp Endocrinol 112(1):38–45PubMedCrossRef
57.
go back to reference Bid HK et al (2012) Potent inhibition of angiogenesis by the IGF-1 receptor-targeting antibody SCH717454 is reversed by IGF-2. Mol Cancer Ther 11(3):649–659PubMedCrossRef Bid HK et al (2012) Potent inhibition of angiogenesis by the IGF-1 receptor-targeting antibody SCH717454 is reversed by IGF-2. Mol Cancer Ther 11(3):649–659PubMedCrossRef
58.
go back to reference Lin S et al (2017) IGF-1 promotes angiogenesis in endothelial cells/adipose-derived stem cells co-culture system with activation of PI3K/Akt signal pathway. Cell Prolif 50(6):e12390PubMedCentralCrossRef Lin S et al (2017) IGF-1 promotes angiogenesis in endothelial cells/adipose-derived stem cells co-culture system with activation of PI3K/Akt signal pathway. Cell Prolif 50(6):e12390PubMedCentralCrossRef
59.
go back to reference Shigematsu S et al (1999) IGF-1 regulates migration and angiogenesis of human endothelial cells. Endocr J 46(Suppl):S59-62PubMedCrossRef Shigematsu S et al (1999) IGF-1 regulates migration and angiogenesis of human endothelial cells. Endocr J 46(Suppl):S59-62PubMedCrossRef
61.
go back to reference Zhang Q et al (2020) lncRNA NR2F1-AS1 promotes breast cancer angiogenesis through activating IGF-1/IGF-1R/ERK pathway. J Cell Mol Med 24(14):8236–8247PubMedPubMedCentralCrossRef Zhang Q et al (2020) lncRNA NR2F1-AS1 promotes breast cancer angiogenesis through activating IGF-1/IGF-1R/ERK pathway. J Cell Mol Med 24(14):8236–8247PubMedPubMedCentralCrossRef
62.
go back to reference Boucher J et al (2012) Impaired thermogenesis and adipose tissue development in mice with fat-specific disruption of insulin and IGF-1 signalling. Nat Commun 3:902PubMedCrossRef Boucher J et al (2012) Impaired thermogenesis and adipose tissue development in mice with fat-specific disruption of insulin and IGF-1 signalling. Nat Commun 3:902PubMedCrossRef
63.
go back to reference Garten A, Schuster S, Kiess W (2012) The insulin-like growth factors in adipogenesis and obesity. Endocrinol Metab Clin North Am 41(2):283–95, v–viPubMedCrossRef Garten A, Schuster S, Kiess W (2012) The insulin-like growth factors in adipogenesis and obesity. Endocrinol Metab Clin North Am 41(2):283–95, v–viPubMedCrossRef
64.
go back to reference Wabitsch M et al (1996) Mitogenic and antiadipogenic properties of human growth hormone in differentiating human adipocyte precursor cells in primary culture. Pediatr Res 40(3):450–456PubMedCrossRef Wabitsch M et al (1996) Mitogenic and antiadipogenic properties of human growth hormone in differentiating human adipocyte precursor cells in primary culture. Pediatr Res 40(3):450–456PubMedCrossRef
65.
go back to reference Moore BJ et al (1989) Maternal brown fat metabolism returns to control level by four weeks postweaning in rats. J Nutr 119(12):1992–1998PubMedCrossRef Moore BJ et al (1989) Maternal brown fat metabolism returns to control level by four weeks postweaning in rats. J Nutr 119(12):1992–1998PubMedCrossRef
66.
go back to reference Rojas-Rodriguez R et al (2015) Human adipose tissue expansion in pregnancy is impaired in gestational diabetes mellitus. Diabetologia 58(9):2106–2114PubMedPubMedCentralCrossRef Rojas-Rodriguez R et al (2015) Human adipose tissue expansion in pregnancy is impaired in gestational diabetes mellitus. Diabetologia 58(9):2106–2114PubMedPubMedCentralCrossRef
67.
go back to reference Zangi L et al (2017) Insulin-like growth factor 1 receptor-dependent pathway drives epicardial adipose tissue formation after myocardial injury. Circulation 135(1):59–72PubMedCrossRef Zangi L et al (2017) Insulin-like growth factor 1 receptor-dependent pathway drives epicardial adipose tissue formation after myocardial injury. Circulation 135(1):59–72PubMedCrossRef
69.
go back to reference Mandenoff A, Lenoir T, Apfelbaum M (1982) Tardy occurrence of adipocyte hyperplasia in cafeteria-fed rat. Am J Physiol 242(3):R349–R351PubMed Mandenoff A, Lenoir T, Apfelbaum M (1982) Tardy occurrence of adipocyte hyperplasia in cafeteria-fed rat. Am J Physiol 242(3):R349–R351PubMed
71.
go back to reference Nishimura S et al (2008) In vivo imaging in mice reveals local cell dynamics and inflammation in obese adipose tissue. J Clin Investig 118(2):710–721PubMedPubMedCentral Nishimura S et al (2008) In vivo imaging in mice reveals local cell dynamics and inflammation in obese adipose tissue. J Clin Investig 118(2):710–721PubMedPubMedCentral
73.
74.
go back to reference Alligier M et al (2013) Visceral fat accumulation during lipid overfeeding is related to subcutaneous adipose tissue characteristics in healthy men. J Clin Endocrinol Metab 98(2):802–810PubMedCrossRef Alligier M et al (2013) Visceral fat accumulation during lipid overfeeding is related to subcutaneous adipose tissue characteristics in healthy men. J Clin Endocrinol Metab 98(2):802–810PubMedCrossRef
75.
go back to reference McLaughlin T et al (2016) Adipose cell size and regional fat deposition as predictors of metabolic response to overfeeding in insulin-resistant and insulin-sensitive humans. Diabetes 65(5):1245–1254PubMedPubMedCentralCrossRef McLaughlin T et al (2016) Adipose cell size and regional fat deposition as predictors of metabolic response to overfeeding in insulin-resistant and insulin-sensitive humans. Diabetes 65(5):1245–1254PubMedPubMedCentralCrossRef
76.
go back to reference Belligoli A et al (2019) Characterization of subcutaneous and omental adipose tissue in patients with obesity and with different degrees of glucose impairment. Sci Rep 9(1):11333PubMedPubMedCentralCrossRef Belligoli A et al (2019) Characterization of subcutaneous and omental adipose tissue in patients with obesity and with different degrees of glucose impairment. Sci Rep 9(1):11333PubMedPubMedCentralCrossRef
77.
go back to reference Spencer M et al (2011) Adipose tissue extracellular matrix and vascular abnormalities in obesity and insulin resistance. J Clin Endocrinol Metab 96(12):E1990–E1998PubMedPubMedCentralCrossRef Spencer M et al (2011) Adipose tissue extracellular matrix and vascular abnormalities in obesity and insulin resistance. J Clin Endocrinol Metab 96(12):E1990–E1998PubMedPubMedCentralCrossRef
78.
go back to reference Paavonsalo S et al (2020) Capillary rarefaction in obesity and metabolic diseases-organ-specificity and possible mechanisms. Cells 9(12):2683PubMedCentralCrossRef Paavonsalo S et al (2020) Capillary rarefaction in obesity and metabolic diseases-organ-specificity and possible mechanisms. Cells 9(12):2683PubMedCentralCrossRef
79.
go back to reference Pasarica M et al (2009) Reduced adipose tissue oxygenation in human obesity: evidence for rarefaction, macrophage chemotaxis, and inflammation without an angiogenic response. Diabetes 58(3):718–725PubMedPubMedCentralCrossRef Pasarica M et al (2009) Reduced adipose tissue oxygenation in human obesity: evidence for rarefaction, macrophage chemotaxis, and inflammation without an angiogenic response. Diabetes 58(3):718–725PubMedPubMedCentralCrossRef
80.
go back to reference Karki S et al (2017) WNT5A regulates adipose tissue angiogenesis via antiangiogenic VEGF-A165b in obese humans. Am J Physiol Heart Circ Physiol 313(1):H200–H206PubMedPubMedCentralCrossRef Karki S et al (2017) WNT5A regulates adipose tissue angiogenesis via antiangiogenic VEGF-A165b in obese humans. Am J Physiol Heart Circ Physiol 313(1):H200–H206PubMedPubMedCentralCrossRef
82.
go back to reference Khan T et al (2009) Metabolic dysregulation and adipose tissue fibrosis: role of collagen VI. Mol Cell Biol 29(6):1575–1591PubMedCrossRef Khan T et al (2009) Metabolic dysregulation and adipose tissue fibrosis: role of collagen VI. Mol Cell Biol 29(6):1575–1591PubMedCrossRef
84.
go back to reference Crewe C, An YA, Scherer PE (2017) The ominous triad of adipose tissue dysfunction: inflammation, fibrosis, and impaired angiogenesis. J Clin Investig 127(1):74–82PubMedPubMedCentralCrossRef Crewe C, An YA, Scherer PE (2017) The ominous triad of adipose tissue dysfunction: inflammation, fibrosis, and impaired angiogenesis. J Clin Investig 127(1):74–82PubMedPubMedCentralCrossRef
85.
go back to reference Park J et al (2017) VEGF-A-expressing adipose tissue shows rapid beiging and enhanced survival after transplantation and confers IL-4-independent metabolic improvements. Diabetes 66(6):1479–1490PubMedPubMedCentralCrossRef Park J et al (2017) VEGF-A-expressing adipose tissue shows rapid beiging and enhanced survival after transplantation and confers IL-4-independent metabolic improvements. Diabetes 66(6):1479–1490PubMedPubMedCentralCrossRef
86.
go back to reference Robciuc MR et al (2016) VEGFB/VEGFR1-induced expansion of adipose vasculature counteracts obesity and related metabolic complications. Cell Metab 23(4):712–724PubMedPubMedCentralCrossRef Robciuc MR et al (2016) VEGFB/VEGFR1-induced expansion of adipose vasculature counteracts obesity and related metabolic complications. Cell Metab 23(4):712–724PubMedPubMedCentralCrossRef
87.
go back to reference Sung HK et al (2013) Adipose vascular endothelial growth factor regulates metabolic homeostasis through angiogenesis. Cell Metab 17(1):61–72PubMedCrossRef Sung HK et al (2013) Adipose vascular endothelial growth factor regulates metabolic homeostasis through angiogenesis. Cell Metab 17(1):61–72PubMedCrossRef
88.
go back to reference Ashoff A et al (2012) Pioglitazone prevents capillary rarefaction in streptozotocin-diabetic rats independently of glucose control and vascular endothelial growth factor expression. J Vasc Res 49(3):260–266PubMedCrossRef Ashoff A et al (2012) Pioglitazone prevents capillary rarefaction in streptozotocin-diabetic rats independently of glucose control and vascular endothelial growth factor expression. J Vasc Res 49(3):260–266PubMedCrossRef
89.
go back to reference Gealekman O et al (2012) Effect of rosiglitazone on capillary density and angiogenesis in adipose tissue of normoglycaemic humans in a randomised controlled trial. Diabetologia 55(10):2794–2799PubMedPubMedCentralCrossRef Gealekman O et al (2012) Effect of rosiglitazone on capillary density and angiogenesis in adipose tissue of normoglycaemic humans in a randomised controlled trial. Diabetologia 55(10):2794–2799PubMedPubMedCentralCrossRef
90.
go back to reference Li M et al (2020) Decreased ANGPTL4 impairs endometrial angiogenesis during peri-implantation period in patients with recurrent implantation failure. J Cell Mol Med 24(18):10730–10743PubMedPubMedCentralCrossRef Li M et al (2020) Decreased ANGPTL4 impairs endometrial angiogenesis during peri-implantation period in patients with recurrent implantation failure. J Cell Mol Med 24(18):10730–10743PubMedPubMedCentralCrossRef
91.
go back to reference Xue Y et al (2016) Preventing diet-induced obesity in mice by adipose tissue transformation and angiogenesis using targeted nanoparticles. Proc Natl Acad Sci USA 113(20):5552–5557PubMedPubMedCentralCrossRef Xue Y et al (2016) Preventing diet-induced obesity in mice by adipose tissue transformation and angiogenesis using targeted nanoparticles. Proc Natl Acad Sci USA 113(20):5552–5557PubMedPubMedCentralCrossRef
95.
go back to reference Schwalie PC et al (2018) A stromal cell population that inhibits adipogenesis in mammalian fat depots. Nature 559(7712):103–108PubMedCrossRef Schwalie PC et al (2018) A stromal cell population that inhibits adipogenesis in mammalian fat depots. Nature 559(7712):103–108PubMedCrossRef
96.
go back to reference Vijay J et al (2020) Single-cell analysis of human adipose tissue identifies depot and disease specific cell types. Nat Metab 2(1):97–109PubMedCrossRef Vijay J et al (2020) Single-cell analysis of human adipose tissue identifies depot and disease specific cell types. Nat Metab 2(1):97–109PubMedCrossRef
97.
go back to reference Sarvari AK et al (2021) Plasticity of epididymal adipose tissue in response to diet-induced obesity at single-nucleus resolution. Cell Metab 33(2):437-453 e5PubMedCrossRef Sarvari AK et al (2021) Plasticity of epididymal adipose tissue in response to diet-induced obesity at single-nucleus resolution. Cell Metab 33(2):437-453 e5PubMedCrossRef
98.
go back to reference Chakraborty A et al (2019) Vascular endothelial growth factor-D (VEGF-D) overexpression and lymphatic expansion in murine adipose tissue improves metabolism in obesity. Am J Pathol 189(4):924–939PubMedPubMedCentralCrossRef Chakraborty A et al (2019) Vascular endothelial growth factor-D (VEGF-D) overexpression and lymphatic expansion in murine adipose tissue improves metabolism in obesity. Am J Pathol 189(4):924–939PubMedPubMedCentralCrossRef
99.
go back to reference Efremova M et al (2020) Cell PhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes. Nat Protoc 15(4):1484–1506PubMedCrossRef Efremova M et al (2020) Cell PhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes. Nat Protoc 15(4):1484–1506PubMedCrossRef
100.
go back to reference Tam CS et al (2012) Adipose tissue remodeling in children: the link between collagen deposition and age-related adipocyte growth. J Clin Endocrinol Metab 97(4):1320–1327PubMedCrossRef Tam CS et al (2012) Adipose tissue remodeling in children: the link between collagen deposition and age-related adipocyte growth. J Clin Endocrinol Metab 97(4):1320–1327PubMedCrossRef
102.
go back to reference Karamanos NK et al (2021) A guide to the composition and functions of the extracellular matrix. FEBS J 288(24):6850–6912PubMedCrossRef Karamanos NK et al (2021) A guide to the composition and functions of the extracellular matrix. FEBS J 288(24):6850–6912PubMedCrossRef
103.
go back to reference Boareto M et al (2015) Jagged mediates differences in normal and tumor angiogenesis by affecting tip-stalk fate decision. Proc Natl Acad Sci USA 112(29):E3836–E3844PubMedPubMedCentralCrossRef Boareto M et al (2015) Jagged mediates differences in normal and tumor angiogenesis by affecting tip-stalk fate decision. Proc Natl Acad Sci USA 112(29):E3836–E3844PubMedPubMedCentralCrossRef
104.
go back to reference Tan E, Asada HH, Ge R (2018) Extracellular vesicle-carried Jagged-1 inhibits HUVEC sprouting in a 3D microenvironment. Angiogenesis 21(3):571–580PubMedCrossRef Tan E, Asada HH, Ge R (2018) Extracellular vesicle-carried Jagged-1 inhibits HUVEC sprouting in a 3D microenvironment. Angiogenesis 21(3):571–580PubMedCrossRef
106.
go back to reference Cecchini A, Cornelison DDW (2021) Eph/Ephrin-based protein complexes: the importance of cis interactions in guiding cellular processes. Front Mol Biosci 8:809364PubMedCrossRef Cecchini A, Cornelison DDW (2021) Eph/Ephrin-based protein complexes: the importance of cis interactions in guiding cellular processes. Front Mol Biosci 8:809364PubMedCrossRef
107.
go back to reference Kania A, Klein R (2016) Mechanisms of ephrin-Eph signalling in development, physiology and disease. Nat Rev Mol Cell Biol 17(4):240–256PubMedCrossRef Kania A, Klein R (2016) Mechanisms of ephrin-Eph signalling in development, physiology and disease. Nat Rev Mol Cell Biol 17(4):240–256PubMedCrossRef
109.
go back to reference Yang WJ et al (2015) Semaphorin-3C signals through neuropilin-1 and PlexinD1 receptors to inhibit pathological angiogenesis. EMBO Mol Med 7(10):1267–1284PubMedPubMedCentralCrossRef Yang WJ et al (2015) Semaphorin-3C signals through neuropilin-1 and PlexinD1 receptors to inhibit pathological angiogenesis. EMBO Mol Med 7(10):1267–1284PubMedPubMedCentralCrossRef
110.
go back to reference Reggio S et al (2016) Increased basement membrane components in adipose tissue during obesity: links with TGFbeta and metabolic phenotypes. J Clin Endocrinol Metab 101(6):2578–2587PubMedCrossRef Reggio S et al (2016) Increased basement membrane components in adipose tissue during obesity: links with TGFbeta and metabolic phenotypes. J Clin Endocrinol Metab 101(6):2578–2587PubMedCrossRef
111.
go back to reference Oh J et al (2021) Type VI collagen and its cleavage product, endotrophin, cooperatively regulate the adipogenic and lipolytic capacity of adipocytes. Metabolism 114:154430PubMedCrossRef Oh J et al (2021) Type VI collagen and its cleavage product, endotrophin, cooperatively regulate the adipogenic and lipolytic capacity of adipocytes. Metabolism 114:154430PubMedCrossRef
112.
go back to reference Cosgrove D, Liu S (2017) Collagen IV diseases: a focus on the glomerular basement membrane in Alport syndrome. Matrix Biol 57–58:45–54PubMedCrossRef Cosgrove D, Liu S (2017) Collagen IV diseases: a focus on the glomerular basement membrane in Alport syndrome. Matrix Biol 57–58:45–54PubMedCrossRef
113.
go back to reference Li Y et al (1995) A fibrillar collagen gene, Col11a1, is essential for skeletal morphogenesis. Cell 80(3):423–430PubMedCrossRef Li Y et al (1995) A fibrillar collagen gene, Col11a1, is essential for skeletal morphogenesis. Cell 80(3):423–430PubMedCrossRef
114.
go back to reference Styrkarsdottir U et al (2018) Meta-analysis of Icelandic and UK data sets identifies missense variants in SMO, IL11, COL11A1 and 13 more new loci associated with osteoarthritis. Nat Genet 50(12):1681–1687PubMedCrossRef Styrkarsdottir U et al (2018) Meta-analysis of Icelandic and UK data sets identifies missense variants in SMO, IL11, COL11A1 and 13 more new loci associated with osteoarthritis. Nat Genet 50(12):1681–1687PubMedCrossRef
115.
go back to reference Wu YH et al (2021) COL11A1 activates cancer-associated fibroblasts by modulating TGF-beta3 through the NF-kappaB/IGFBP2 axis in ovarian cancer cells. Oncogene 40(26):4503–4519PubMedCrossRef Wu YH et al (2021) COL11A1 activates cancer-associated fibroblasts by modulating TGF-beta3 through the NF-kappaB/IGFBP2 axis in ovarian cancer cells. Oncogene 40(26):4503–4519PubMedCrossRef
116.
go back to reference Crespo-Garcia S et al (2021) Pathological angiogenesis in retinopathy engages cellular senescence and is amenable to therapeutic elimination via BCL-xL inhibition. Cell Metab 33(4):818-832 e7PubMedCrossRef Crespo-Garcia S et al (2021) Pathological angiogenesis in retinopathy engages cellular senescence and is amenable to therapeutic elimination via BCL-xL inhibition. Cell Metab 33(4):818-832 e7PubMedCrossRef
118.
go back to reference van Niel G, D’Angelo G, Raposo G (2018) Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 19(4):213–228PubMedCrossRef van Niel G, D’Angelo G, Raposo G (2018) Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 19(4):213–228PubMedCrossRef
120.
go back to reference Pan Y et al (2019) Adipocyte-secreted exosomal microRNA-34a inhibits M2 macrophage polarization to promote obesity-induced adipose inflammation. J Clin Investig 129(2):834–849PubMedPubMedCentralCrossRef Pan Y et al (2019) Adipocyte-secreted exosomal microRNA-34a inhibits M2 macrophage polarization to promote obesity-induced adipose inflammation. J Clin Investig 129(2):834–849PubMedPubMedCentralCrossRef
121.
122.
go back to reference Hubal MJ et al (2017) Circulating adipocyte-derived exosomal MicroRNAs associated with decreased insulin resistance after gastric bypass. Obesity (Silver Spring) 25(1):102–110CrossRef Hubal MJ et al (2017) Circulating adipocyte-derived exosomal MicroRNAs associated with decreased insulin resistance after gastric bypass. Obesity (Silver Spring) 25(1):102–110CrossRef
123.
go back to reference Garcia-Martin R et al (2022) MicroRNA sequence codes for small extracellular vesicle release and cellular retention. Nature 601(7893):446–451PubMedCrossRef Garcia-Martin R et al (2022) MicroRNA sequence codes for small extracellular vesicle release and cellular retention. Nature 601(7893):446–451PubMedCrossRef
124.
126.
go back to reference Ioannidou A, Fisher RM, Hagberg CE (2022) The multifaceted roles of the adipose tissue vasculature. Obes Rev 23(4):e13403PubMedCrossRef Ioannidou A, Fisher RM, Hagberg CE (2022) The multifaceted roles of the adipose tissue vasculature. Obes Rev 23(4):e13403PubMedCrossRef
127.
go back to reference An Y et al (2019) Exosomes from adipose-derived stem cells (ADSCs) overexpressing miR-21 promote vascularization of endothelial cells. Sci Rep 9(1):12861PubMedPubMedCentralCrossRef An Y et al (2019) Exosomes from adipose-derived stem cells (ADSCs) overexpressing miR-21 promote vascularization of endothelial cells. Sci Rep 9(1):12861PubMedPubMedCentralCrossRef
128.
go back to reference Xue C et al (2018) Exosomes derived from hypoxia-treated human adipose mesenchymal stem cells enhance angiogenesis through the PKA signaling pathway. Stem Cells Dev 27(7):456–465PubMedCrossRef Xue C et al (2018) Exosomes derived from hypoxia-treated human adipose mesenchymal stem cells enhance angiogenesis through the PKA signaling pathway. Stem Cells Dev 27(7):456–465PubMedCrossRef
129.
go back to reference Li X et al (2018) Exosomes from adipose-derived stem cells overexpressing Nrf2 accelerate cutaneous wound healing by promoting vascularization in a diabetic foot ulcer rat model. Exp Mol Med 50(4):1–14PubMedPubMedCentralCrossRef Li X et al (2018) Exosomes from adipose-derived stem cells overexpressing Nrf2 accelerate cutaneous wound healing by promoting vascularization in a diabetic foot ulcer rat model. Exp Mol Med 50(4):1–14PubMedPubMedCentralCrossRef
130.
go back to reference Han YD et al (2018) Co-transplantation of exosomes derived from hypoxia-preconditioned adipose mesenchymal stem cells promotes neovascularization and graft survival in fat grafting. Biochem Biophys Res Commun 497(1):305–312PubMedCrossRef Han YD et al (2018) Co-transplantation of exosomes derived from hypoxia-preconditioned adipose mesenchymal stem cells promotes neovascularization and graft survival in fat grafting. Biochem Biophys Res Commun 497(1):305–312PubMedCrossRef
131.
go back to reference Lopatina T et al (2014) Platelet-derived growth factor regulates the secretion of extracellular vesicles by adipose mesenchymal stem cells and enhances their angiogenic potential. Cell Commun Signal 12:26PubMedPubMedCentralCrossRef Lopatina T et al (2014) Platelet-derived growth factor regulates the secretion of extracellular vesicles by adipose mesenchymal stem cells and enhances their angiogenic potential. Cell Commun Signal 12:26PubMedPubMedCentralCrossRef
132.
go back to reference Liang X et al (2016) Exosomes secreted by mesenchymal stem cells promote endothelial cell angiogenesis by transferring miR-125a. J Cell Sci 129(11):2182–2189PubMedCrossRef Liang X et al (2016) Exosomes secreted by mesenchymal stem cells promote endothelial cell angiogenesis by transferring miR-125a. J Cell Sci 129(11):2182–2189PubMedCrossRef
133.
go back to reference Pi L et al (2022) Exosomal microRNA-125a-3p from human adipose-derived mesenchymal stem cells promotes angiogenesis of wound healing through inhibiting PTEN. Mol Cell Biochem 477(1):115–127PubMedCrossRef Pi L et al (2022) Exosomal microRNA-125a-3p from human adipose-derived mesenchymal stem cells promotes angiogenesis of wound healing through inhibiting PTEN. Mol Cell Biochem 477(1):115–127PubMedCrossRef
135.
go back to reference Hou P et al (2019) PinX1 represses renal cancer angiogenesis via the mir-125a-3p/VEGF signaling pathway. Angiogenesis 22(4):507–519PubMedCrossRef Hou P et al (2019) PinX1 represses renal cancer angiogenesis via the mir-125a-3p/VEGF signaling pathway. Angiogenesis 22(4):507–519PubMedCrossRef
136.
137.
go back to reference Brakenhielm E et al (2004) Angiogenesis inhibitor, TNP-470, prevents diet-induced and genetic obesity in mice. Circ Res 94(12):1579–1588PubMedCrossRef Brakenhielm E et al (2004) Angiogenesis inhibitor, TNP-470, prevents diet-induced and genetic obesity in mice. Circ Res 94(12):1579–1588PubMedCrossRef
138.
go back to reference Kim J et al (2017) The angiogenesis inhibitor ALS-L1023 from lemon-balm leaves attenuates high-fat diet-induced nonalcoholic fatty liver disease through regulating the visceral adipose-tissue function. Int J Mol Sci 18(4):846PubMedCentralCrossRef Kim J et al (2017) The angiogenesis inhibitor ALS-L1023 from lemon-balm leaves attenuates high-fat diet-induced nonalcoholic fatty liver disease through regulating the visceral adipose-tissue function. Int J Mol Sci 18(4):846PubMedCentralCrossRef
139.
go back to reference Ngo DT et al (2014) Antiangiogenic actions of vascular endothelial growth factor-A165b, an inhibitory isoform of vascular endothelial growth factor-A, in human obesity. Circulation 130(13):1072–1080PubMedPubMedCentralCrossRef Ngo DT et al (2014) Antiangiogenic actions of vascular endothelial growth factor-A165b, an inhibitory isoform of vascular endothelial growth factor-A, in human obesity. Circulation 130(13):1072–1080PubMedPubMedCentralCrossRef
140.
142.
go back to reference Wang H, Shi Y, Gu J (2020) A multitarget angiogenesis inhibitor, CTT peptide-endostatin mimic-kringle 5, prevents diet-induced obesity. J Mol Med (Berl) 98(12):1753–1765CrossRef Wang H, Shi Y, Gu J (2020) A multitarget angiogenesis inhibitor, CTT peptide-endostatin mimic-kringle 5, prevents diet-induced obesity. J Mol Med (Berl) 98(12):1753–1765CrossRef
143.
go back to reference White HM, Acton AJ, Considine RV (2012) The angiogenic inhibitor TNP-470 decreases caloric intake and weight gain in high-fat fed mice. Obesity (Silver Spring) 20(10):2003–2009CrossRef White HM, Acton AJ, Considine RV (2012) The angiogenic inhibitor TNP-470 decreases caloric intake and weight gain in high-fat fed mice. Obesity (Silver Spring) 20(10):2003–2009CrossRef
144.
go back to reference Goya Grocin A, Kallemeijn WW, Tate EW (2021) Targeting methionine aminopeptidase 2 in cancer, obesity, and autoimmunity. Trends Pharmacol Sci 42(10):870–882PubMedCrossRef Goya Grocin A, Kallemeijn WW, Tate EW (2021) Targeting methionine aminopeptidase 2 in cancer, obesity, and autoimmunity. Trends Pharmacol Sci 42(10):870–882PubMedCrossRef
147.
go back to reference Jin H et al (2018) VEGF and VEGFB play balancing roles in adipose differentiation, gene expression, and function. Endocrinology 159(5):2036–2049PubMedCrossRef Jin H et al (2018) VEGF and VEGFB play balancing roles in adipose differentiation, gene expression, and function. Endocrinology 159(5):2036–2049PubMedCrossRef
148.
go back to reference Elias I, Franckhauser S, Bosch F (2013) New insights into adipose tissue VEGF-A actions in the control of obesity and insulin resistance. Adipocyte 2(2):109–112PubMedPubMedCentralCrossRef Elias I, Franckhauser S, Bosch F (2013) New insights into adipose tissue VEGF-A actions in the control of obesity and insulin resistance. Adipocyte 2(2):109–112PubMedPubMedCentralCrossRef
149.
150.
go back to reference Chen Y et al (2020) Adipose vascular endothelial growth factor B is a major regulator of energy metabolism. J Endocrinol 244(3):511–521PubMedCrossRef Chen Y et al (2020) Adipose vascular endothelial growth factor B is a major regulator of energy metabolism. J Endocrinol 244(3):511–521PubMedCrossRef
152.
go back to reference Wu LE et al (2014) Systemic VEGF-A neutralization ameliorates diet-induced metabolic dysfunction. Diabetes 63(8):2656–2667PubMedCrossRef Wu LE et al (2014) Systemic VEGF-A neutralization ameliorates diet-induced metabolic dysfunction. Diabetes 63(8):2656–2667PubMedCrossRef
154.
go back to reference Monelli E et al (2022) Angiocrine polyamine production regulates adiposity. Nat Metab 4(3):327–343PubMedCrossRef Monelli E et al (2022) Angiocrine polyamine production regulates adiposity. Nat Metab 4(3):327–343PubMedCrossRef
Metadata
Title
Angiogenesis in adipose tissue and obesity
Authors
Silvia Corvera
Javier Solivan-Rivera
Zinger Yang Loureiro
Publication date
20-07-2022
Publisher
Springer Netherlands
Keywords
Obesity
Obesity
Published in
Angiogenesis / Issue 4/2022
Print ISSN: 0969-6970
Electronic ISSN: 1573-7209
DOI
https://doi.org/10.1007/s10456-022-09848-3

Other articles of this Issue 4/2022

Angiogenesis 4/2022 Go to the issue