Skip to main content
Top
Published in: Angiogenesis 3/2021

Open Access 01-08-2021 | Original Paper

The endosomal RIN2/Rab5C machinery prevents VEGFR2 degradation to control gene expression and tip cell identity during angiogenesis

Authors: Lanette Kempers, Yuki Wakayama, Ivo van der Bijl, Charita Furumaya, Iris M. De Cuyper, Aldo Jongejan, Marije Kat, Anne-Marieke D. van Stalborch, Antonius L. van Boxtel, Marvin Hubert, Dirk Geerts, Jaap D. van Buul, Dirk de Korte, Wiebke Herzog, Coert Margadant

Published in: Angiogenesis | Issue 3/2021

Login to get access

Abstract

Sprouting angiogenesis is key to many pathophysiological conditions, and is strongly regulated by vascular endothelial growth factor (VEGF) signaling through VEGF receptor 2 (VEGFR2). Here we report that the early endosomal GTPase Rab5C and its activator RIN2 prevent lysosomal routing and degradation of VEGF-bound, internalized VEGFR2 in human endothelial cells. Stabilization of endosomal VEGFR2 levels by RIN2/Rab5C is crucial for VEGF signaling through the ERK and PI3-K pathways, the expression of immediate VEGF target genes, as well as specification of angiogenic ‘tip’ and ‘stalk’ cell phenotypes and cell sprouting. Using overexpression of Rab mutants, knockdown and CRISPR/Cas9-mediated gene editing, and live-cell imaging in zebrafish, we further show that endosomal stabilization of VEGFR2 levels is required for developmental angiogenesis in vivo. In contrast, the premature degradation of internalized VEGFR2 disrupts VEGF signaling, gene expression, and tip cell formation and migration. Thus, an endosomal feedforward mechanism maintains receptor signaling by preventing lysosomal degradation, which is directly linked to the induction of target genes and cell fate in collectively migrating cells during morphogenesis.
Appendix
Available only for authorised users
Literature
2.
go back to reference Simons M, Gordon E, Claesson-Welsh L (2016) Mechanisms and regulation of endothelial VEGF receptor signalling. Nat Rev Mol Cell Biol 17:611–625PubMedCrossRef Simons M, Gordon E, Claesson-Welsh L (2016) Mechanisms and regulation of endothelial VEGF receptor signalling. Nat Rev Mol Cell Biol 17:611–625PubMedCrossRef
4.
go back to reference Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, Mitchell C, Alitalo K, Shima D, Betsholtz C (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161:1163–1177PubMedPubMedCentralCrossRef Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, Mitchell C, Alitalo K, Shima D, Betsholtz C (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161:1163–1177PubMedPubMedCentralCrossRef
5.
6.
go back to reference Strasser G, Kaminker J, Tessier-Lavigne M (2010) Microarray analysis of retinal endothelial tip cells identifies CXCR4 as a mediator of tip cell morphology and branching. Blood 115:5102–5110PubMedCrossRef Strasser G, Kaminker J, Tessier-Lavigne M (2010) Microarray analysis of retinal endothelial tip cells identifies CXCR4 as a mediator of tip cell morphology and branching. Blood 115:5102–5110PubMedCrossRef
7.
go back to reference del Toro R, Prahst C, Mathivet T, Siegfried G, Kaminker J, Larrivee B, Breant C, Duarte A, Takakura N, Fukamizu A, Penninger J, Eichmann A (2010) Identification and functional analysis of endothelial tip cell-enriched genes. Blood 116:4025–4033PubMedPubMedCentralCrossRef del Toro R, Prahst C, Mathivet T, Siegfried G, Kaminker J, Larrivee B, Breant C, Duarte A, Takakura N, Fukamizu A, Penninger J, Eichmann A (2010) Identification and functional analysis of endothelial tip cell-enriched genes. Blood 116:4025–4033PubMedPubMedCentralCrossRef
8.
go back to reference Hellstrom M, Phng L, Hofmann J, Wallgard E, Coultas L, Lindblom P, Alva J, Nilsson A-K, Karlsson L, Gaiano N, Yoon K, Rossant J, Iruela-Arispe L, Kalén M, Gerhardt H, Betsholtz C (2007) Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445:776–780CrossRefPubMed Hellstrom M, Phng L, Hofmann J, Wallgard E, Coultas L, Lindblom P, Alva J, Nilsson A-K, Karlsson L, Gaiano N, Yoon K, Rossant J, Iruela-Arispe L, Kalén M, Gerhardt H, Betsholtz C (2007) Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445:776–780CrossRefPubMed
9.
go back to reference Lobov I, Renard R, Papadopoulos N, Gale N, Thurston G, Yancopoulos G, Wiegand S (2007) Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proc Natl Acad Sci USA 104:3219–3224PubMedPubMedCentralCrossRef Lobov I, Renard R, Papadopoulos N, Gale N, Thurston G, Yancopoulos G, Wiegand S (2007) Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proc Natl Acad Sci USA 104:3219–3224PubMedPubMedCentralCrossRef
10.
go back to reference Suchting S, Freitas C, le Noble F, Benedito R, Bréant C, Duarte A, Eichmann A (2007) The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc Natl Acad Sci U S A 104:3225–3230PubMedPubMedCentralCrossRef Suchting S, Freitas C, le Noble F, Benedito R, Bréant C, Duarte A, Eichmann A (2007) The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc Natl Acad Sci U S A 104:3225–3230PubMedPubMedCentralCrossRef
11.
go back to reference Fong G, Rossant J, Gertsenstein M, Breitman M (1995) Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376:66–70PubMedCrossRef Fong G, Rossant J, Gertsenstein M, Breitman M (1995) Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376:66–70PubMedCrossRef
12.
go back to reference Hiratsuka S, Minowa O, Kuno J, Noda T, Shibuya M (1998) Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proc Natl Acad Sci USA 95:9349–9354PubMedPubMedCentralCrossRef Hiratsuka S, Minowa O, Kuno J, Noda T, Shibuya M (1998) Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proc Natl Acad Sci USA 95:9349–9354PubMedPubMedCentralCrossRef
13.
go back to reference Krueger J, Liu D, Scholz K, Zimmer A, Shi Y, Klein C, Siekmann A, Schulte-Merker S, Cudmore M, Ahmed A, le Noble F (2011) Flt1 acts as a negative regulator of tip cell formation and branching morphogenesis in the zebrafish embryo. Development 138:2111–2120PubMedPubMedCentralCrossRef Krueger J, Liu D, Scholz K, Zimmer A, Shi Y, Klein C, Siekmann A, Schulte-Merker S, Cudmore M, Ahmed A, le Noble F (2011) Flt1 acts as a negative regulator of tip cell formation and branching morphogenesis in the zebrafish embryo. Development 138:2111–2120PubMedPubMedCentralCrossRef
14.
go back to reference Ballmer-Hofer K, Andersson A, Ratcliffe L, Berger P (2011) Neuropilin-1 promotes VEGFR-2 trafficking through Rab11 vesicles thereby specifying signal output. Blood 118:816–826PubMedCrossRef Ballmer-Hofer K, Andersson A, Ratcliffe L, Berger P (2011) Neuropilin-1 promotes VEGFR-2 trafficking through Rab11 vesicles thereby specifying signal output. Blood 118:816–826PubMedCrossRef
15.
go back to reference Basagiannis D, Zografou S, Murphy C, Fotsis T, Morbidelli L, Ziche M, Bleck C, Mercer J, Christoforidis S (2016) VEGF induces signalling and angiogenesis by directing VEGFR2 internalisation through macropinocytosis. J Cell Sci 129:4091–4104PubMed Basagiannis D, Zografou S, Murphy C, Fotsis T, Morbidelli L, Ziche M, Bleck C, Mercer J, Christoforidis S (2016) VEGF induces signalling and angiogenesis by directing VEGFR2 internalisation through macropinocytosis. J Cell Sci 129:4091–4104PubMed
16.
go back to reference Gampel A, Moss L, Jones M, Brunton V, Norman J, Mellor H (2006) VEGF regulates the mobilization of VEGFR2/KDR from an intracellular endothelial storage compartment. Blood 108:2624–2631PubMedCrossRef Gampel A, Moss L, Jones M, Brunton V, Norman J, Mellor H (2006) VEGF regulates the mobilization of VEGFR2/KDR from an intracellular endothelial storage compartment. Blood 108:2624–2631PubMedCrossRef
17.
go back to reference Jopling H, Howell G, Gamper N, Ponnambalam S (2011) The VEGFR2 receptor tyrosine kinase undergoes constitutive endosome-to-plasma membrane recycling. Biochem Biophys Res Commun 410:170–176PubMedPubMedCentralCrossRef Jopling H, Howell G, Gamper N, Ponnambalam S (2011) The VEGFR2 receptor tyrosine kinase undergoes constitutive endosome-to-plasma membrane recycling. Biochem Biophys Res Commun 410:170–176PubMedPubMedCentralCrossRef
18.
go back to reference Lampugnani M, Orsenigo F, Gagliani M, Tacchetti C, Dejana E (2006) Vascular endothelial cadherin controls VEGFR2 internalization and signaling from intracellular compartments. J Cell Biol 174:593–604PubMedPubMedCentralCrossRef Lampugnani M, Orsenigo F, Gagliani M, Tacchetti C, Dejana E (2006) Vascular endothelial cadherin controls VEGFR2 internalization and signaling from intracellular compartments. J Cell Biol 174:593–604PubMedPubMedCentralCrossRef
19.
go back to reference Langemeyer L, Fröhlich F, Ungermann C (2018) Rab GTPase function in endosome and lysosome biogenesis. Trends Cell Biol 28:957–970PubMedCrossRef Langemeyer L, Fröhlich F, Ungermann C (2018) Rab GTPase function in endosome and lysosome biogenesis. Trends Cell Biol 28:957–970PubMedCrossRef
20.
go back to reference Ishida M, Oguchi ME, Fukuda M (2016) Multiple types of guanine nucleotide exchange factors (GEFs) for Rab small GTPases. Cell Struct Funct 41:61–79PubMedCrossRef Ishida M, Oguchi ME, Fukuda M (2016) Multiple types of guanine nucleotide exchange factors (GEFs) for Rab small GTPases. Cell Struct Funct 41:61–79PubMedCrossRef
21.
22.
go back to reference Ewan L, Jopling H, Jia H, Mittar S, Bagherzadeh A, Howell G, Walker J, Zachary I, Ponnambalam S (2006) Intrinsic tyrosine kinase activity is required for vascular endothelial growth factor receptor 2 ubiquitination, sorting and degradation in endothelial cells. Traffic 7:1270–1282PubMedCrossRef Ewan L, Jopling H, Jia H, Mittar S, Bagherzadeh A, Howell G, Walker J, Zachary I, Ponnambalam S (2006) Intrinsic tyrosine kinase activity is required for vascular endothelial growth factor receptor 2 ubiquitination, sorting and degradation in endothelial cells. Traffic 7:1270–1282PubMedCrossRef
23.
go back to reference Nakayama M, Nakayama A, van Lessen M, Yamamoto H, Hoffmann S, Drexler H, Itoh N, Hirose T, Breier G, Vestweber D, Cooper J, Ohno S, Kaibuchi K, Adams R (2013) Spatial regulation of VEGF receptor endocytosis in angiogenesis. Nat Cell Biol 15:249–260PubMedPubMedCentralCrossRef Nakayama M, Nakayama A, van Lessen M, Yamamoto H, Hoffmann S, Drexler H, Itoh N, Hirose T, Breier G, Vestweber D, Cooper J, Ohno S, Kaibuchi K, Adams R (2013) Spatial regulation of VEGF receptor endocytosis in angiogenesis. Nat Cell Biol 15:249–260PubMedPubMedCentralCrossRef
24.
go back to reference Rahman H, Wu H, Dong Y, Al E (2016) Selective targeting of a novel epsin-VEGFR2 interaction promotes VEGF-mediated angiogenesis. Circ Res 118:957–969PubMedPubMedCentralCrossRef Rahman H, Wu H, Dong Y, Al E (2016) Selective targeting of a novel epsin-VEGFR2 interaction promotes VEGF-mediated angiogenesis. Circ Res 118:957–969PubMedPubMedCentralCrossRef
25.
go back to reference Tessneer K, Pasula S, Cai X, Dong Y, McManus J, Liu X, Yu L, Hahn S, Chang B, Chen Y, Griffin C, Xia L, Adams R, Chen H (2014) Genetic reduction of vascular endothelial growth factor receptor 2 rescues aberrant angiogenesis caused by epsin deficiency. Arter Thromb Vasc Biol 34:331–337CrossRef Tessneer K, Pasula S, Cai X, Dong Y, McManus J, Liu X, Yu L, Hahn S, Chang B, Chen Y, Griffin C, Xia L, Adams R, Chen H (2014) Genetic reduction of vascular endothelial growth factor receptor 2 rescues aberrant angiogenesis caused by epsin deficiency. Arter Thromb Vasc Biol 34:331–337CrossRef
26.
go back to reference Lanahan A, Zhang X, Fantin A, Zhuang Z, Rivera-Molina F, Speichinger K, Prahst C, Zhang J, Wang Y, Davis G, Toomre D, Ruhrberg C, Simons M (2013) The neuropilin-1 cytoplasmic domain is required for VEGF-A-dependent arteriogenesis. Dev Cell 25:156–168PubMedPubMedCentralCrossRef Lanahan A, Zhang X, Fantin A, Zhuang Z, Rivera-Molina F, Speichinger K, Prahst C, Zhang J, Wang Y, Davis G, Toomre D, Ruhrberg C, Simons M (2013) The neuropilin-1 cytoplasmic domain is required for VEGF-A-dependent arteriogenesis. Dev Cell 25:156–168PubMedPubMedCentralCrossRef
27.
go back to reference van Lessen M, Nakayama M, Kato K, Kim J, Kaibuchi K, Adams R (2015) Regulation of vascular endothelial growth factor receptor function in angiogenesis by numb and numb-like. Arter Thromb Vasc Biol 35:1815–1825CrossRef van Lessen M, Nakayama M, Kato K, Kim J, Kaibuchi K, Adams R (2015) Regulation of vascular endothelial growth factor receptor function in angiogenesis by numb and numb-like. Arter Thromb Vasc Biol 35:1815–1825CrossRef
28.
go back to reference Pasula S, Cai X, Dong Y, Messa M, McManus J, Chang B, Liu X, Zhu H, Mansat RS, Yoon SJ, Hahn S, Keeling J, Saunders D, Ko G, Knight J, Newton G, Luscinskas F, Sun X, Towner R, Lupu F et al (2012) Endothelial epsin deficiency decreases tumor growth by enhancing VEGF signaling. J Clin Invest 122:4424–4438PubMedPubMedCentralCrossRef Pasula S, Cai X, Dong Y, Messa M, McManus J, Chang B, Liu X, Zhu H, Mansat RS, Yoon SJ, Hahn S, Keeling J, Saunders D, Ko G, Knight J, Newton G, Luscinskas F, Sun X, Towner R, Lupu F et al (2012) Endothelial epsin deficiency decreases tumor growth by enhancing VEGF signaling. J Clin Invest 122:4424–4438PubMedPubMedCentralCrossRef
29.
go back to reference Reynolds A, Hart I, Watson A, Welti J, Silva R, Robinson S, Violante G, Gourlaouen M, Salih M, Jones M, Jones D, Saunders G, Kostourou V, Perron-Sierra F, Norman J, Tucker G, Hodivala-Dilke K (2009) Stimulation of tumor growth and angiogenesis by low concentrations of RGD-mimetic integrin inhibitors. Nat Med 15:392–400PubMedCrossRef Reynolds A, Hart I, Watson A, Welti J, Silva R, Robinson S, Violante G, Gourlaouen M, Salih M, Jones M, Jones D, Saunders G, Kostourou V, Perron-Sierra F, Norman J, Tucker G, Hodivala-Dilke K (2009) Stimulation of tumor growth and angiogenesis by low concentrations of RGD-mimetic integrin inhibitors. Nat Med 15:392–400PubMedCrossRef
30.
go back to reference Sawamiphak S, Seidel S, Essmann C, Wilkinson G, Pitulescu M, Acker T, Acker-Palmer A (2010) Ephrin-B2 regulates VEGFR2 function in developmental and tumour angiogenesis. Nature 465:487–491PubMedCrossRef Sawamiphak S, Seidel S, Essmann C, Wilkinson G, Pitulescu M, Acker T, Acker-Palmer A (2010) Ephrin-B2 regulates VEGFR2 function in developmental and tumour angiogenesis. Nature 465:487–491PubMedCrossRef
31.
go back to reference Wang Y, Nakayama M, Pitulescu M, Schmidt TS, Bochenek ML, Sakakibara A, Adams S, Davy A, Deutsch U, Lüthi U, Barberis A, Benjamin LE, Mäkinen T, Nobes CD, Adams RH (2010) Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature 465:483–486PubMedCrossRef Wang Y, Nakayama M, Pitulescu M, Schmidt TS, Bochenek ML, Sakakibara A, Adams S, Davy A, Deutsch U, Lüthi U, Barberis A, Benjamin LE, Mäkinen T, Nobes CD, Adams RH (2010) Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature 465:483–486PubMedCrossRef
32.
go back to reference Lee MY, Skoura A, Park EJ, Landskroner-eiger S, Jozsef L, Luciano AK, Murata T, Pasula S, Dong Y, Bouaouina M, Calderwood DA, Ferguson SM, De Camilli P, Sessa WC (2014) Dynamin 2 regulation of integrin endocytosis, but not VEGF signaling, is crucial for developmental angiogenesis. Development 141(7):1465–1472PubMedPubMedCentralCrossRef Lee MY, Skoura A, Park EJ, Landskroner-eiger S, Jozsef L, Luciano AK, Murata T, Pasula S, Dong Y, Bouaouina M, Calderwood DA, Ferguson SM, De Camilli P, Sessa WC (2014) Dynamin 2 regulation of integrin endocytosis, but not VEGF signaling, is crucial for developmental angiogenesis. Development 141(7):1465–1472PubMedPubMedCentralCrossRef
33.
go back to reference Kofler N, Corti F, Rivera-Molina F, Deng Y, Toomre D, Simons M (2018) The Rab-effector protein RABEP2 regulates endosomal trafficking to mediate vascular endothelial growth factor receptor-2 (VEGFR2)-dependent signaling. J Biol Chem 293:4805–4817PubMedPubMedCentralCrossRef Kofler N, Corti F, Rivera-Molina F, Deng Y, Toomre D, Simons M (2018) The Rab-effector protein RABEP2 regulates endosomal trafficking to mediate vascular endothelial growth factor receptor-2 (VEGFR2)-dependent signaling. J Biol Chem 293:4805–4817PubMedPubMedCentralCrossRef
34.
go back to reference Lanahan A, Hermans K, Claes F, Kerley-Hamilton J, Zhuang Z, Giordano F, Carmeliet P, Simons M (2010) VEGF receptor 2 endocytic trafficking regulates arterial morphogenesis. Dev Cell 18:713–724PubMedPubMedCentralCrossRef Lanahan A, Hermans K, Claes F, Kerley-Hamilton J, Zhuang Z, Giordano F, Carmeliet P, Simons M (2010) VEGF receptor 2 endocytic trafficking regulates arterial morphogenesis. Dev Cell 18:713–724PubMedPubMedCentralCrossRef
35.
go back to reference Clark B, Winter M, Cohen A, Link B (2011) Generation of Rab-based transgenic lines for in vivo studies of endosome biology in zebrafish. Dev Dyn 240:2452–2465PubMedPubMedCentralCrossRef Clark B, Winter M, Cohen A, Link B (2011) Generation of Rab-based transgenic lines for in vivo studies of endosome biology in zebrafish. Dev Dyn 240:2452–2465PubMedPubMedCentralCrossRef
36.
go back to reference Heng J, Lv P, Zhang Y, Cheng X, Wang L, Ma D, Liu F (2020) Rab5c-mediated endocytic trafficking regulates hematopoietic stem and progenitor cell development via Notch and AKT signaling. PLoS Biol 18:1–28CrossRef Heng J, Lv P, Zhang Y, Cheng X, Wang L, Ma D, Liu F (2020) Rab5c-mediated endocytic trafficking regulates hematopoietic stem and progenitor cell development via Notch and AKT signaling. PLoS Biol 18:1–28CrossRef
37.
go back to reference Kenyon E, Campos I, Bull J, Williams P, Stemple D, Clark M (2015) Zebrafish Rab5 proteins and a role for Rab5ab in nodal signalling. Dev Biol 397:212–224PubMedPubMedCentralCrossRef Kenyon E, Campos I, Bull J, Williams P, Stemple D, Clark M (2015) Zebrafish Rab5 proteins and a role for Rab5ab in nodal signalling. Dev Biol 397:212–224PubMedPubMedCentralCrossRef
38.
39.
go back to reference Fish J, Cantu Gutierrez M, Dang L, Khyzha N, Chen Z, Veitch S, Cheng H, Khor M, Antounians L, Njock M, Boudreau E, Herman A, Rhyner A, Ruiz O, Eisenhoffer G, Medina-Rivera A, Wilson M, Wythe J (2017) Dynamic regulation of VEGF-inducible genes by an ERK/ERG/p300 transcriptional network. Development 144:2428–2444PubMedPubMedCentral Fish J, Cantu Gutierrez M, Dang L, Khyzha N, Chen Z, Veitch S, Cheng H, Khor M, Antounians L, Njock M, Boudreau E, Herman A, Rhyner A, Ruiz O, Eisenhoffer G, Medina-Rivera A, Wilson M, Wythe J (2017) Dynamic regulation of VEGF-inducible genes by an ERK/ERG/p300 transcriptional network. Development 144:2428–2444PubMedPubMedCentral
40.
go back to reference Schweighofer B, Testori J, Sturtzel C, Sattler S, Mayer H, Wagner O, Bilban M, Hofer E (2009) The VEGF-induced transcriptional response comprises gene clusters at the crossroad of angiogenesis and inflammation. Thromb Haemost 102:544–554PubMedPubMedCentralCrossRef Schweighofer B, Testori J, Sturtzel C, Sattler S, Mayer H, Wagner O, Bilban M, Hofer E (2009) The VEGF-induced transcriptional response comprises gene clusters at the crossroad of angiogenesis and inflammation. Thromb Haemost 102:544–554PubMedPubMedCentralCrossRef
41.
go back to reference Shin J, Huggenberger R, Detmar M (2008) Transcriptional profiling of VEGF-A and VEGF-C target genes in lymphatic endothelium reveals endothelial-specific molecule-1 as a novel mediator of lymphangiogenesis. Blood 112:2318–2326PubMedPubMedCentralCrossRef Shin J, Huggenberger R, Detmar M (2008) Transcriptional profiling of VEGF-A and VEGF-C target genes in lymphatic endothelium reveals endothelial-specific molecule-1 as a novel mediator of lymphangiogenesis. Blood 112:2318–2326PubMedPubMedCentralCrossRef
42.
go back to reference Nakatsu MN, Hughes CC (2008) An optimised three-dimensional in vitro model for the analysis of angiogenesis. Methods Enzym 443:65–82CrossRef Nakatsu MN, Hughes CC (2008) An optimised three-dimensional in vitro model for the analysis of angiogenesis. Methods Enzym 443:65–82CrossRef
43.
go back to reference Nowak-Sliwinska P, Alitalo K, Allen E, Anisimov A, Aplin AC, Auerbach R, Augustin HG, Bates DO, van Beijnum JR, Bender RHF, Bergers G, Bikfalvi A, Bischoff J, Böck BC, Griffioen AW (2018) Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis 21:425–532PubMedPubMedCentralCrossRef Nowak-Sliwinska P, Alitalo K, Allen E, Anisimov A, Aplin AC, Auerbach R, Augustin HG, Bates DO, van Beijnum JR, Bender RHF, Bergers G, Bikfalvi A, Bischoff J, Böck BC, Griffioen AW (2018) Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis 21:425–532PubMedPubMedCentralCrossRef
46.
go back to reference Ellertsdóttir E, Lenard A, Blum Y, Krudewig A, Herwig L, Affolter M, Belting H (2010) Vascular morphogenesis in the zebrafish embryo. Dev Biol 341:56–65PubMedCrossRef Ellertsdóttir E, Lenard A, Blum Y, Krudewig A, Herwig L, Affolter M, Belting H (2010) Vascular morphogenesis in the zebrafish embryo. Dev Biol 341:56–65PubMedCrossRef
47.
go back to reference Schuermann A, Helker C, Herzog W (2014) Angiogenesis in zebrafish. Semin Cell Dev Biol 31:106–114PubMedCrossRef Schuermann A, Helker C, Herzog W (2014) Angiogenesis in zebrafish. Semin Cell Dev Biol 31:106–114PubMedCrossRef
48.
go back to reference Hamm M, Kirchmaier B, Herzog W (2016) Sema3d controls collective endothelial cell migration by distinct mechanisms via Nrp1 and PlxnD1. J Cell Biol 215:415–430PubMedPubMedCentralCrossRef Hamm M, Kirchmaier B, Herzog W (2016) Sema3d controls collective endothelial cell migration by distinct mechanisms via Nrp1 and PlxnD1. J Cell Biol 215:415–430PubMedPubMedCentralCrossRef
49.
go back to reference Hasan S, Tsaryk R, Lange M, Wisniewski L, Moore J, Lawson N, Wojciechowska K, Schnittler H, Siekmann A (2017) Endothelial Notch signalling limits angiogenesis via control of artery formation. Nat Cell Biol 19:928–940PubMedPubMedCentralCrossRef Hasan S, Tsaryk R, Lange M, Wisniewski L, Moore J, Lawson N, Wojciechowska K, Schnittler H, Siekmann A (2017) Endothelial Notch signalling limits angiogenesis via control of artery formation. Nat Cell Biol 19:928–940PubMedPubMedCentralCrossRef
50.
go back to reference Pitulescu M, Schmidt I, Giaimo B, Antoine T, Berkenfeld F, Ferrante F, Park H, Ehling M, Biljes D, Rocha S, Langen U, Stehling M, Nagasawa T, Ferrara N, Borggrefe T, Adams R (2017) Dll4 and Notch signalling couples sprouting angiogenesis and artery formation. Nat Cell Biol 19:915–927PubMedCrossRef Pitulescu M, Schmidt I, Giaimo B, Antoine T, Berkenfeld F, Ferrante F, Park H, Ehling M, Biljes D, Rocha S, Langen U, Stehling M, Nagasawa T, Ferrara N, Borggrefe T, Adams R (2017) Dll4 and Notch signalling couples sprouting angiogenesis and artery formation. Nat Cell Biol 19:915–927PubMedCrossRef
51.
go back to reference Ninov N, Borius M, Stainier D (2012) Different levels of Notch signaling regulate quiescence, renewal and differentiation in pancreatic endocrine progenitors. Development 139:1557–1567PubMedPubMedCentralCrossRef Ninov N, Borius M, Stainier D (2012) Different levels of Notch signaling regulate quiescence, renewal and differentiation in pancreatic endocrine progenitors. Development 139:1557–1567PubMedPubMedCentralCrossRef
52.
go back to reference Stenmark H, Parton R, Steele-Mortimer O, Lütcke A, Gruenberg J, Zerial M (1994) Inhibition of rab5 GTPase activity stimulates membrane fusion in endocytosis. EMBO J 13:1287–1296PubMedPubMedCentralCrossRef Stenmark H, Parton R, Steele-Mortimer O, Lütcke A, Gruenberg J, Zerial M (1994) Inhibition of rab5 GTPase activity stimulates membrane fusion in endocytosis. EMBO J 13:1287–1296PubMedPubMedCentralCrossRef
55.
go back to reference Sandri C, Caccavari F, Valdembri D, Camillo C, Veltel S, Santambrogio M, Lanzetti L, Bussolino F, Ivaska J, Serini G (2012) The R-Ras/RIN2/Rab5 complex controls endothelial cell adhesion and morphogenesis via active integrin endocytosis and Rac signaling. Cell Res 22:1479–1501PubMedPubMedCentralCrossRef Sandri C, Caccavari F, Valdembri D, Camillo C, Veltel S, Santambrogio M, Lanzetti L, Bussolino F, Ivaska J, Serini G (2012) The R-Ras/RIN2/Rab5 complex controls endothelial cell adhesion and morphogenesis via active integrin endocytosis and Rac signaling. Cell Res 22:1479–1501PubMedPubMedCentralCrossRef
56.
go back to reference Jakobsson L, Franco C, Bentley K, Collins R, Ponsioen B, Aspalter I, Rosewell I, Busse M, Thurston G, Medvinsky A, Schulte-Merker S, Gerhardt H (2010) Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat Cell Biol 12:943–953PubMedCrossRef Jakobsson L, Franco C, Bentley K, Collins R, Ponsioen B, Aspalter I, Rosewell I, Busse M, Thurston G, Medvinsky A, Schulte-Merker S, Gerhardt H (2010) Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat Cell Biol 12:943–953PubMedCrossRef
57.
go back to reference Lucitti J, Sealock R, Buckley B, Zhang H, Xiao L, Dudley A, Faber J (2016) Variants of Rab GTPase-effector binding protein-2 cause variation in the collateral circulation and severity of stroke. Stroke 47:3022–3031PubMedPubMedCentralCrossRef Lucitti J, Sealock R, Buckley B, Zhang H, Xiao L, Dudley A, Faber J (2016) Variants of Rab GTPase-effector binding protein-2 cause variation in the collateral circulation and severity of stroke. Stroke 47:3022–3031PubMedPubMedCentralCrossRef
58.
go back to reference Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, Yefanov A, Lee H, Zhang N, Robertson CL, Serova N, Davis S, Soboleva A (2013) NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res 41:991–995CrossRef Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, Yefanov A, Lee H, Zhang N, Robertson CL, Serova N, Davis S, Soboleva A (2013) NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res 41:991–995CrossRef
59.
go back to reference Revet I, Huizenga G, Chan A, Koster J, Volckmann R, van Sluis P, Øra I, Versteeg R, Geerts D (2008) The MSX1 homeobox transcription factor is a downstream target of PHOX2B and activates the Delta-Notch pathway in neuroblastoma. Exp Cell Res 314:707–719PubMedCrossRef Revet I, Huizenga G, Chan A, Koster J, Volckmann R, van Sluis P, Øra I, Versteeg R, Geerts D (2008) The MSX1 homeobox transcription factor is a downstream target of PHOX2B and activates the Delta-Notch pathway in neuroblastoma. Exp Cell Res 314:707–719PubMedCrossRef
60.
go back to reference Eglinger J, Karsjens H, Lammert E (2017) Quantitative assessment of angiogenesis and pericyte coverage in human cell-derived vascular sprouts. Inflamm Regen 37:1–9CrossRef Eglinger J, Karsjens H, Lammert E (2017) Quantitative assessment of angiogenesis and pericyte coverage in human cell-derived vascular sprouts. Inflamm Regen 37:1–9CrossRef
61.
go back to reference Westerfield M (1993) The Zebrafish book. University of Oregon Press, Eugene Westerfield M (1993) The Zebrafish book. University of Oregon Press, Eugene
62.
go back to reference Kimmel C, Ballard W, Kimmel S, Ullmann B, Schilling T (1995) Stages of embryonic development of the Zebrafish. Dev Dyn 203:253–310PubMedCrossRef Kimmel C, Ballard W, Kimmel S, Ullmann B, Schilling T (1995) Stages of embryonic development of the Zebrafish. Dev Dyn 203:253–310PubMedCrossRef
63.
go back to reference Chi N, Shaw R, De Val S, Kang G, Jan L, Black B, Stainier D (2008) Foxn4 directly regulates tbx2b expression and atrioventricular canal formation. Genes Dev 22:734–739PubMedPubMedCentralCrossRef Chi N, Shaw R, De Val S, Kang G, Jan L, Black B, Stainier D (2008) Foxn4 directly regulates tbx2b expression and atrioventricular canal formation. Genes Dev 22:734–739PubMedPubMedCentralCrossRef
64.
go back to reference Jin S, Beis D, Mitchell T, Chen J, Stainier D (2005) Cellular and molecular analyses of vascular tube and lumen formation in zebrafish. Development 132:5199–5209PubMedCrossRef Jin S, Beis D, Mitchell T, Chen J, Stainier D (2005) Cellular and molecular analyses of vascular tube and lumen formation in zebrafish. Development 132:5199–5209PubMedCrossRef
65.
go back to reference Helker C, Schuermann A, Karpanen T, Zeuschner D, Belting H-G, Affolter M, Schulte-Merker S, Herzog W (2013) The zebrafish common cardinal veins develop by a novel mechanism: lumen ensheathment. Development 140:2776–2786PubMedCrossRef Helker C, Schuermann A, Karpanen T, Zeuschner D, Belting H-G, Affolter M, Schulte-Merker S, Herzog W (2013) The zebrafish common cardinal veins develop by a novel mechanism: lumen ensheathment. Development 140:2776–2786PubMedCrossRef
66.
go back to reference Hruscha A, Krawitz P, Rechenberg A, Heinrich V, Hecht J, Haass C, Schmid B (2013) Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish. Development 140:4982–4987PubMedCrossRef Hruscha A, Krawitz P, Rechenberg A, Heinrich V, Hecht J, Haass C, Schmid B (2013) Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish. Development 140:4982–4987PubMedCrossRef
67.
go back to reference Wakayama Y, Fukuhara S, Ando K, Matsuda M, Mochizuki N (2015) Cdc42 mediates Bmp-induced sprouting angiogenesis through Fmnl3-driven assembly of endothelial filopodia in zebrafish. Dev Cell 32:109–122PubMedCrossRef Wakayama Y, Fukuhara S, Ando K, Matsuda M, Mochizuki N (2015) Cdc42 mediates Bmp-induced sprouting angiogenesis through Fmnl3-driven assembly of endothelial filopodia in zebrafish. Dev Cell 32:109–122PubMedCrossRef
68.
go back to reference Hübner K, Cabochette P, Diéguez-Hurtado R, Wiesner C, Wakayama Y, Grassme KS, Hubert M, Guenther S, Belting HG, Affolter M, Adams RH (2018) Wnt/β-catenin signaling regulates VE-cadherin-mediated anastomosis of brain capillaries by counteracting S1pr1 signaling. Nat Commun 9(1):1–7CrossRef Hübner K, Cabochette P, Diéguez-Hurtado R, Wiesner C, Wakayama Y, Grassme KS, Hubert M, Guenther S, Belting HG, Affolter M, Adams RH (2018) Wnt/β-catenin signaling regulates VE-cadherin-mediated anastomosis of brain capillaries by counteracting S1pr1 signaling. Nat Commun 9(1):1–7CrossRef
69.
go back to reference Ritchie M, Phipson B, Wu D, Hu Y, Law C, Shi W, Smyth G (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47PubMedPubMedCentralCrossRef Ritchie M, Phipson B, Wu D, Hu Y, Law C, Shi W, Smyth G (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47PubMedPubMedCentralCrossRef
70.
go back to reference Robinson M, McCarthy D, Smyth G (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140PubMedCrossRef Robinson M, McCarthy D, Smyth G (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140PubMedCrossRef
Metadata
Title
The endosomal RIN2/Rab5C machinery prevents VEGFR2 degradation to control gene expression and tip cell identity during angiogenesis
Authors
Lanette Kempers
Yuki Wakayama
Ivo van der Bijl
Charita Furumaya
Iris M. De Cuyper
Aldo Jongejan
Marije Kat
Anne-Marieke D. van Stalborch
Antonius L. van Boxtel
Marvin Hubert
Dirk Geerts
Jaap D. van Buul
Dirk de Korte
Wiebke Herzog
Coert Margadant
Publication date
01-08-2021
Publisher
Springer Netherlands
Published in
Angiogenesis / Issue 3/2021
Print ISSN: 0969-6970
Electronic ISSN: 1573-7209
DOI
https://doi.org/10.1007/s10456-021-09788-4

Other articles of this Issue 3/2021

Angiogenesis 3/2021 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.