Skip to main content
Top
Published in: Angiogenesis 4/2018

Open Access 01-11-2018 | Original Paper

EphB4 mediates resistance to antiangiogenic therapy in experimental glioma

Published in: Angiogenesis | Issue 4/2018

Login to get access

Abstract

Introduction

Alterations in vascular morphogenesis are hallmarks of antiangiogenesis-resistant tumor vessels. Vascular morphogenesis is regulated by ephrinB2-EphB4 system which may induce different biological effects depending on the oncological and molecular contexts. It was the aim of the current study to characterize the influence of EphB4 on tumor microcirculation after antiangiogenic treatment using different SF126 glioma models.

Materials and methods

Using an ecotropic transfection system, empty vector (pLXSN) or EphB4 (EphB4OE) overexpressing Phoenix-ECO cells were coimplanted with SF126 glioma cells subcutaneously (dorsal skinfold chamber, DSC) and orthotopically (cranial window, CW). Tumor volume was assessed by MRI. Intravital microscopy (IVM) allowed microcirculatory analysis (total {TVD} and functional vessel density {FVD}, diameter {D}, and permeability index {PI}) before and after antiangiogenic treatment (Sunitinib: DSC: 40 mg/kg BW, 6 days; CW: 80 mg/kg BW, 4 days). Immunohistochemistry included Pecam–Desmin, Ki67, TUNEL, and Caspase 3 stainings.

Results

EphB4OE induced large and treatment-resistant tumor vessels (FVD: Control/Su: 110 ± 23 cm/cm2 vs. EphB4OE/Su: 103 ± 42 cm/cm2). Maintenance of pericyte–endothelial cell interactions (Control: 80 ± 12 vs. Control/Su: 47 ± 26%; EphB4OE: 88 ± 9 vs. EphB4OE/Su: 74 ± 25%) and reduced antiproliferative (Control: 637 ± 80 vs. Control/Su: 110 ± 22; EphB4OE: 298 ± 108 vs. EphB4OE/Su: 213 ± 80) and proapoptotic responses (Control: 196 ± 25 vs. Control / Su: 404 ± 60; EphB4OE: 183 ± 20 vs. EphB4OE/Su: 270 ± 66) were observed under EphB4 overexpression.

Conclusion

EphB4 overexpression leads to vascular resistance by altering vascular morphogenesis, pericyte coverage, and cellular proliferation/apoptosis in experimental SF126 glioma models.
Literature
1.
go back to reference Wick W et al (2016) Current status and future directions of anti-angiogenic therapy for gliomas. Neuro Oncol 18(3):315–328CrossRef Wick W et al (2016) Current status and future directions of anti-angiogenic therapy for gliomas. Neuro Oncol 18(3):315–328CrossRef
2.
go back to reference Kerbel RS (1997) A cancer therapy resistant to resistance. Nature 390(6658):335–336CrossRef Kerbel RS (1997) A cancer therapy resistant to resistance. Nature 390(6658):335–336CrossRef
3.
go back to reference Bergers G, Hanahan D (2008) Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 8(8):592–603CrossRef Bergers G, Hanahan D (2008) Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 8(8):592–603CrossRef
4.
go back to reference Czabanka M et al (2013) Combined temozolomide and sunitinib treatment leads to better tumour control but increased vascular resistance in O6-methylguanine methyltransferase-methylated gliomas. Eur J Cancer 49(9):2243–2252CrossRef Czabanka M et al (2013) Combined temozolomide and sunitinib treatment leads to better tumour control but increased vascular resistance in O6-methylguanine methyltransferase-methylated gliomas. Eur J Cancer 49(9):2243–2252CrossRef
5.
go back to reference Vajkoczy P et al (2002) Microtumor growth initiates angiogenic sprouting with simultaneous expression of VEGF, VEGF receptor-2, and angiopoietin-2. J Clin Investig 109(6):777–785CrossRef Vajkoczy P et al (2002) Microtumor growth initiates angiogenic sprouting with simultaneous expression of VEGF, VEGF receptor-2, and angiopoietin-2. J Clin Investig 109(6):777–785CrossRef
6.
go back to reference Foltz RM et al. (1995) A pial window model for the intracranial study of human glioma microvascular function. Neurosurgery 36(5):976–984; discussion 984-5CrossRef Foltz RM et al. (1995) A pial window model for the intracranial study of human glioma microvascular function. Neurosurgery 36(5):976–984; discussion 984-5CrossRef
7.
go back to reference Li JL et al (2011) DLL4-Notch signaling mediates tumor resistance to anti-VEGF therapy in vivo. Cancer Res 71(18):6073–6083CrossRef Li JL et al (2011) DLL4-Notch signaling mediates tumor resistance to anti-VEGF therapy in vivo. Cancer Res 71(18):6073–6083CrossRef
8.
go back to reference Pasquale EB (2010) Eph receptors and ephrins in cancer: bidirectional signalling and beyond. Nat Rev Cancer 10(3):165–180CrossRef Pasquale EB (2010) Eph receptors and ephrins in cancer: bidirectional signalling and beyond. Nat Rev Cancer 10(3):165–180CrossRef
9.
go back to reference Millauer B et al (1994) Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature 367(6463):576–579CrossRef Millauer B et al (1994) Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature 367(6463):576–579CrossRef
10.
go back to reference Erber R et al (2006) EphB4 controls blood vascular morphogenesis during postnatal angiogenesis. EMBO J 25(3):628–641CrossRef Erber R et al (2006) EphB4 controls blood vascular morphogenesis during postnatal angiogenesis. EMBO J 25(3):628–641CrossRef
11.
go back to reference Vajkoczy P et al (1998) Characterization of angiogenesis and microcirculation of high-grade glioma: an intravital multifluorescence microscopic approach in the athymic nude mouse. J Cereb Blood Flow Metab 18(5):510–520CrossRef Vajkoczy P et al (1998) Characterization of angiogenesis and microcirculation of high-grade glioma: an intravital multifluorescence microscopic approach in the athymic nude mouse. J Cereb Blood Flow Metab 18(5):510–520CrossRef
12.
go back to reference de Bouard S et al (2007) Antiangiogenic and anti-invasive effects of sunitinib on experimental human glioblastoma. Neuro Oncol 9(4):412–423CrossRef de Bouard S et al (2007) Antiangiogenic and anti-invasive effects of sunitinib on experimental human glioblastoma. Neuro Oncol 9(4):412–423CrossRef
13.
go back to reference Czabanka M et al (2009) Effects of sunitinib on tumor hemodynamics and delivery of chemotherapy. Int J Cancer 124(6):1293–1300CrossRef Czabanka M et al (2009) Effects of sunitinib on tumor hemodynamics and delivery of chemotherapy. Int J Cancer 124(6):1293–1300CrossRef
14.
go back to reference Chen T et al (2013) EphB4 is overexpressed in gliomas and promotes the growth of glioma cells. Tumour Biol 34(1):379–385CrossRef Chen T et al (2013) EphB4 is overexpressed in gliomas and promotes the growth of glioma cells. Tumour Biol 34(1):379–385CrossRef
15.
go back to reference Tu Y et al (2012) Expression of EphrinB2 and EphB4 in glioma tissues correlated to the progression of glioma and the prognosis of glioblastoma patients. Clin Transl Oncol 14(3):214–220CrossRef Tu Y et al (2012) Expression of EphrinB2 and EphB4 in glioma tissues correlated to the progression of glioma and the prognosis of glioblastoma patients. Clin Transl Oncol 14(3):214–220CrossRef
16.
go back to reference Stephenson SA et al (2015) Anti-tumour effects of antibodies targeting the extracellular cysteine-rich region of the receptor tyrosine kinase EphB4. Oncotarget 6(10):7554–7569CrossRef Stephenson SA et al (2015) Anti-tumour effects of antibodies targeting the extracellular cysteine-rich region of the receptor tyrosine kinase EphB4. Oncotarget 6(10):7554–7569CrossRef
17.
go back to reference Neuber C et al (2018) Overexpression of receptor tyrosine kinase EphB4 triggers tumor growth and hypoxia in A375 melanoma xenografts: insights from multitracer small animal imaging experiments. Molecules 23(2):444CrossRef Neuber C et al (2018) Overexpression of receptor tyrosine kinase EphB4 triggers tumor growth and hypoxia in A375 melanoma xenografts: insights from multitracer small animal imaging experiments. Molecules 23(2):444CrossRef
18.
go back to reference Huang M et al (2014) Dual-modality micro-positron emission tomography/computed tomography and near-infrared fluorescence imaging of EphB4 in orthotopic glioblastoma xenograft models. Mol Imaging Biol 16(1):74–84CrossRef Huang M et al (2014) Dual-modality micro-positron emission tomography/computed tomography and near-infrared fluorescence imaging of EphB4 in orthotopic glioblastoma xenograft models. Mol Imaging Biol 16(1):74–84CrossRef
19.
go back to reference Capper D et al (2018) DNA methylation-based classification of central nervous system tumours. Nature 555(7697):469–474CrossRef Capper D et al (2018) DNA methylation-based classification of central nervous system tumours. Nature 555(7697):469–474CrossRef
Metadata
Title
EphB4 mediates resistance to antiangiogenic therapy in experimental glioma
Publication date
01-11-2018
Published in
Angiogenesis / Issue 4/2018
Print ISSN: 0969-6970
Electronic ISSN: 1573-7209
DOI
https://doi.org/10.1007/s10456-018-9633-6

Other articles of this Issue 4/2018

Angiogenesis 4/2018 Go to the issue