Skip to main content
Top
Published in: Angiogenesis 2/2018

Open Access 01-05-2018 | Original Paper

Selective IKK2 inhibitor IMD0354 disrupts NF-κB signaling to suppress corneal inflammation and angiogenesis

Authors: Anton Lennikov, Pierfrancesco Mirabelli, Anthony Mukwaya, Mira Schaupper, Muthukumar Thangavelu, Mieszko Lachota, Zaheer Ali, Lasse Jensen, Neil Lagali

Published in: Angiogenesis | Issue 2/2018

Login to get access

Abstract

Corneal neovascularization is a sight-threatening condition caused by angiogenesis in the normally avascular cornea. Neovascularization of the cornea is often associated with an inflammatory response, thus targeting VEGF-A alone yields only a limited efficacy. The NF-κB signaling pathway plays important roles in inflammation and angiogenesis. Here, we study consequences of the inhibition of NF-κB activation through selective blockade of the IKK complex IκB kinase β (IKK2) using the compound IMD0354, focusing on the effects of inflammation and pathological angiogenesis in the cornea. In vitro, IMD0354 treatment diminished HUVEC migration and tube formation without an increase in cell death and arrested rat aortic ring sprouting. In HUVEC, the IMD0354 treatment caused a dose-dependent reduction in VEGF-A expression, suppressed TNFα-stimulated expression of chemokines CCL2 and CXCL5, and diminished actin filament fibers and cell filopodia formation. In developing zebrafish embryos, IMD0354 treatment reduced expression of Vegf-a and disrupted retinal angiogenesis. In inflammation-induced angiogenesis in the rat cornea, systemic selective IKK2 inhibition decreased inflammatory cell invasion, suppressed CCL2, CXCL5, Cxcr2, and TNF-α expression and exhibited anti-angiogenic effects such as reduced limbal vessel dilation, reduced VEGF-A expression and reduced angiogenic sprouting, without noticeable toxic effect. In summary, targeting NF-κB by selective IKK2 inhibition dampened the inflammatory and angiogenic responses in vivo by modulating the endothelial cell expression profile and motility, thus indicating an important role of NF-κB signaling in the development of pathologic corneal neovascularization.
Appendix
Available only for authorised users
Literature
2.
go back to reference Chang JH, Gabison EE, Kato T, Azar DT (2001) Corneal neovascularization. Curr Opin Ophthalmol 12(4):242–249CrossRefPubMed Chang JH, Gabison EE, Kato T, Azar DT (2001) Corneal neovascularization. Curr Opin Ophthalmol 12(4):242–249CrossRefPubMed
4.
go back to reference Keating AM, Jacobs DS (2011) Anti-VEGF treatment of corneal neovascularization. Ocul Surf 9(4):227–237CrossRefPubMed Keating AM, Jacobs DS (2011) Anti-VEGF treatment of corneal neovascularization. Ocul Surf 9(4):227–237CrossRefPubMed
6.
go back to reference Kiriakidis S, Andreakos E, Monaco C, Foxwell B, Feldmann M, Paleolog E (2003) VEGF expression in human macrophages is NF-κB-dependent: studies using adenoviruses expressing the endogenous NF-κB inhibitor IκBα and a kinase-defective form of the IκB kinase 2. J Cell Sci 116(Pt 4):665–674CrossRefPubMed Kiriakidis S, Andreakos E, Monaco C, Foxwell B, Feldmann M, Paleolog E (2003) VEGF expression in human macrophages is NF-κB-dependent: studies using adenoviruses expressing the endogenous NF-κB inhibitor IκBα and a kinase-defective form of the IκB kinase 2. J Cell Sci 116(Pt 4):665–674CrossRefPubMed
8.
go back to reference Bancroft CC, Chen Z, Dong G, Sunwoo JB, Yeh N, Park C, Van Waes C (2001) Coexpression of proangiogenic factors IL-8 and VEGF by human head and neck squamous cell carcinoma involves coactivation by MEK-MAPK and IKK-NF-κB signal pathways. Clin Cancer Res 7(2):435–442PubMed Bancroft CC, Chen Z, Dong G, Sunwoo JB, Yeh N, Park C, Van Waes C (2001) Coexpression of proangiogenic factors IL-8 and VEGF by human head and neck squamous cell carcinoma involves coactivation by MEK-MAPK and IKK-NF-κB signal pathways. Clin Cancer Res 7(2):435–442PubMed
15.
go back to reference Tanaka M, Fuentes ME, Yamaguchi K, Durnin MH, Dalrymple SA, Hardy KL, Goeddel DV (1999) Embryonic lethality, liver degeneration, and impaired NF-κB activation in IKK-beta-deficient mice. Immunity 10(4):421–429CrossRefPubMed Tanaka M, Fuentes ME, Yamaguchi K, Durnin MH, Dalrymple SA, Hardy KL, Goeddel DV (1999) Embryonic lethality, liver degeneration, and impaired NF-κB activation in IKK-beta-deficient mice. Immunity 10(4):421–429CrossRefPubMed
19.
go back to reference Sugita A, Ogawa H, Azuma M, Muto S, Honjo A, Yanagawa H, Nishioka Y, Tani K, Itai A, Sone S (2009) Antiallergic and anti-inflammatory effects of a novel I κB kinase beta inhibitor, IMD-0354, in a mouse model of allergic inflammation. Int Arch Allergy Immunol 148(3):186–198. https://doi.org/10.1159/000161579 CrossRefPubMed Sugita A, Ogawa H, Azuma M, Muto S, Honjo A, Yanagawa H, Nishioka Y, Tani K, Itai A, Sone S (2009) Antiallergic and anti-inflammatory effects of a novel I κB kinase beta inhibitor, IMD-0354, in a mouse model of allergic inflammation. Int Arch Allergy Immunol 148(3):186–198. https://​doi.​org/​10.​1159/​000161579 CrossRefPubMed
21.
go back to reference Lennikov A, Kitaichi N, Noda K, Ando R, Dong Z, Fukuhara J, Kinoshita S, Namba K, Mizutani M, Fujikawa T, Itai A, Ohno S, Ishida S (2012) Amelioration of endotoxin-induced uveitis treated with an IκB kinase beta inhibitor in rats. Mol Vis 18:2586–2597PubMedPubMedCentral Lennikov A, Kitaichi N, Noda K, Ando R, Dong Z, Fukuhara J, Kinoshita S, Namba K, Mizutani M, Fujikawa T, Itai A, Ohno S, Ishida S (2012) Amelioration of endotoxin-induced uveitis treated with an IκB kinase beta inhibitor in rats. Mol Vis 18:2586–2597PubMedPubMedCentral
22.
23.
go back to reference Kinose Y, Sawada K, Makino H, Ogura T, Mizuno T, Suzuki N, Fujikawa T, Morii E, Nakamura K, Sawada I, Toda A, Hashimoto K, Isobe A, Mabuchi S, Ohta T, Itai A, Morishige K, Kurachi H, Kimura T (2015) IKKbeta regulates VEGF expression and is a potential therapeutic target for ovarian cancer as an antiangiogenic treatment. Mol Cancer Ther 14(4):909–919. https://doi.org/10.1158/1535-7163.MCT-14-0696 CrossRefPubMed Kinose Y, Sawada K, Makino H, Ogura T, Mizuno T, Suzuki N, Fujikawa T, Morii E, Nakamura K, Sawada I, Toda A, Hashimoto K, Isobe A, Mabuchi S, Ohta T, Itai A, Morishige K, Kurachi H, Kimura T (2015) IKKbeta regulates VEGF expression and is a potential therapeutic target for ovarian cancer as an antiangiogenic treatment. Mol Cancer Ther 14(4):909–919. https://​doi.​org/​10.​1158/​1535-7163.​MCT-14-0696 CrossRefPubMed
27.
go back to reference Imaizumi T, Hatakeyama M, Taima K, Ishikawa A, Yamashita K, Yoshida H, Satoh K (2004) Effect of double-stranded RNA on the expression of epithelial neutrophil activating peptide-78/CXCL-5 in human endothelial cells. Inflammation 28(4):215–219CrossRefPubMed Imaizumi T, Hatakeyama M, Taima K, Ishikawa A, Yamashita K, Yoshida H, Satoh K (2004) Effect of double-stranded RNA on the expression of epithelial neutrophil activating peptide-78/CXCL-5 in human endothelial cells. Inflammation 28(4):215–219CrossRefPubMed
32.
go back to reference Heier JS, Brown DM, Chong V, Korobelnik JF, Kaiser PK, Nguyen QD, Kirchhof B, Ho A, Ogura Y, Yancopoulos GD, Stahl N, Vitti R, Berliner AJ, Soo Y, Anderesi M, Groetzbach G, Sommerauer B, Sandbrink R, Simader C, Schmidt-Erfurth U, View, Groups VS (2012) Intravitreal aflibercept (VEGF trap-eye) in wet age-related macular degeneration. Ophthalmology 119(12):2537–2548. https://doi.org/10.1016/j.ophtha.2012.09.006 CrossRefPubMed Heier JS, Brown DM, Chong V, Korobelnik JF, Kaiser PK, Nguyen QD, Kirchhof B, Ho A, Ogura Y, Yancopoulos GD, Stahl N, Vitti R, Berliner AJ, Soo Y, Anderesi M, Groetzbach G, Sommerauer B, Sandbrink R, Simader C, Schmidt-Erfurth U, View, Groups VS (2012) Intravitreal aflibercept (VEGF trap-eye) in wet age-related macular degeneration. Ophthalmology 119(12):2537–2548. https://​doi.​org/​10.​1016/​j.​ophtha.​2012.​09.​006 CrossRefPubMed
33.
go back to reference Writing Committee for the Diabetic Retinopathy Clinical Research N, Gross JG, Glassman AR, Jampol LM, Inusah S, Aiello LP, Antoszyk AN, Baker CW, Berger BB, Bressler NM, Browning D, Elman MJ, Ferris FL 3rd, Friedman SM, Marcus DM, Melia M, Stockdale CR, Sun JK, Beck RW (2015) Panretinal photocoagulation vs intravitreous ranibizumab for proliferative diabetic retinopathy: a randomized clinical trial. JAMA 314(20):2137–2146. https://doi.org/10.1001/jama.2015.15217 CrossRef Writing Committee for the Diabetic Retinopathy Clinical Research N, Gross JG, Glassman AR, Jampol LM, Inusah S, Aiello LP, Antoszyk AN, Baker CW, Berger BB, Bressler NM, Browning D, Elman MJ, Ferris FL 3rd, Friedman SM, Marcus DM, Melia M, Stockdale CR, Sun JK, Beck RW (2015) Panretinal photocoagulation vs intravitreous ranibizumab for proliferative diabetic retinopathy: a randomized clinical trial. JAMA 314(20):2137–2146. https://​doi.​org/​10.​1001/​jama.​2015.​15217 CrossRef
41.
go back to reference Dartt DA (2011) Immunology, inflammation and diseases of the eye. Academic Press, Boston Dartt DA (2011) Immunology, inflammation and diseases of the eye. Academic Press, Boston
42.
go back to reference Sierra-Filardi E, Nieto C, Dominguez-Soto A, Barroso R, Sanchez-Mateos P, Puig-Kroger A, Lopez-Bravo M, Joven J, Ardavin C, Rodriguez-Fernandez JL, Sanchez-Torres C, Mellado M, Corbi AL (2014) CCL2 shapes macrophage polarization by GM-CSF and M-CSF: identification of CCL2/CCR2-dependent gene expression profile. J Immunol 192(8):3858–3867. https://doi.org/10.4049/jimmunol.1302821 CrossRefPubMed Sierra-Filardi E, Nieto C, Dominguez-Soto A, Barroso R, Sanchez-Mateos P, Puig-Kroger A, Lopez-Bravo M, Joven J, Ardavin C, Rodriguez-Fernandez JL, Sanchez-Torres C, Mellado M, Corbi AL (2014) CCL2 shapes macrophage polarization by GM-CSF and M-CSF: identification of CCL2/CCR2-dependent gene expression profile. J Immunol 192(8):3858–3867. https://​doi.​org/​10.​4049/​jimmunol.​1302821 CrossRefPubMed
46.
go back to reference Sugita A, Ogawa H, Azuma M, Muto S, Honjo A, Yanagawa H, Nishioka Y, Tani K, Itai A, Sone S (2009) Antiallergic and anti-inflammatory effects of a novel IκB kinase beta inhibitor, IMD-0354, in a mouse model of allergic inflammation. Int Arch Allergy Immunol 148(3):186–198. https://doi.org/10.1159/000161579 CrossRefPubMed Sugita A, Ogawa H, Azuma M, Muto S, Honjo A, Yanagawa H, Nishioka Y, Tani K, Itai A, Sone S (2009) Antiallergic and anti-inflammatory effects of a novel IκB kinase beta inhibitor, IMD-0354, in a mouse model of allergic inflammation. Int Arch Allergy Immunol 148(3):186–198. https://​doi.​org/​10.​1159/​000161579 CrossRefPubMed
47.
go back to reference Rousseau S, Houle F, Kotanides H, Witte L, Waltenberger J, Landry J, Huot J (2000) Vascular endothelial growth factor (VEGF)-driven actin-based motility is mediated by VEGFR2 and requires concerted activation of stress-activated protein kinase 2 (SAPK2/p38) and geldanamycin-sensitive phosphorylation of focal adhesion kinase. J Biol Chem 275(14):10661–10672CrossRefPubMed Rousseau S, Houle F, Kotanides H, Witte L, Waltenberger J, Landry J, Huot J (2000) Vascular endothelial growth factor (VEGF)-driven actin-based motility is mediated by VEGFR2 and requires concerted activation of stress-activated protein kinase 2 (SAPK2/p38) and geldanamycin-sensitive phosphorylation of focal adhesion kinase. J Biol Chem 275(14):10661–10672CrossRefPubMed
50.
go back to reference Kimura H, Weisz A, Kurashima Y, Hashimoto K, Ogura T, D’Acquisto F, Addeo R, Makuuchi M, Esumi H (2000) Hypoxia response element of the human vascular endothelial growth factor gene mediates transcriptional regulation by nitric oxide: control of hypoxia-inducible factor-1 activity by nitric oxide. Blood 95(1):189–197PubMed Kimura H, Weisz A, Kurashima Y, Hashimoto K, Ogura T, D’Acquisto F, Addeo R, Makuuchi M, Esumi H (2000) Hypoxia response element of the human vascular endothelial growth factor gene mediates transcriptional regulation by nitric oxide: control of hypoxia-inducible factor-1 activity by nitric oxide. Blood 95(1):189–197PubMed
52.
go back to reference Figueroa YG, Chan AK, Ibrahim R, Tang Y, Burow ME, Alam J, Scandurro AB, Beckman BS (2002) NF-κB plays a key role in hypoxia-inducible factor-1-regulated erythropoietin gene expression. Exp Hematol 30(12):1419–1427CrossRefPubMed Figueroa YG, Chan AK, Ibrahim R, Tang Y, Burow ME, Alam J, Scandurro AB, Beckman BS (2002) NF-κB plays a key role in hypoxia-inducible factor-1-regulated erythropoietin gene expression. Exp Hematol 30(12):1419–1427CrossRefPubMed
55.
go back to reference Stasinopoulos I, O’Brien DR, Bhujwalla ZM (2009) Inflammation, but not hypoxia, mediated HIF-1α activation depends on COX-2. Cancer Biol Ther 8(1):31–35CrossRefPubMedPubMedCentral Stasinopoulos I, O’Brien DR, Bhujwalla ZM (2009) Inflammation, but not hypoxia, mediated HIF-1α activation depends on COX-2. Cancer Biol Ther 8(1):31–35CrossRefPubMedPubMedCentral
56.
go back to reference Chen P, Yin H, Wang Y, Wang Y, Xie L (2012) Inhibition of VEGF expression and corneal neovascularization by shRNA targeting HIF-1α in a mouse model of closed eye contact lens wear. Mol Vis 18:864–873PubMedPubMedCentral Chen P, Yin H, Wang Y, Wang Y, Xie L (2012) Inhibition of VEGF expression and corneal neovascularization by shRNA targeting HIF-1α in a mouse model of closed eye contact lens wear. Mol Vis 18:864–873PubMedPubMedCentral
62.
go back to reference Kong XJ, Duan LJ, Qian XQ, Xu D, Liu HL, Zhu YJ, Qi J (2015) Tumor-suppressive microRNA-497 targets IKKβ to regulate NF-κB signaling pathway in human prostate cancer cells. Am J Cancer Res 5(5):1795–1804PubMedPubMedCentral Kong XJ, Duan LJ, Qian XQ, Xu D, Liu HL, Zhu YJ, Qi J (2015) Tumor-suppressive microRNA-497 targets IKKβ to regulate NF-κB signaling pathway in human prostate cancer cells. Am J Cancer Res 5(5):1795–1804PubMedPubMedCentral
64.
go back to reference Ochiai T, Saito Y, Saitoh T, Dewan MZ, Shioya A, Kobayashi M, Kawachi H, Muto S, Itai A, Uota S, Eishi Y, Yamamoto N, Tanaka S, Arii S, Yamaoka S (2008) Inhibition of IκB kinase beta restrains oncogenic proliferation of pancreatic cancer cells. J Med Dental Sci 55(1):49–59 Ochiai T, Saito Y, Saitoh T, Dewan MZ, Shioya A, Kobayashi M, Kawachi H, Muto S, Itai A, Uota S, Eishi Y, Yamamoto N, Tanaka S, Arii S, Yamaoka S (2008) Inhibition of IκB kinase beta restrains oncogenic proliferation of pancreatic cancer cells. J Med Dental Sci 55(1):49–59
69.
go back to reference Lawson ND, Weinstein BM (2002) In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol 248(2):307–318CrossRefPubMed Lawson ND, Weinstein BM (2002) In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol 248(2):307–318CrossRefPubMed
Metadata
Title
Selective IKK2 inhibitor IMD0354 disrupts NF-κB signaling to suppress corneal inflammation and angiogenesis
Authors
Anton Lennikov
Pierfrancesco Mirabelli
Anthony Mukwaya
Mira Schaupper
Muthukumar Thangavelu
Mieszko Lachota
Zaheer Ali
Lasse Jensen
Neil Lagali
Publication date
01-05-2018
Publisher
Springer Netherlands
Published in
Angiogenesis / Issue 2/2018
Print ISSN: 0969-6970
Electronic ISSN: 1573-7209
DOI
https://doi.org/10.1007/s10456-018-9594-9

Other articles of this Issue 2/2018

Angiogenesis 2/2018 Go to the issue