Skip to main content
Top
Published in: Angiogenesis 4/2017

01-11-2017 | Brief Communication

Pharmacological intervention of MKL/SRF signaling by CCG-1423 impedes endothelial cell migration and angiogenesis

Authors: David Gau, William Veon, Teresa L. Capasso, Ralph Bottcher, Sanjeev Shroff, Beth L. Roman, Partha Roy

Published in: Angiogenesis | Issue 4/2017

Login to get access

Abstract

De novo synthesis of cytoskeleton-regulatory proteins triggered by the megakaryoblastic leukemia (MKL)/serum response factor (SRF) transcriptional system in response to pro-angiogenic growth factors lies at the heart of endothelial cell (EC) migration (a critical element of angiogenesis) and neovascularization. This study explores whether pharmacological intervention of MKL/SRF signaling axis by CCG-1423 is able to suppress angiogenesis. Our studies show that CCG-1423 inhibits migration and cord morphogenesis of EC in vitro and sprouting angiogenesis ex vivo and in vivo, suggesting CCG-1423 could be a novel anti-angiogenic agent. Kymography analyses of membrane dynamics of EC revealed that CCG-1423 treatment causes a major defect in membrane protrusion. CCG-1423 treatment led to attenuated expression of several actin-binding proteins that are important for driving membrane protrusion including ArpC2, VASP, and profilin1 (Pfn1) with the most drastic effect seen on the expression of Pfn1. Finally, depletion of Pfn1 alone is also sufficient for a dramatic decrease in sprouting angiogenesis of EC in vitro and ex vivo, further suggesting that Pfn1 depletion may be one of the mechanisms of the anti-angiogenic action of CCG-1423.
Appendix
Available only for authorised users
Literature
1.
go back to reference Stapor P et al (2014) Angiogenesis revisited–role and therapeutic potential of targeting endothelial metabolism. J Cell Sci 127(Pt 20):4331–4341CrossRefPubMed Stapor P et al (2014) Angiogenesis revisited–role and therapeutic potential of targeting endothelial metabolism. J Cell Sci 127(Pt 20):4331–4341CrossRefPubMed
2.
go back to reference Pipes GC, Creemers EE, Olson EN (2006) The myocardin family of transcriptional coactivators: versatile regulators of cell growth, migration, and myogenesis. Genes Dev 20(12):1545–1556CrossRefPubMed Pipes GC, Creemers EE, Olson EN (2006) The myocardin family of transcriptional coactivators: versatile regulators of cell growth, migration, and myogenesis. Genes Dev 20(12):1545–1556CrossRefPubMed
4.
go back to reference Miralles F et al (2003) Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell 113(3):329–342CrossRefPubMed Miralles F et al (2003) Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell 113(3):329–342CrossRefPubMed
5.
6.
go back to reference Vartiainen MK et al (2007) Nuclear actin regulates dynamic subcellular localization and activity of the SRF cofactor MAL. Science 316(5832):1749–1752CrossRefPubMed Vartiainen MK et al (2007) Nuclear actin regulates dynamic subcellular localization and activity of the SRF cofactor MAL. Science 316(5832):1749–1752CrossRefPubMed
7.
go back to reference Franco CA et al (2013) SRF selectively controls tip cell invasive behavior in angiogenesis. Development 140(11):2321–2333CrossRefPubMed Franco CA et al (2013) SRF selectively controls tip cell invasive behavior in angiogenesis. Development 140(11):2321–2333CrossRefPubMed
8.
go back to reference Franco CA, Li Z (2009) SRF in angiogenesis: branching the vascular system. Cell Adhes Migr 3(3):264–267CrossRef Franco CA, Li Z (2009) SRF in angiogenesis: branching the vascular system. Cell Adhes Migr 3(3):264–267CrossRef
9.
go back to reference Franco CA et al (2008) Serum response factor is required for sprouting angiogenesis and vascular integrity. Dev Cell 15(3):448–461CrossRefPubMed Franco CA et al (2008) Serum response factor is required for sprouting angiogenesis and vascular integrity. Dev Cell 15(3):448–461CrossRefPubMed
10.
go back to reference Hinkel R et al (2014) MRTF-A controls vessel growth and maturation by increasing the expression of CCN1 and CCN2. Nat Commun 5:3970CrossRefPubMed Hinkel R et al (2014) MRTF-A controls vessel growth and maturation by increasing the expression of CCN1 and CCN2. Nat Commun 5:3970CrossRefPubMed
11.
12.
go back to reference Evelyn CR et al (2007) CCG-1423: a small-molecule inhibitor of RhoA transcriptional signaling. Mol Cancer Ther 6(8):2249–2260CrossRefPubMed Evelyn CR et al (2007) CCG-1423: a small-molecule inhibitor of RhoA transcriptional signaling. Mol Cancer Ther 6(8):2249–2260CrossRefPubMed
15.
go back to reference Ding Z et al (2006) Silencing profilin-1 inhibits endothelial cell proliferation, migration and cord morphogenesis. J Cell Sci 119(Pt 19):4127–4137CrossRefPubMed Ding Z et al (2006) Silencing profilin-1 inhibits endothelial cell proliferation, migration and cord morphogenesis. J Cell Sci 119(Pt 19):4127–4137CrossRefPubMed
17.
19.
go back to reference Isogai S et al (2003) Angiogenic network formation in the developing vertebrate trunk. Development 130(21):5281–5290CrossRefPubMed Isogai S et al (2003) Angiogenic network formation in the developing vertebrate trunk. Development 130(21):5281–5290CrossRefPubMed
20.
go back to reference Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112(4):453–465CrossRefPubMed Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112(4):453–465CrossRefPubMed
22.
go back to reference Ding Z et al (2009) Both actin and polyproline interactions of profilin-1 are required for migration, invasion and capillary morphogenesis of vascular endothelial cells. Exp Cell Res 315(17):2963–2973CrossRefPubMedPubMedCentral Ding Z et al (2009) Both actin and polyproline interactions of profilin-1 are required for migration, invasion and capillary morphogenesis of vascular endothelial cells. Exp Cell Res 315(17):2963–2973CrossRefPubMedPubMedCentral
24.
go back to reference Johnson LA et al (2014) Novel Rho/MRTF/SRF inhibitors block matrix-stiffness and TGF-beta-induced fibrogenesis in human colonic myofibroblasts. Inflamm Bowel Dis 20(1):154–165CrossRefPubMedPubMedCentral Johnson LA et al (2014) Novel Rho/MRTF/SRF inhibitors block matrix-stiffness and TGF-beta-induced fibrogenesis in human colonic myofibroblasts. Inflamm Bowel Dis 20(1):154–165CrossRefPubMedPubMedCentral
25.
go back to reference Jin W et al (2011) Increased SRF transcriptional activity in human and mouse skeletal muscle is a signature of insulin resistance. J Clin Investig 121(3):918–929CrossRefPubMedPubMedCentral Jin W et al (2011) Increased SRF transcriptional activity in human and mouse skeletal muscle is a signature of insulin resistance. J Clin Investig 121(3):918–929CrossRefPubMedPubMedCentral
26.
go back to reference Shu XZ et al (2015) Histone acetyltransferase p300 promotes MRTF-A-mediates transactivation of VE-cadherin gene in human umbilical vein endothelial cells. Gene 563(1):17–23CrossRefPubMed Shu XZ et al (2015) Histone acetyltransferase p300 promotes MRTF-A-mediates transactivation of VE-cadherin gene in human umbilical vein endothelial cells. Gene 563(1):17–23CrossRefPubMed
27.
go back to reference Medjkane S et al (2009) Myocardin-related transcription factors and SRF are required for cytoskeletal dynamics and experimental metastasis. Nat Cell Biol 11(3):257–268CrossRefPubMed Medjkane S et al (2009) Myocardin-related transcription factors and SRF are required for cytoskeletal dynamics and experimental metastasis. Nat Cell Biol 11(3):257–268CrossRefPubMed
28.
go back to reference Zhang R et al (2015) Rho/MRTF-A-induced integrin expression regulates angiogenesis in differentiated multipotent mesenchymal stem cells. Stem Cells Int 2015:534758PubMedPubMedCentral Zhang R et al (2015) Rho/MRTF-A-induced integrin expression regulates angiogenesis in differentiated multipotent mesenchymal stem cells. Stem Cells Int 2015:534758PubMedPubMedCentral
29.
go back to reference Evelyn CR et al (2016) Small-molecule inhibition of Rho/MKL/SRF transcription in prostate cancer cells: modulation of cell cycle, ER stress, and metastasis gene networks. Microarrays (Basel) 5(2):13CrossRef Evelyn CR et al (2016) Small-molecule inhibition of Rho/MKL/SRF transcription in prostate cancer cells: modulation of cell cycle, ER stress, and metastasis gene networks. Microarrays (Basel) 5(2):13CrossRef
30.
go back to reference Esnault C et al (2014) Rho-actin signaling to the MRTF coactivators dominates the immediate transcriptional response to serum in fibroblasts. Genes Dev 28(9):943–958CrossRefPubMedPubMedCentral Esnault C et al (2014) Rho-actin signaling to the MRTF coactivators dominates the immediate transcriptional response to serum in fibroblasts. Genes Dev 28(9):943–958CrossRefPubMedPubMedCentral
Metadata
Title
Pharmacological intervention of MKL/SRF signaling by CCG-1423 impedes endothelial cell migration and angiogenesis
Authors
David Gau
William Veon
Teresa L. Capasso
Ralph Bottcher
Sanjeev Shroff
Beth L. Roman
Partha Roy
Publication date
01-11-2017
Publisher
Springer Netherlands
Published in
Angiogenesis / Issue 4/2017
Print ISSN: 0969-6970
Electronic ISSN: 1573-7209
DOI
https://doi.org/10.1007/s10456-017-9560-y

Other articles of this Issue 4/2017

Angiogenesis 4/2017 Go to the issue