Skip to main content
Top
Published in: Angiogenesis 3/2015

01-07-2015 | Original Paper

Genome-wide expression analysis of wounded skin reveals novel genes involved in angiogenesis

Authors: Simone Brönneke, Bodo Brückner, Jörn Söhle, Ralf Siegner, Christoph Smuda, Franz Stäb, Horst Wenck, Ludger Kolbe, Elke Grönniger, Marc Winnefeld

Published in: Angiogenesis | Issue 3/2015

Login to get access

Abstract

Wound healing is a multistage process involving collaborative efforts of different cell types and distinct cellular functions. Among others, the high metabolic activity at the wound site requires the formation and sprouting of new blood vessels (angiogenesis) to ensure an adequate supply of oxygen and nutrients for a successful healing process. Thus, a cutaneous wound healing model was established to identify new factors that are involved in vascular formation and remodeling in human skin after embryonic development. By analyzing global gene expression of skin biopsies obtained from wounded and unwounded skin, we identified a small set of genes that were highly significant differentially regulated in the course of wound healing. To initially investigate whether these genes might be involved in angiogenesis, we performed siRNA experiments and analyzed the knockdown phenotypes using a scratch wound assay which mimics cell migration and proliferation in vitro. The results revealed that a subset of these genes influence cell migration and proliferation in primary human endothelial cells (EC). Furthermore, histological analyses of skin biopsies showed that two of these genes, ALBIM2 and TMEM121, are colocalized with CD31, a well known EC marker. Taken together, we identified new genes involved in endothelial cell biology, which might be relevant to develop therapeutics not only for impaired wound healing but also for chronic inflammatory disorders and/or cardiovascular diseases.
Appendix
Available only for authorised users
Literature
1.
go back to reference Adams RH, Alitalo K (2007) Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol 8(6):464–478PubMedCrossRef Adams RH, Alitalo K (2007) Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol 8(6):464–478PubMedCrossRef
2.
go back to reference Herbert SP, Stainier DY (2011) Molecular control of endothelial cell behaviour during blood vessel morphogenesis. Nat Rev Mol Cell Biol 12(9):551–564PubMedCentralPubMedCrossRef Herbert SP, Stainier DY (2011) Molecular control of endothelial cell behaviour during blood vessel morphogenesis. Nat Rev Mol Cell Biol 12(9):551–564PubMedCentralPubMedCrossRef
4.
go back to reference Phng LK, Gerhardt H (2009) Angiogenesis: a team effort coordinated by notch. Dev Cell 16(2):196–208PubMedCrossRef Phng LK, Gerhardt H (2009) Angiogenesis: a team effort coordinated by notch. Dev Cell 16(2):196–208PubMedCrossRef
6.
go back to reference Jakobsson L et al (2010) Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat Cell Biol 12(10):943–953PubMedCrossRef Jakobsson L et al (2010) Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat Cell Biol 12(10):943–953PubMedCrossRef
7.
go back to reference Inai T et al (2004) Inhibition of vascular endothelial growth factor (VEGF) signaling in cancer causes loss of endothelial fenestrations, regression of tumor vessels, and appearance of basement membrane ghosts. Am J Pathol 165(1):35–52PubMedCentralPubMedCrossRef Inai T et al (2004) Inhibition of vascular endothelial growth factor (VEGF) signaling in cancer causes loss of endothelial fenestrations, regression of tumor vessels, and appearance of basement membrane ghosts. Am J Pathol 165(1):35–52PubMedCentralPubMedCrossRef
9.
go back to reference Armulik A, Abramsson A, Betsholtz C (2005) Endothelial/pericyte interactions. Circ Res 97(6):512–523PubMedCrossRef Armulik A, Abramsson A, Betsholtz C (2005) Endothelial/pericyte interactions. Circ Res 97(6):512–523PubMedCrossRef
12.
go back to reference Freinkel RK (2001) The biology of the skin. Parthenon Publishing Group, New York Freinkel RK (2001) The biology of the skin. Parthenon Publishing Group, New York
13.
go back to reference Mendonca RJ (2012) Angiogenesis in wound healing. Tissue regeneration—from basic biology to clinical application Mendonca RJ (2012) Angiogenesis in wound healing. Tissue regeneration—from basic biology to clinical application
14.
go back to reference Eming SA et al (2007) Regulation of angiogenesis: wound healing as a model. Prog Histochem Cytochem 42(3):115–170PubMedCrossRef Eming SA et al (2007) Regulation of angiogenesis: wound healing as a model. Prog Histochem Cytochem 42(3):115–170PubMedCrossRef
15.
go back to reference DiPietro LA (2013) Angiogenesis and scar formation in healing wounds. Curr Opin Rheumatol 25(1):87–91 DiPietro LA (2013) Angiogenesis and scar formation in healing wounds. Curr Opin Rheumatol 25(1):87–91
16.
go back to reference Gronniger E et al (2010) Aging and chronic sun exposure cause distinct epigenetic changes in human skin. PLoS Genet 6(5):e1000971 Gronniger E et al (2010) Aging and chronic sun exposure cause distinct epigenetic changes in human skin. PLoS Genet 6(5):e1000971
17.
go back to reference Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3(6):1101–1108PubMedCrossRef Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3(6):1101–1108PubMedCrossRef
18.
go back to reference Bronneke S et al (2012) DNA methylation regulates lineage-specifying genes in primary lymphatic and blood endothelial cells. Angiogenesis 15(2):317–329 Bronneke S et al (2012) DNA methylation regulates lineage-specifying genes in primary lymphatic and blood endothelial cells. Angiogenesis 15(2):317–329
19.
go back to reference Kiistala U (1968) Suction blister device for separation of viable epidermis from dermis. J Invest Dermatol 50(2):129–137PubMed Kiistala U (1968) Suction blister device for separation of viable epidermis from dermis. J Invest Dermatol 50(2):129–137PubMed
20.
go back to reference Kool J et al (2007) Suction blister fluid as potential body fluid for biomarker proteins. Proteomics 7(20):3638–3650PubMedCrossRef Kool J et al (2007) Suction blister fluid as potential body fluid for biomarker proteins. Proteomics 7(20):3638–3650PubMedCrossRef
21.
go back to reference Kanitakis J (2002) Anatomy, histology and immunohistochemistry of normal human skin. Eur J Dermatol 12(4):390–399; quiz 400–401 Kanitakis J (2002) Anatomy, histology and immunohistochemistry of normal human skin. Eur J Dermatol 12(4):390–399; quiz 400–401
22.
go back to reference Fritsch P (2004) Aufbau und Funktionen der Haut. In: Dermatologie und Venerologie. Springer, Berlin. 2. Auflage Fritsch P (2004) Aufbau und Funktionen der Haut. In: Dermatologie und Venerologie. Springer, Berlin. 2. Auflage
23.
go back to reference Braverman IM (1997) The cutaneous microcirculation: ultrastructure and microanatomical organization. Microcirculation 4(3):329–340PubMedCrossRef Braverman IM (1997) The cutaneous microcirculation: ultrastructure and microanatomical organization. Microcirculation 4(3):329–340PubMedCrossRef
24.
go back to reference Werner S, Grose R (2003) Regulation of wound healing by growth factors and cytokines. Physiol Rev 83(3):835–870PubMed Werner S, Grose R (2003) Regulation of wound healing by growth factors and cytokines. Physiol Rev 83(3):835–870PubMed
25.
go back to reference Nissen NN et al (1998) Vascular endothelial growth factor mediates angiogenic activity during the proliferative phase of wound healing. Am J Pathol 152(6):1445–1452PubMedCentralPubMed Nissen NN et al (1998) Vascular endothelial growth factor mediates angiogenic activity during the proliferative phase of wound healing. Am J Pathol 152(6):1445–1452PubMedCentralPubMed
26.
go back to reference Brown LF et al (1992) Expression of vascular permeability factor (vascular endothelial growth factor) by epidermal keratinocytes during wound healing. J Exp Med 176(5):1375–1379PubMedCrossRef Brown LF et al (1992) Expression of vascular permeability factor (vascular endothelial growth factor) by epidermal keratinocytes during wound healing. J Exp Med 176(5):1375–1379PubMedCrossRef
27.
go back to reference Liang CC, Park AY, Guan JL (2007) In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2(2):329–333PubMedCrossRef Liang CC, Park AY, Guan JL (2007) In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2(2):329–333PubMedCrossRef
29.
go back to reference Brown NJ et al (2002) Angiogenesis induction and regression in human surgical wounds. Wound Repair Regen 10(4):245–251PubMedCrossRef Brown NJ et al (2002) Angiogenesis induction and regression in human surgical wounds. Wound Repair Regen 10(4):245–251PubMedCrossRef
30.
go back to reference Roy S et al (2007) Transcriptome-wide analysis of blood vessels laser captured from human skin and chronic wound-edge tissue. Proc Natl Acad Sci USA 104(36):14472–14477PubMedCentralPubMedCrossRef Roy S et al (2007) Transcriptome-wide analysis of blood vessels laser captured from human skin and chronic wound-edge tissue. Proc Natl Acad Sci USA 104(36):14472–14477PubMedCentralPubMedCrossRef
31.
32.
go back to reference Chen L et al (2010) Positional differences in the wound transcriptome of skin and oral mucosa. BMC Genomics 11:471 Chen L et al (2010) Positional differences in the wound transcriptome of skin and oral mucosa. BMC Genomics 11:471
33.
go back to reference Roy S et al (2008) Characterization of the acute temporal changes in excisional murine cutaneous wound inflammation by screening of the wound-edge transcriptome. Physiol Genomics 34(2):162–184PubMedCentralPubMedCrossRef Roy S et al (2008) Characterization of the acute temporal changes in excisional murine cutaneous wound inflammation by screening of the wound-edge transcriptome. Physiol Genomics 34(2):162–184PubMedCentralPubMedCrossRef
34.
go back to reference Sullivan TP et al (2001) The pig as a model for human wound healing. Wound Repair Regen 9(2):66–76PubMedCrossRef Sullivan TP et al (2001) The pig as a model for human wound healing. Wound Repair Regen 9(2):66–76PubMedCrossRef
35.
36.
go back to reference Morris MR et al (2010) Genome-wide methylation analysis identifies epigenetically inactivated candidate tumour suppressor genes in renal cell carcinoma. Oncogene 30(12):1390–1401PubMedCrossRef Morris MR et al (2010) Genome-wide methylation analysis identifies epigenetically inactivated candidate tumour suppressor genes in renal cell carcinoma. Oncogene 30(12):1390–1401PubMedCrossRef
37.
go back to reference Zhou J et al (2005) A novel six-transmembrane protein hhole functions as a suppressor in MAPK signaling pathways. Biochem Biophys Res Commun 333(2):344–352PubMedCrossRef Zhou J et al (2005) A novel six-transmembrane protein hhole functions as a suppressor in MAPK signaling pathways. Biochem Biophys Res Commun 333(2):344–352PubMedCrossRef
38.
go back to reference Barrientos T et al (2007) Two novel members of the ABLIM protein family, ABLIM-2 and -3, associate with STARS and directly bind F-actin. J Biol Chem 282(11):8393–8403PubMedCrossRef Barrientos T et al (2007) Two novel members of the ABLIM protein family, ABLIM-2 and -3, associate with STARS and directly bind F-actin. J Biol Chem 282(11):8393–8403PubMedCrossRef
39.
go back to reference Carmeliet P, Tessier-Lavigne M (2005) Common mechanisms of nerve and blood vessel wiring. Nature 436(7048):193–200PubMedCrossRef Carmeliet P, Tessier-Lavigne M (2005) Common mechanisms of nerve and blood vessel wiring. Nature 436(7048):193–200PubMedCrossRef
40.
go back to reference Presta M et al (2005) Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev 16(2):159–178PubMedCrossRef Presta M et al (2005) Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev 16(2):159–178PubMedCrossRef
41.
go back to reference Boilly B et al (2000) FGF signals for cell proliferation and migration through different pathways. Cytokine Growth Factor Rev 11(4):295–302PubMedCrossRef Boilly B et al (2000) FGF signals for cell proliferation and migration through different pathways. Cytokine Growth Factor Rev 11(4):295–302PubMedCrossRef
43.
go back to reference Baluk P, Hashizume H, McDonald DM (2005) Cellular abnormalities of blood vessels as targets in cancer. Curr Opin Genet Dev 15(1):102–111PubMedCrossRef Baluk P, Hashizume H, McDonald DM (2005) Cellular abnormalities of blood vessels as targets in cancer. Curr Opin Genet Dev 15(1):102–111PubMedCrossRef
44.
go back to reference Ozawa MG et al (2008) Beyond receptor expression levels: the relevance of target accessibility in ligand-directed pharmacodelivery systems. Trends Cardiovasc Med 18(4):126–132PubMedCrossRef Ozawa MG et al (2008) Beyond receptor expression levels: the relevance of target accessibility in ligand-directed pharmacodelivery systems. Trends Cardiovasc Med 18(4):126–132PubMedCrossRef
45.
go back to reference Ai X et al (2007) SULF1 and SULF2 regulate heparan sulfate-mediated GDNF signaling for esophageal innervation. Development 134(18):3327–3338PubMedCrossRef Ai X et al (2007) SULF1 and SULF2 regulate heparan sulfate-mediated GDNF signaling for esophageal innervation. Development 134(18):3327–3338PubMedCrossRef
Metadata
Title
Genome-wide expression analysis of wounded skin reveals novel genes involved in angiogenesis
Authors
Simone Brönneke
Bodo Brückner
Jörn Söhle
Ralf Siegner
Christoph Smuda
Franz Stäb
Horst Wenck
Ludger Kolbe
Elke Grönniger
Marc Winnefeld
Publication date
01-07-2015
Publisher
Springer Netherlands
Published in
Angiogenesis / Issue 3/2015
Print ISSN: 0969-6970
Electronic ISSN: 1573-7209
DOI
https://doi.org/10.1007/s10456-015-9472-7

Other articles of this Issue 3/2015

Angiogenesis 3/2015 Go to the issue