Skip to main content
Top
Published in: Angiogenesis 3/2014

01-07-2014 | Original Paper

Targeting VEGFR1 on endothelial progenitors modulates their differentiation potential

Authors: Clément d’Audigier, Benoit Gautier, Alexis Yon, Jean-Meidi Alili, Coralie L. Guérin, Solène M. Evrard, Anne Godier, Skerdi Haviari, Marie Reille-Serroussi, Florent Huguenot, Blandine Dizier, Nicolas Inguimbert, Delphine Borgel, Ivan Bièche, Catherine Boisson-Vidal, Carmen Roncal, Peter Carmeliet, Michel Vidal, Pascale Gaussem, David M. Smadja

Published in: Angiogenesis | Issue 3/2014

Login to get access

Abstract

Objectives

We studied whether plasma levels of angiogenic factors VEGF and placental growth factor (PlGF) in coronary artery disease patients or undergoing cardiac surgery are modified, and whether those factors modulate endothelial progenitor’s angiogenic potential.

Methods and results

A total of 143 patients’ plasmas from two different studies were analyzed (30 coronary artery disease patients, 30 patients with stable angina, coupled with 30 age and sex-matched controls; 53 patients underwent cardiac surgery). Among factors screened, only PlGF was found significantly increased in these pathological populations. PlGF-1 and PlGF-2 were then tested on human endothelial-colony-forming cells (ECFCs). We found that PlGF-1 and PlGF-2 induce VEGFR1 phosphorylation and potentiate ECFCs tubulogenesis in vitro. ECFCs VEGFR1 was further inhibited using a specific small interfering RNA (siRNA) and the chemical compound 4321. We then observed that the VEGFR1-siRNA and the compound 4321 decrease ECFCs tubulogenesis potential in vitro. Finally, we tested the compound 4321 in the preclinical Matrigel®-plug model with C57Bl/6J mice as well as in the murine hindlimb ischemia model. We found that 4321 inhibited the plug vascularization, attested by the hemoglobin content and the VE-Cadherin expression level and that 4321 inhibited the post-ischemic revascularization.

Conclusion

PlGF plasma levels were found increased in cardiovascular patients. Disrupting PlGF/VEGFR1 pathway could modulate ECFC-induced tubulogenesis, the cell type responsible for newly formed vessels in vivo.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hiratsuka S, Maru Y, Okada A, Seiki M, Noda T, Shibuya M (2001) Involvement of Flt-1 tyrosine kinase (vascular endothelial growth factor receptor-1) in pathological angiogenesis. Cancer Res 61(3):1207–1213PubMed Hiratsuka S, Maru Y, Okada A, Seiki M, Noda T, Shibuya M (2001) Involvement of Flt-1 tyrosine kinase (vascular endothelial growth factor receptor-1) in pathological angiogenesis. Cancer Res 61(3):1207–1213PubMed
2.
go back to reference Carmeliet P, Moons L, Luttun A, Vincenti V, Compernolle V, De Mol M, Wu Y, Bono F, Devy L, Beck H, Scholz D, Acker T, DiPalma T, Dewerchin M, Noel A, Stalmans I, Barra A, Blacher S, Vandendriessche T, Ponten A, Eriksson U, Plate KH, Foidart JM, Schaper W, Charnock-Jones DS, Hicklin DJ, Herbert JM, Collen D, Persico MG (2001) Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med 7(5):575–583PubMedCrossRef Carmeliet P, Moons L, Luttun A, Vincenti V, Compernolle V, De Mol M, Wu Y, Bono F, Devy L, Beck H, Scholz D, Acker T, DiPalma T, Dewerchin M, Noel A, Stalmans I, Barra A, Blacher S, Vandendriessche T, Ponten A, Eriksson U, Plate KH, Foidart JM, Schaper W, Charnock-Jones DS, Hicklin DJ, Herbert JM, Collen D, Persico MG (2001) Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med 7(5):575–583PubMedCrossRef
3.
go back to reference Luttun A, Tjwa M, Moons L, Wu Y, Angelillo-Scherrer A, Liao F, Nagy JA, Hooper A, Priller J, De Klerck B, Compernolle V, Daci E, Bohlen P, Dewerchin M, Herbert JM, Fava R, Matthys P, Carmeliet G, Collen D, Dvorak HF, Hicklin DJ, Carmeliet P (2002) Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nat Med 8(8):831–840PubMed Luttun A, Tjwa M, Moons L, Wu Y, Angelillo-Scherrer A, Liao F, Nagy JA, Hooper A, Priller J, De Klerck B, Compernolle V, Daci E, Bohlen P, Dewerchin M, Herbert JM, Fava R, Matthys P, Carmeliet G, Collen D, Dvorak HF, Hicklin DJ, Carmeliet P (2002) Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nat Med 8(8):831–840PubMed
4.
go back to reference Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, MacDonald DD, Jin DK, Shido K, Kerns SA, Zhu Z, Hicklin D, Wu Y, Port JL, Altorki N, Port ER, Ruggero D, Shmelkov SV, Jensen KK, Rafii S, Lyden D (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438(7069):820–827PubMedCentralPubMedCrossRef Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, MacDonald DD, Jin DK, Shido K, Kerns SA, Zhu Z, Hicklin D, Wu Y, Port JL, Altorki N, Port ER, Ruggero D, Shmelkov SV, Jensen KK, Rafii S, Lyden D (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438(7069):820–827PubMedCentralPubMedCrossRef
5.
go back to reference Shibuya M (2006) Vascular endothelial growth factor receptor-1 (VEGFR-1/Flt-1): a dual regulator for angiogenesis. Angiogenesis 9(4):225–230; discussion 231 Shibuya M (2006) Vascular endothelial growth factor receptor-1 (VEGFR-1/Flt-1): a dual regulator for angiogenesis. Angiogenesis 9(4):225–230; discussion 231
6.
go back to reference Mazzone M, Dettori D, Leite de Oliveira R, Loges S, Schmidt T, Jonckx B, Tian YM, Lanahan AA, Pollard P, Ruiz de Almodovar C, De Smet F, Vinckier S, Aragones J, Debackere K, Luttun A, Wyns S, Jordan B, Pisacane A, Gallez B, Lampugnani MG, Dejana E, Simons M, Ratcliffe P, Maxwell P, Carmeliet P (2009) Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization. Cell 136(5):839–851PubMedCentralPubMedCrossRef Mazzone M, Dettori D, Leite de Oliveira R, Loges S, Schmidt T, Jonckx B, Tian YM, Lanahan AA, Pollard P, Ruiz de Almodovar C, De Smet F, Vinckier S, Aragones J, Debackere K, Luttun A, Wyns S, Jordan B, Pisacane A, Gallez B, Lampugnani MG, Dejana E, Simons M, Ratcliffe P, Maxwell P, Carmeliet P (2009) Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization. Cell 136(5):839–851PubMedCentralPubMedCrossRef
7.
go back to reference Heeschen C, Dimmeler S, Fichtlscherer S, Hamm CW, Berger J, Simoons ML, Zeiher AM (2004) Prognostic value of placental growth factor in patients with acute chest pain. JAMA 291(4):435–441PubMedCrossRef Heeschen C, Dimmeler S, Fichtlscherer S, Hamm CW, Berger J, Simoons ML, Zeiher AM (2004) Prognostic value of placental growth factor in patients with acute chest pain. JAMA 291(4):435–441PubMedCrossRef
8.
go back to reference Smadja D, Gaussem P, Roncal C, Fischer AM, Emmerich J, Darnige L (2010) Arterial and venous thrombosis is associated with different angiogenic cytokine patterns in patients with antiphospholipid syndrome. Lupus 19(7):837–843PubMedCrossRef Smadja D, Gaussem P, Roncal C, Fischer AM, Emmerich J, Darnige L (2010) Arterial and venous thrombosis is associated with different angiogenic cytokine patterns in patients with antiphospholipid syndrome. Lupus 19(7):837–843PubMedCrossRef
9.
go back to reference Wei SC, Tsao PN, Yu SC, Shun CT, Tsai-Wu JJ, Wu CH, Su YN, Hsieh FJ, Wong JM (2005) Placenta growth factor expression is correlated with survival of patients with colorectal cancer. Gut 54(5):666–672PubMedCentralPubMedCrossRef Wei SC, Tsao PN, Yu SC, Shun CT, Tsai-Wu JJ, Wu CH, Su YN, Hsieh FJ, Wong JM (2005) Placenta growth factor expression is correlated with survival of patients with colorectal cancer. Gut 54(5):666–672PubMedCentralPubMedCrossRef
10.
go back to reference Parr C, Watkins G, Boulton M, Cai J, Jiang WG (2005) Placenta growth factor is over-expressed and has prognostic value in human breast cancer. Eur J Cancer 41(18):2819–2827PubMedCrossRef Parr C, Watkins G, Boulton M, Cai J, Jiang WG (2005) Placenta growth factor is over-expressed and has prognostic value in human breast cancer. Eur J Cancer 41(18):2819–2827PubMedCrossRef
11.
go back to reference Fischer C, Jonckx B, Mazzone M, Zacchigna S, Loges S, Pattarini L, Chorianopoulos E, Liesenborghs L, Koch M, De Mol M, Autiero M, Wyns S, Plaisance S, Moons L, van Rooijen N, Giacca M, Stassen JM, Dewerchin M, Collen D, Carmeliet P (2007) Anti-PlGF inhibits growth of VEGF(R)-inhibitor-resistant tumors without affecting healthy vessels. Cell 131(3):463–475PubMedCrossRef Fischer C, Jonckx B, Mazzone M, Zacchigna S, Loges S, Pattarini L, Chorianopoulos E, Liesenborghs L, Koch M, De Mol M, Autiero M, Wyns S, Plaisance S, Moons L, van Rooijen N, Giacca M, Stassen JM, Dewerchin M, Collen D, Carmeliet P (2007) Anti-PlGF inhibits growth of VEGF(R)-inhibitor-resistant tumors without affecting healthy vessels. Cell 131(3):463–475PubMedCrossRef
12.
go back to reference Khurana R, Moons L, Shafi S, Luttun A, Collen D, Martin JF, Carmeliet P, Zachary IC (2005) Placental growth factor promotes atherosclerotic intimal thickening and macrophage accumulation. Circulation 111(21):2828–2836PubMedCrossRef Khurana R, Moons L, Shafi S, Luttun A, Collen D, Martin JF, Carmeliet P, Zachary IC (2005) Placental growth factor promotes atherosclerotic intimal thickening and macrophage accumulation. Circulation 111(21):2828–2836PubMedCrossRef
13.
go back to reference Roncal C, Buysschaert I, Gerdes N, Georgiadou M, Ovchinnikova O, Fischer C, Stassen JM, Moons L, Collen D, De Bock K, Hansson GK, Carmeliet P (2010) Short-term delivery of anti-PlGF antibody delays progression of atherosclerotic plaques to vulnerable lesions. Cardiovasc Res 86(1):29–36PubMedCrossRef Roncal C, Buysschaert I, Gerdes N, Georgiadou M, Ovchinnikova O, Fischer C, Stassen JM, Moons L, Collen D, De Bock K, Hansson GK, Carmeliet P (2010) Short-term delivery of anti-PlGF antibody delays progression of atherosclerotic plaques to vulnerable lesions. Cardiovasc Res 86(1):29–36PubMedCrossRef
14.
go back to reference Van de Veire S, Stalmans I, Heindryckx F, Oura H, Tijeras-Raballand A, Schmidt T, Loges S, Albrecht I, Jonckx B, Vinckier S, Van Steenkiste C, Tugues S, Rolny C, De Mol M, Dettori D, Hainaud P, Coenegrachts L, Contreres JO, Van Bergen T, Cuervo H, Xiao WH, Le Henaff C, Buysschaert I, Kharabi Masouleh B, Geerts A, Schomber T, Bonnin P, Lambert V, Haustraete J, Zacchigna S, Rakic JM, Jimenez W, Noel A, Giacca M, Colle I, Foidart JM, Tobelem G, Morales-Ruiz M, Vilar J, Maxwell P, Vinores SA, Carmeliet G, Dewerchin M, Claesson-Welsh L, Dupuy E, Van Vlierberghe H, Christofori G, Mazzone M, Detmar M, Collen D, Carmeliet P (2010) Further pharmacological and genetic evidence for the efficacy of PlGF inhibition in cancer and eye disease. Cell 141(1):178–190PubMedCrossRef Van de Veire S, Stalmans I, Heindryckx F, Oura H, Tijeras-Raballand A, Schmidt T, Loges S, Albrecht I, Jonckx B, Vinckier S, Van Steenkiste C, Tugues S, Rolny C, De Mol M, Dettori D, Hainaud P, Coenegrachts L, Contreres JO, Van Bergen T, Cuervo H, Xiao WH, Le Henaff C, Buysschaert I, Kharabi Masouleh B, Geerts A, Schomber T, Bonnin P, Lambert V, Haustraete J, Zacchigna S, Rakic JM, Jimenez W, Noel A, Giacca M, Colle I, Foidart JM, Tobelem G, Morales-Ruiz M, Vilar J, Maxwell P, Vinores SA, Carmeliet G, Dewerchin M, Claesson-Welsh L, Dupuy E, Van Vlierberghe H, Christofori G, Mazzone M, Detmar M, Collen D, Carmeliet P (2010) Further pharmacological and genetic evidence for the efficacy of PlGF inhibition in cancer and eye disease. Cell 141(1):178–190PubMedCrossRef
15.
go back to reference Smadja DM, Cornet A, Emmerich J, Aiach M, Gaussem P (2007) Endothelial progenitor cells: characterization, in vitro expansion, and prospects for autologous cell therapy. Cell Biol Toxicol 23(4):223–239PubMedCrossRef Smadja DM, Cornet A, Emmerich J, Aiach M, Gaussem P (2007) Endothelial progenitor cells: characterization, in vitro expansion, and prospects for autologous cell therapy. Cell Biol Toxicol 23(4):223–239PubMedCrossRef
16.
go back to reference Gao D, Nolan D, McDonnell K, Vahdat L, Benezra R, Altorki N, Mittal V (2009) Bone marrow-derived endothelial progenitor cells contribute to the angiogenic switch in tumor growth and metastatic progression. Biochim Biophys Acta 1796(1):33–40PubMedCentralPubMed Gao D, Nolan D, McDonnell K, Vahdat L, Benezra R, Altorki N, Mittal V (2009) Bone marrow-derived endothelial progenitor cells contribute to the angiogenic switch in tumor growth and metastatic progression. Biochim Biophys Acta 1796(1):33–40PubMedCentralPubMed
17.
go back to reference Silvestre JS, Smadja DM, Levy BI (2013) Postischemic revascularization: from cellular and molecular mechanisms to clinical applications. Physiol Rev 93(4):1743–1802 Silvestre JS, Smadja DM, Levy BI (2013) Postischemic revascularization: from cellular and molecular mechanisms to clinical applications. Physiol Rev 93(4):1743–1802
18.
go back to reference Hill JM, Zalos G, Halcox JP, Schenke WH, Waclawiw MA, Quyyumi AA, Finkel T (2003) Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 348(7):593–600PubMedCrossRef Hill JM, Zalos G, Halcox JP, Schenke WH, Waclawiw MA, Quyyumi AA, Finkel T (2003) Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 348(7):593–600PubMedCrossRef
19.
go back to reference Hur J, Yoon CH, Kim HS, Choi JH, Kang HJ, Hwang KK, Oh BH, Lee MM, Park YB (2004) Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arterioscler Thromb Vasc Biol 24(2):288–293PubMedCrossRef Hur J, Yoon CH, Kim HS, Choi JH, Kang HJ, Hwang KK, Oh BH, Lee MM, Park YB (2004) Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arterioscler Thromb Vasc Biol 24(2):288–293PubMedCrossRef
20.
go back to reference Yoder MC, Mead LE, Prater D, Krier TR, Mroueh KN, Li F, Krasich R, Temm CJ, Prchal JT, Ingram DA (2007) Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 109(5):1801–1809PubMedCentralPubMedCrossRef Yoder MC, Mead LE, Prater D, Krier TR, Mroueh KN, Li F, Krasich R, Temm CJ, Prchal JT, Ingram DA (2007) Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 109(5):1801–1809PubMedCentralPubMedCrossRef
21.
go back to reference Smadja DM, Bieche I, Silvestre JS, Germain S, Cornet A, Laurendeau I, Duong-Van-Huyen JP, Emmerich J, Vidaud M, Aiach M, Gaussem P (2008) Bone morphogenetic proteins 2 and 4 are selectively expressed by late outgrowth endothelial progenitor cells and promote neoangiogenesis. Arterioscler Thromb Vasc Biol 28(12):2137–2143PubMedCrossRef Smadja DM, Bieche I, Silvestre JS, Germain S, Cornet A, Laurendeau I, Duong-Van-Huyen JP, Emmerich J, Vidaud M, Aiach M, Gaussem P (2008) Bone morphogenetic proteins 2 and 4 are selectively expressed by late outgrowth endothelial progenitor cells and promote neoangiogenesis. Arterioscler Thromb Vasc Biol 28(12):2137–2143PubMedCrossRef
22.
go back to reference Smadja DM, Mauge L, Gaussem P, d’Audigier C, Israel-Biet D, Celermajer DS, Bonnet D, Levy M (2011) Treprostinil increases the number and angiogenic potential of endothelial progenitor cells in children with pulmonary hypertension. Angiogenesis 14(1):17–27PubMedCentralPubMedCrossRef Smadja DM, Mauge L, Gaussem P, d’Audigier C, Israel-Biet D, Celermajer DS, Bonnet D, Levy M (2011) Treprostinil increases the number and angiogenic potential of endothelial progenitor cells in children with pulmonary hypertension. Angiogenesis 14(1):17–27PubMedCentralPubMedCrossRef
23.
go back to reference Smadja DM, Mauge L, Nunes H, d’Audigier C, Juvin K, Borie R, Carton Z, Bertil S, Blanchard A, Crestani B, Valeyre D, Gaussem P, Israel-Biet D (2013) Imbalance of circulating endothelial cells and progenitors in idiopathic pulmonary fibrosis. Angiogenesis 16(1):147–157PubMedCrossRef Smadja DM, Mauge L, Nunes H, d’Audigier C, Juvin K, Borie R, Carton Z, Bertil S, Blanchard A, Crestani B, Valeyre D, Gaussem P, Israel-Biet D (2013) Imbalance of circulating endothelial cells and progenitors in idiopathic pulmonary fibrosis. Angiogenesis 16(1):147–157PubMedCrossRef
24.
go back to reference Guven H, Shepherd RM, Bach RG, Capoccia BJ, Link DC (2006) The number of endothelial progenitor cell colonies in the blood is increased in patients with angiographically significant coronary artery disease. J Am Coll Cardiol 48(8):1579–1587PubMedCrossRef Guven H, Shepherd RM, Bach RG, Capoccia BJ, Link DC (2006) The number of endothelial progenitor cell colonies in the blood is increased in patients with angiographically significant coronary artery disease. J Am Coll Cardiol 48(8):1579–1587PubMedCrossRef
25.
go back to reference Huang L, Hou D, Thompson MA, Baysden SE, Shelley WC, Ingram DA, March KL, Yoder MC (2007) Acute myocardial infarction in swine rapidly and selectively releases highly proliferative endothelial colony forming cells (ECFCs) into circulation. Cell Transplant 16(9):887–897PubMedCrossRef Huang L, Hou D, Thompson MA, Baysden SE, Shelley WC, Ingram DA, March KL, Yoder MC (2007) Acute myocardial infarction in swine rapidly and selectively releases highly proliferative endothelial colony forming cells (ECFCs) into circulation. Cell Transplant 16(9):887–897PubMedCrossRef
26.
go back to reference Hoesli SJ, Mead LE, Prater D, Javed MJ, Ingram DA, Denne SC (2010) Endothelial colony-forming cells and mesenchymal stem cells from ECMO circuits of term infants. J Perinatol 30(11):724–730PubMedCrossRef Hoesli SJ, Mead LE, Prater D, Javed MJ, Ingram DA, Denne SC (2010) Endothelial colony-forming cells and mesenchymal stem cells from ECMO circuits of term infants. J Perinatol 30(11):724–730PubMedCrossRef
27.
go back to reference Smadja DM, Bieche I, Helley D, Laurendeau I, Simonin G, Muller L, Aiach M, Gaussem P (2007) Increased VEGFR2 expression during human late endothelial progenitor cells expansion enhances in vitro angiogenesis with up-regulation of integrin alpha(6). J Cell Mol Med 11(5):1149–1161PubMedCrossRef Smadja DM, Bieche I, Helley D, Laurendeau I, Simonin G, Muller L, Aiach M, Gaussem P (2007) Increased VEGFR2 expression during human late endothelial progenitor cells expansion enhances in vitro angiogenesis with up-regulation of integrin alpha(6). J Cell Mol Med 11(5):1149–1161PubMedCrossRef
28.
go back to reference Gautier B, Miteva MA, Goncalves V, Huguenot F, Coric P, Bouaziz S, Seijo B, Gaucher JF, Broutin I, Garbay C, Lesnard A, Rault S, Inguimbert N, Villoutreix BO, Vidal M (2011) Targeting the proangiogenic VEGF-VEGFR protein–protein interface with drug-like compounds by in silico and in vitro screening. Chem Biol 18(12):1631–1639PubMedCrossRef Gautier B, Miteva MA, Goncalves V, Huguenot F, Coric P, Bouaziz S, Seijo B, Gaucher JF, Broutin I, Garbay C, Lesnard A, Rault S, Inguimbert N, Villoutreix BO, Vidal M (2011) Targeting the proangiogenic VEGF-VEGFR protein–protein interface with drug-like compounds by in silico and in vitro screening. Chem Biol 18(12):1631–1639PubMedCrossRef
29.
go back to reference Borgel D, Durand E, Clauser S, Bachelot-Loza C, Peyrard S, Remones V, Aiach M, Lafont A (2009) Plasma Gas6 levels and coronary artery disease. Thromb Haemost 101(1):215–216PubMed Borgel D, Durand E, Clauser S, Bachelot-Loza C, Peyrard S, Remones V, Aiach M, Lafont A (2009) Plasma Gas6 levels and coronary artery disease. Thromb Haemost 101(1):215–216PubMed
30.
go back to reference Smadja DM, Godier A, Susen S, Packard RR, Fabiani JN, Aiach M, Gaussem P (2009) Endothelial progenitor cells are selectively mobilised immediately after coronary artery bypass grafting or valve surgery. Thromb Haemost 101(5):983–985PubMed Smadja DM, Godier A, Susen S, Packard RR, Fabiani JN, Aiach M, Gaussem P (2009) Endothelial progenitor cells are selectively mobilised immediately after coronary artery bypass grafting or valve surgery. Thromb Haemost 101(5):983–985PubMed
31.
go back to reference Smadja DM, Borgel D, Diehl JL, Gaussem P (2012) Vascular endothelial growth factor, as compared with placental growth factor, is increased in severe sepsis but not in organ failure. J Thromb Haemost 10(5):974–976PubMedCrossRef Smadja DM, Borgel D, Diehl JL, Gaussem P (2012) Vascular endothelial growth factor, as compared with placental growth factor, is increased in severe sepsis but not in organ failure. J Thromb Haemost 10(5):974–976PubMedCrossRef
32.
go back to reference Goncalves V, Gautier B, Garbay C, Vidal M, Inguimbert N (2007) Development of a chemiluminescent screening assay for detection of vascular endothelial growth factor receptor 1 ligands. Anal Biochem 366(1):108–110PubMedCrossRef Goncalves V, Gautier B, Garbay C, Vidal M, Inguimbert N (2007) Development of a chemiluminescent screening assay for detection of vascular endothelial growth factor receptor 1 ligands. Anal Biochem 366(1):108–110PubMedCrossRef
33.
go back to reference Goncalves V, Gautier B, Coric P, Bouaziz S, Lenoir C, Garbay C, Vidal M, Inguimbert N (2007) Rational design, structure, and biological evaluation of cyclic peptides mimicking the vascular endothelial growth factor. J Med Chem 50(21):5135–5146PubMedCrossRef Goncalves V, Gautier B, Coric P, Bouaziz S, Lenoir C, Garbay C, Vidal M, Inguimbert N (2007) Rational design, structure, and biological evaluation of cyclic peptides mimicking the vascular endothelial growth factor. J Med Chem 50(21):5135–5146PubMedCrossRef
34.
go back to reference Goncalves V, Gautier B, Garbay C, Vidal M, Inguimbert N (2008) Structure-based design of a bicyclic peptide antagonist of the vascular endothelial growth factor receptors. J Pept Sci 14(6):767–772PubMedCrossRef Goncalves V, Gautier B, Garbay C, Vidal M, Inguimbert N (2008) Structure-based design of a bicyclic peptide antagonist of the vascular endothelial growth factor receptors. J Pept Sci 14(6):767–772PubMedCrossRef
35.
go back to reference Smadja DM, Bieche I, Emmerich J, Aiach M, Gaussem P (2006) PAR-1 activation has different effects on the angiogenic activity of endothelial progenitor cells derived from human adult and cord blood. J Thromb Haemost 4(12):2729–2731PubMedCrossRef Smadja DM, Bieche I, Emmerich J, Aiach M, Gaussem P (2006) PAR-1 activation has different effects on the angiogenic activity of endothelial progenitor cells derived from human adult and cord blood. J Thromb Haemost 4(12):2729–2731PubMedCrossRef
36.
go back to reference Smadja DM, Bieche I, Uzan G, Bompais H, Muller L, Boisson-Vidal C, Vidaud M, Aiach M, Gaussem P (2005) PAR-1 activation on human late endothelial progenitor cells enhances angiogenesis in vitro with upregulation of the SDF-1/CXCR4 system. Arterioscler Thromb Vasc Biol 25(11):2321–2327PubMedCrossRef Smadja DM, Bieche I, Uzan G, Bompais H, Muller L, Boisson-Vidal C, Vidaud M, Aiach M, Gaussem P (2005) PAR-1 activation on human late endothelial progenitor cells enhances angiogenesis in vitro with upregulation of the SDF-1/CXCR4 system. Arterioscler Thromb Vasc Biol 25(11):2321–2327PubMedCrossRef
37.
go back to reference Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791PubMedCentralPubMedCrossRef Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791PubMedCentralPubMedCrossRef
38.
go back to reference Foubert P, Silvestre JS, Souttou B, Barateau V, Martin C, Ebrahimian TG, Lere-Dean C, Contreres JO, Sulpice E, Levy BI, Plouet J, Tobelem G, Le Ricousse-Roussanne S (2007) PSGL-1-mediated activation of EphB4 increases the proangiogenic potential of endothelial progenitor cells. J Clin Invest 117(6):1527–1537PubMedCentralPubMedCrossRef Foubert P, Silvestre JS, Souttou B, Barateau V, Martin C, Ebrahimian TG, Lere-Dean C, Contreres JO, Sulpice E, Levy BI, Plouet J, Tobelem G, Le Ricousse-Roussanne S (2007) PSGL-1-mediated activation of EphB4 increases the proangiogenic potential of endothelial progenitor cells. J Clin Invest 117(6):1527–1537PubMedCentralPubMedCrossRef
39.
go back to reference Bompais H, Chagraoui J, Canron X, Crisan M, Liu XH, Anjo A, Tolla-Le Port C, Leboeuf M, Charbord P, Bikfalvi A, Uzan G (2004) Human endothelial cells derived from circulating progenitors display specific functional properties compared with mature vessel wall endothelial cells. Blood 103(7):2577–2584PubMedCrossRef Bompais H, Chagraoui J, Canron X, Crisan M, Liu XH, Anjo A, Tolla-Le Port C, Leboeuf M, Charbord P, Bikfalvi A, Uzan G (2004) Human endothelial cells derived from circulating progenitors display specific functional properties compared with mature vessel wall endothelial cells. Blood 103(7):2577–2584PubMedCrossRef
40.
go back to reference Dull RO, Yuan J, Chang YS, Tarbell J, Jain RK, Munn LL (2001) Kinetics of placenta growth factor/vascular endothelial growth factor synergy in endothelial hydraulic conductivity and proliferation. Microvasc Res 61(2):203–210PubMedCrossRef Dull RO, Yuan J, Chang YS, Tarbell J, Jain RK, Munn LL (2001) Kinetics of placenta growth factor/vascular endothelial growth factor synergy in endothelial hydraulic conductivity and proliferation. Microvasc Res 61(2):203–210PubMedCrossRef
41.
go back to reference Li B, Sharpe EE, Maupin AB, Teleron AA, Pyle AL, Carmeliet P, Young PP (2006) VEGF and PlGF promote adult vasculogenesis by enhancing EPC recruitment and vessel formation at the site of tumor neovascularization. Faseb J 20(9):1495–1497PubMedCrossRef Li B, Sharpe EE, Maupin AB, Teleron AA, Pyle AL, Carmeliet P, Young PP (2006) VEGF and PlGF promote adult vasculogenesis by enhancing EPC recruitment and vessel formation at the site of tumor neovascularization. Faseb J 20(9):1495–1497PubMedCrossRef
42.
go back to reference Hattori K, Heissig B, Wu Y, Dias S, Tejada R, Ferris B, Hicklin DJ, Zhu Z, Bohlen P, Witte L, Hendrikx J, Hackett NR, Crystal RG, Moore MA, Werb Z, Lyden D, Rafii S (2002) Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1(+) stem cells from bone-marrow microenvironment. Nat Med 8(8):841–849PubMedCentralPubMed Hattori K, Heissig B, Wu Y, Dias S, Tejada R, Ferris B, Hicklin DJ, Zhu Z, Bohlen P, Witte L, Hendrikx J, Hackett NR, Crystal RG, Moore MA, Werb Z, Lyden D, Rafii S (2002) Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1(+) stem cells from bone-marrow microenvironment. Nat Med 8(8):841–849PubMedCentralPubMed
43.
go back to reference Roncal C, Buysschaert I, Chorianopoulos E, Georgiadou M, Meilhac O, Demol M, Michel JB, Vinckier S, Moons L, Carmeliet P (2008) Beneficial effects of prolonged systemic administration of PlGF on late outcome of post-ischaemic myocardial performance. J Pathol 216(2):236–244PubMedCrossRef Roncal C, Buysschaert I, Chorianopoulos E, Georgiadou M, Meilhac O, Demol M, Michel JB, Vinckier S, Moons L, Carmeliet P (2008) Beneficial effects of prolonged systemic administration of PlGF on late outcome of post-ischaemic myocardial performance. J Pathol 216(2):236–244PubMedCrossRef
44.
go back to reference Tamarat R, Silvestre JS, Le Ricousse-Roussanne S, Barateau V, Lecomte-Raclet L, Clergue M, Duriez M, Tobelem G, Levy BI (2004) Impairment in ischemia-induced neovascularization in diabetes: bone marrow mononuclear cell dysfunction and therapeutic potential of placenta growth factor treatment. Am J Pathol 164(2):457–466PubMedCentralPubMedCrossRef Tamarat R, Silvestre JS, Le Ricousse-Roussanne S, Barateau V, Lecomte-Raclet L, Clergue M, Duriez M, Tobelem G, Levy BI (2004) Impairment in ischemia-induced neovascularization in diabetes: bone marrow mononuclear cell dysfunction and therapeutic potential of placenta growth factor treatment. Am J Pathol 164(2):457–466PubMedCentralPubMedCrossRef
45.
go back to reference Scholz D, Elsaesser H, Sauer A, Friedrich C, Luttun A, Carmeliet P, Schaper W (2003) Bone marrow transplantation abolishes inhibition of arteriogenesis in placenta growth factor (PlGF) −/− mice. J Mol Cell Cardiol 35(2):177–184PubMedCrossRef Scholz D, Elsaesser H, Sauer A, Friedrich C, Luttun A, Carmeliet P, Schaper W (2003) Bone marrow transplantation abolishes inhibition of arteriogenesis in placenta growth factor (PlGF) −/− mice. J Mol Cell Cardiol 35(2):177–184PubMedCrossRef
46.
go back to reference Pipp F, Heil M, Issbrucker K, Ziegelhoeffer T, Martin S, van den Heuvel J, Weich H, Fernandez B, Golomb G, Carmeliet P, Schaper W, Clauss M (2003) VEGFR-1-selective VEGF homologue PlGF is arteriogenic: evidence for a monocyte-mediated mechanism. Circ Res 92(4):378–385PubMedCrossRef Pipp F, Heil M, Issbrucker K, Ziegelhoeffer T, Martin S, van den Heuvel J, Weich H, Fernandez B, Golomb G, Carmeliet P, Schaper W, Clauss M (2003) VEGFR-1-selective VEGF homologue PlGF is arteriogenic: evidence for a monocyte-mediated mechanism. Circ Res 92(4):378–385PubMedCrossRef
47.
go back to reference Lenderink T, Heeschen C, Fichtlscherer S, Dimmeler S, Hamm CW, Zeiher AM, Simoons ML, Boersma E (2006) Elevated placental growth factor levels are associated with adverse outcomes at four-year follow-up in patients with acute coronary syndromes. J Am Coll Cardiol 47(2):307–311PubMedCrossRef Lenderink T, Heeschen C, Fichtlscherer S, Dimmeler S, Hamm CW, Zeiher AM, Simoons ML, Boersma E (2006) Elevated placental growth factor levels are associated with adverse outcomes at four-year follow-up in patients with acute coronary syndromes. J Am Coll Cardiol 47(2):307–311PubMedCrossRef
48.
go back to reference Konopka A, Janas J, Piotrowski W, Stepinska J (2013) Concentration of vascular endothelial growth factor in patients with acute coronary syndrome. Cytokine 61(2):664–669PubMedCrossRef Konopka A, Janas J, Piotrowski W, Stepinska J (2013) Concentration of vascular endothelial growth factor in patients with acute coronary syndrome. Cytokine 61(2):664–669PubMedCrossRef
49.
go back to reference Silvestre JS, Gojova A, Brun V, Potteaux S, Esposito B, Duriez M, Clergue M, Le Ricousse-Roussanne S, Barateau V, Merval R, Groux H, Tobelem G, Levy B, Tedgui A, Mallat Z (2003) Transplantation of bone marrow-derived mononuclear cells in ischemic apolipoprotein E-knockout mice accelerates atherosclerosis without altering plaque composition. Circulation 108(23):2839–2842PubMedCrossRef Silvestre JS, Gojova A, Brun V, Potteaux S, Esposito B, Duriez M, Clergue M, Le Ricousse-Roussanne S, Barateau V, Merval R, Groux H, Tobelem G, Levy B, Tedgui A, Mallat Z (2003) Transplantation of bone marrow-derived mononuclear cells in ischemic apolipoprotein E-knockout mice accelerates atherosclerosis without altering plaque composition. Circulation 108(23):2839–2842PubMedCrossRef
50.
go back to reference Porto ML, Lima LC, Pereira TM, Nogueira BV, Tonini CL, Campagnaro BP, Meyrelles SS, Vasquez EC (2011) Mononuclear cell therapy attenuates atherosclerosis in apoE KO mice. Lipids Health Dis 10:155PubMedCentralPubMedCrossRef Porto ML, Lima LC, Pereira TM, Nogueira BV, Tonini CL, Campagnaro BP, Meyrelles SS, Vasquez EC (2011) Mononuclear cell therapy attenuates atherosclerosis in apoE KO mice. Lipids Health Dis 10:155PubMedCentralPubMedCrossRef
51.
go back to reference Selvaraj SK, Giri RK, Perelman N, Johnson C, Malik P, Kalra VK (2003) Mechanism of monocyte activation and expression of proinflammatory cytochemokines by placenta growth factor. Blood 102(4):1515–1524PubMedCrossRef Selvaraj SK, Giri RK, Perelman N, Johnson C, Malik P, Kalra VK (2003) Mechanism of monocyte activation and expression of proinflammatory cytochemokines by placenta growth factor. Blood 102(4):1515–1524PubMedCrossRef
52.
go back to reference Smadja DM, Bieche I, Susen S, Mauge L, Laurendeau I, d’Audigier C, Grelac F, Emmerich J, Aiach M, Gaussem P (2009) Interleukin 8 is differently expressed and modulated by PAR-1 activation in early and late endothelial progenitor cells. J Cell Mol Med 13(8B):2534–2546PubMedCrossRef Smadja DM, Bieche I, Susen S, Mauge L, Laurendeau I, d’Audigier C, Grelac F, Emmerich J, Aiach M, Gaussem P (2009) Interleukin 8 is differently expressed and modulated by PAR-1 activation in early and late endothelial progenitor cells. J Cell Mol Med 13(8B):2534–2546PubMedCrossRef
53.
go back to reference Patel N, Kalra VK (2010) Placenta growth factor-induced early growth response 1 (Egr-1) regulates hypoxia-inducible factor-1alpha (HIF-1alpha) in endothelial cells. J Biol Chem 285(27):20570–20579PubMedCentralPubMedCrossRef Patel N, Kalra VK (2010) Placenta growth factor-induced early growth response 1 (Egr-1) regulates hypoxia-inducible factor-1alpha (HIF-1alpha) in endothelial cells. J Biol Chem 285(27):20570–20579PubMedCentralPubMedCrossRef
54.
go back to reference Kim GY, Lee JW, Cho SH, Seo JM, Kim JH (2009) Role of the low-affinity leukotriene B4 receptor BLT2 in VEGF-induced angiogenesis. Arterioscler Thromb Vasc Biol 29(6):915–920PubMedCrossRef Kim GY, Lee JW, Cho SH, Seo JM, Kim JH (2009) Role of the low-affinity leukotriene B4 receptor BLT2 in VEGF-induced angiogenesis. Arterioscler Thromb Vasc Biol 29(6):915–920PubMedCrossRef
55.
go back to reference Funahashi Y, Shawber CJ, Vorontchikhina M, Sharma A, Outtz HH, Kitajewski J (2010) Notch regulates the angiogenic response via induction of VEGFR-1. J Angiogenes Res 2(1):3PubMedCentralPubMedCrossRef Funahashi Y, Shawber CJ, Vorontchikhina M, Sharma A, Outtz HH, Kitajewski J (2010) Notch regulates the angiogenic response via induction of VEGFR-1. J Angiogenes Res 2(1):3PubMedCentralPubMedCrossRef
56.
go back to reference Al Haj Zen A, Oikawa A, Bazan-Peregrino M, Meloni M, Emanueli C, Madeddu P (2010) Inhibition of delta-like-4-mediated signaling impairs reparative angiogenesis after ischemia. Circ Res 107(2):283–293PubMedCentralPubMedCrossRef Al Haj Zen A, Oikawa A, Bazan-Peregrino M, Meloni M, Emanueli C, Madeddu P (2010) Inhibition of delta-like-4-mediated signaling impairs reparative angiogenesis after ischemia. Circ Res 107(2):283–293PubMedCentralPubMedCrossRef
57.
go back to reference Ii M, Takeshita K, Ibusuki K, Luedemann C, Wecker A, Eaton E, Thorne T, Asahara T, Liao JK, Losordo DW (2010) Notch signaling regulates endothelial progenitor cell activity during recovery from arterial injury in hypercholesterolemic mice. Circulation 121(9):1104–1112PubMedCentralPubMedCrossRef Ii M, Takeshita K, Ibusuki K, Luedemann C, Wecker A, Eaton E, Thorne T, Asahara T, Liao JK, Losordo DW (2010) Notch signaling regulates endothelial progenitor cell activity during recovery from arterial injury in hypercholesterolemic mice. Circulation 121(9):1104–1112PubMedCentralPubMedCrossRef
58.
go back to reference Kwon SM, Eguchi M, Wada M, Iwami Y, Hozumi K, Iwaguro H, Masuda H, Kawamoto A, Asahara T (2008) Specific Jagged-1 signal from bone marrow microenvironment is required for endothelial progenitor cell development for neovascularization. Circulation 118(2):157–165PubMedCrossRef Kwon SM, Eguchi M, Wada M, Iwami Y, Hozumi K, Iwaguro H, Masuda H, Kawamoto A, Asahara T (2008) Specific Jagged-1 signal from bone marrow microenvironment is required for endothelial progenitor cell development for neovascularization. Circulation 118(2):157–165PubMedCrossRef
59.
go back to reference Roskoski R Jr (2008) VEGF receptor protein-tyrosine kinases: structure and regulation. Biochem Biophys Res Commun 375(3):287–291PubMedCrossRef Roskoski R Jr (2008) VEGF receptor protein-tyrosine kinases: structure and regulation. Biochem Biophys Res Commun 375(3):287–291PubMedCrossRef
Metadata
Title
Targeting VEGFR1 on endothelial progenitors modulates their differentiation potential
Authors
Clément d’Audigier
Benoit Gautier
Alexis Yon
Jean-Meidi Alili
Coralie L. Guérin
Solène M. Evrard
Anne Godier
Skerdi Haviari
Marie Reille-Serroussi
Florent Huguenot
Blandine Dizier
Nicolas Inguimbert
Delphine Borgel
Ivan Bièche
Catherine Boisson-Vidal
Carmen Roncal
Peter Carmeliet
Michel Vidal
Pascale Gaussem
David M. Smadja
Publication date
01-07-2014
Publisher
Springer Netherlands
Published in
Angiogenesis / Issue 3/2014
Print ISSN: 0969-6970
Electronic ISSN: 1573-7209
DOI
https://doi.org/10.1007/s10456-013-9413-2

Other articles of this Issue 3/2014

Angiogenesis 3/2014 Go to the issue