Skip to main content
Top
Published in: Angiogenesis 1/2008

01-03-2008 | Original Paper

Regulation of angiogenesis by homotypic and heterotypic notch signalling in endothelial cells and pericytes: from basic research to potential therapies

Authors: Richard C. A. Sainson, Adrian L. Harris

Published in: Angiogenesis | Issue 1/2008

Login to get access

Abstract

The notch-signalling pathway regulates cell fate and differentiation through cell–cell communication. In recent years, several in vitro and in vivo studies have demonstrated that notch-signalling functions as a negative feedback mechanism downstream of the VEGF-signalling pathway that acts to finely shape the vascular network. Notch activation by the Jagged-1 and Delta-like 4 ligands regulates different steps of blood vessel development ranging from proliferation and survival of endothelial cells, to vessel branching and arterial–venous differentiation. In addition, heterotypic notch signalling from endothelial cells to pericytes is critical for vessel stabilization and maturation. Interestingly, several studies have demonstrated that blocking the notch pathway can delay tumour growth. Unexpectedly however, tumour growth inhibition by Notch was caused by an increased number of non-functional vessels, which resulted in poor tumour perfusion. This approach of modulating notch signalling, combined with the extended knowledge acquired on the basic vascular role of notch signalling, will aid the development of treatments targetting human pathologies such as tissue ischaemia and solid tumour formation.
Literature
2.
go back to reference Schmidt A, Brixius K, Bloch W (2007) Endothelial precursor cell migration during vasculogenesis. Circ Res 101(2):125–136PubMedCrossRef Schmidt A, Brixius K, Bloch W (2007) Endothelial precursor cell migration during vasculogenesis. Circ Res 101(2):125–136PubMedCrossRef
3.
go back to reference Armulik A, Abramsson A, Betsholtz C (2005) Endothelial/pericyte interactions. Circ Res 97(6):512–523PubMedCrossRef Armulik A, Abramsson A, Betsholtz C (2005) Endothelial/pericyte interactions. Circ Res 97(6):512–523PubMedCrossRef
4.
go back to reference Bray SJ (2006) Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol 7(9):678–689PubMedCrossRef Bray SJ (2006) Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol 7(9):678–689PubMedCrossRef
5.
go back to reference Iso T, Kedes L, Hamamori Y (2003) HES and HERP families: multiple effectors of the notch signaling pathway. J Cell Physiol 194(3):237–255PubMedCrossRef Iso T, Kedes L, Hamamori Y (2003) HES and HERP families: multiple effectors of the notch signaling pathway. J Cell Physiol 194(3):237–255PubMedCrossRef
6.
go back to reference Chitnis A (2006) Why is delta endocytosis required for effective activation of notch? Dev Dyn 235(4):886–894PubMedCrossRef Chitnis A (2006) Why is delta endocytosis required for effective activation of notch? Dev Dyn 235(4):886–894PubMedCrossRef
7.
go back to reference Le Borgne R, Bardin A, Schweisguth F (2005) The roles of receptor and ligand endocytosis in regulating notch signaling. Development 132(8):1751–1762PubMedCrossRef Le Borgne R, Bardin A, Schweisguth F (2005) The roles of receptor and ligand endocytosis in regulating notch signaling. Development 132(8):1751–1762PubMedCrossRef
8.
go back to reference Le Borgne R, Schweisguth F (2003) Notch signaling: endocytosis makes delta signal better. Curr Biol 13(7):R273–R275PubMedCrossRef Le Borgne R, Schweisguth F (2003) Notch signaling: endocytosis makes delta signal better. Curr Biol 13(7):R273–R275PubMedCrossRef
9.
go back to reference Wilkin MB, Baron M (2005) Endocytic regulation of notch activation and down-regulation (review). Mol Membr Biol 22(4):279–289PubMedCrossRef Wilkin MB, Baron M (2005) Endocytic regulation of notch activation and down-regulation (review). Mol Membr Biol 22(4):279–289PubMedCrossRef
10.
go back to reference Six E, Ndiaye D, Laabi Y, Brou C, Gupta-Rossi N, Israel A et al (2003) The notch ligand delta1 is sequentially cleaved by an ADAM protease and {gamma}-secretase. Proc Natl Acad Sci U S A Six E, Ndiaye D, Laabi Y, Brou C, Gupta-Rossi N, Israel A et al (2003) The notch ligand delta1 is sequentially cleaved by an ADAM protease and {gamma}-secretase. Proc Natl Acad Sci U S A
11.
go back to reference Ikeuchi T, Sisodia SS (2003) The notch ligands, delta1 and jagged2, are substrates for presenilin-dependent “gamma-secretase” cleavage. J Biol Chem 278(10):7751–7754PubMedCrossRef Ikeuchi T, Sisodia SS (2003) The notch ligands, delta1 and jagged2, are substrates for presenilin-dependent “gamma-secretase” cleavage. J Biol Chem 278(10):7751–7754PubMedCrossRef
12.
go back to reference LaVoie MJ, Selkoe DJ (2003) The notch ligands, jagged and delta, are sequentially processed by alpha-secretase and presenilin/gamma-secretase and release signaling fragments. J Biol Chem 278(36):34427–34437PubMedCrossRef LaVoie MJ, Selkoe DJ (2003) The notch ligands, jagged and delta, are sequentially processed by alpha-secretase and presenilin/gamma-secretase and release signaling fragments. J Biol Chem 278(36):34427–34437PubMedCrossRef
13.
go back to reference Martinez Arias A, Zecchini V, Brennan K (2002) CSL-independent notch signalling: a checkpoint in cell fate decisions during development? Curr Opin Genet Dev 12(5):524–533PubMedCrossRef Martinez Arias A, Zecchini V, Brennan K (2002) CSL-independent notch signalling: a checkpoint in cell fate decisions during development? Curr Opin Genet Dev 12(5):524–533PubMedCrossRef
14.
go back to reference Morel V, Schweisguth F (2000) Repression by suppressor of hairless and activation by notch are required to define a single row of single-minded expressing cells in the Drosophila embryo. Genes Dev 14(3):377–388PubMed Morel V, Schweisguth F (2000) Repression by suppressor of hairless and activation by notch are required to define a single row of single-minded expressing cells in the Drosophila embryo. Genes Dev 14(3):377–388PubMed
15.
go back to reference Gustafsson MV, Zheng X, Pereira T, Gradin K, Jin S, Lundkvist J et al (2005) Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev Cell 9(5):617–628PubMedCrossRef Gustafsson MV, Zheng X, Pereira T, Gradin K, Jin S, Lundkvist J et al (2005) Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev Cell 9(5):617–628PubMedCrossRef
16.
go back to reference Ramain P, Khechumian K, Seugnet L, Arbogast N, Ackermann C, Heitzler P (2001) Novel notch alleles reveal a deltex-dependent pathway repressing neural fate. Curr Biol 11(22):1729–1738PubMedCrossRef Ramain P, Khechumian K, Seugnet L, Arbogast N, Ackermann C, Heitzler P (2001) Novel notch alleles reveal a deltex-dependent pathway repressing neural fate. Curr Biol 11(22):1729–1738PubMedCrossRef
17.
go back to reference Ross DA, Kadesch T (2004) Consequences of notch-mediated induction of jagged1. Exp Cell Res 296(2):173–182PubMedCrossRef Ross DA, Kadesch T (2004) Consequences of notch-mediated induction of jagged1. Exp Cell Res 296(2):173–182PubMedCrossRef
18.
go back to reference Ordentlich P, Lin A, Shen CP, Blaumueller C, Matsuno K, Artavanis-Tsakonas S et al (1998) Notch inhibition of E47 supports the existence of a novel signaling pathway. Mol Cell Biol 18(4):2230–2239PubMed Ordentlich P, Lin A, Shen CP, Blaumueller C, Matsuno K, Artavanis-Tsakonas S et al (1998) Notch inhibition of E47 supports the existence of a novel signaling pathway. Mol Cell Biol 18(4):2230–2239PubMed
19.
go back to reference Hodkinson PS, Elliott PA, Lad Y, McHugh BJ, MacKinnon AC, Haslett C et al (2007) Mammalian NOTCH-1 activates beta1 integrins via the small GTPase R-Ras. J Biol Chem 282(39):28991–29001PubMedCrossRef Hodkinson PS, Elliott PA, Lad Y, McHugh BJ, MacKinnon AC, Haslett C et al (2007) Mammalian NOTCH-1 activates beta1 integrins via the small GTPase R-Ras. J Biol Chem 282(39):28991–29001PubMedCrossRef
20.
go back to reference Okajima T, Irvine KD (2002) Regulation of notch signaling by O-linked fucose. Cell 111(6):893–904PubMedCrossRef Okajima T, Irvine KD (2002) Regulation of notch signaling by O-linked fucose. Cell 111(6):893–904PubMedCrossRef
21.
go back to reference Stanley P (2007) Regulation of notch signaling by glycosylation. Curr Opin Struct Biol 17(5):530–535PubMedCrossRef Stanley P (2007) Regulation of notch signaling by glycosylation. Curr Opin Struct Biol 17(5):530–535PubMedCrossRef
22.
go back to reference Shi S, Stanley P (2003) Protein O-fucosyltransferase 1 is an essential component of Notch signaling pathways. Proc Natl Acad Sci U S A 100(9):5234–5239PubMedCrossRef Shi S, Stanley P (2003) Protein O-fucosyltransferase 1 is an essential component of Notch signaling pathways. Proc Natl Acad Sci U S A 100(9):5234–5239PubMedCrossRef
23.
go back to reference Haltiwanger RS, Stanley P (2002) Modulation of receptor signaling by glycosylation: fringe is an O-fucose-beta1,3-N-acetylglucosaminyltransferase. Biochim Biophys Acta 1573(3):328–335PubMed Haltiwanger RS, Stanley P (2002) Modulation of receptor signaling by glycosylation: fringe is an O-fucose-beta1,3-N-acetylglucosaminyltransferase. Biochim Biophys Acta 1573(3):328–335PubMed
24.
go back to reference Yang LT, Nichols JT, Yao C, Manilay JO, Robey EA, Weinmaster G (2005) Fringe glycosyltransferases differentially modulate Notch1 proteolysis induced by Delta1 and Jagged1. Mol Biol Cell 16(2):927–942PubMedCrossRef Yang LT, Nichols JT, Yao C, Manilay JO, Robey EA, Weinmaster G (2005) Fringe glycosyltransferases differentially modulate Notch1 proteolysis induced by Delta1 and Jagged1. Mol Biol Cell 16(2):927–942PubMedCrossRef
25.
go back to reference Harrington LS, Sainson RC, Williams CK, Taylor JM, Shi W, Li JL et al (2007) Regulation of multiple angiogenic pathways by Dll4 and Notch in human umbilical vein endothelial cells. Microvasc Res Harrington LS, Sainson RC, Williams CK, Taylor JM, Shi W, Li JL et al (2007) Regulation of multiple angiogenic pathways by Dll4 and Notch in human umbilical vein endothelial cells. Microvasc Res
26.
go back to reference Llimargas M (1999) The Notch pathway helps to pattern the tips of the Drosophila tracheal branches by selecting cell fates. Development 126(11):2355–2364PubMed Llimargas M (1999) The Notch pathway helps to pattern the tips of the Drosophila tracheal branches by selecting cell fates. Development 126(11):2355–2364PubMed
27.
go back to reference Wan S, Cato AM, Skaer H (2000) Multiple signalling pathways establish cell fate and cell number in Drosophila malpighian tubules. Dev Biol 217(1):153–165PubMedCrossRef Wan S, Cato AM, Skaer H (2000) Multiple signalling pathways establish cell fate and cell number in Drosophila malpighian tubules. Dev Biol 217(1):153–165PubMedCrossRef
28.
go back to reference Sainson RC, Aoto J, Nakatsu MN, Holderfield M, Conn E, Koller E et al (2005) Cell-autonomous notch signaling regulates endothelial cell branching and proliferation during vascular tubulogenesis. Faseb J 19(8):1027–1029PubMed Sainson RC, Aoto J, Nakatsu MN, Holderfield M, Conn E, Koller E et al (2005) Cell-autonomous notch signaling regulates endothelial cell branching and proliferation during vascular tubulogenesis. Faseb J 19(8):1027–1029PubMed
29.
go back to reference Hofmann JJ, Luisa Iruela-Arispe M (2006) Notch expression patterns in the retina: an eye on receptor-ligand distribution during angiogenesis. Gene Expr Patterns Hofmann JJ, Luisa Iruela-Arispe M (2006) Notch expression patterns in the retina: an eye on receptor-ligand distribution during angiogenesis. Gene Expr Patterns
30.
go back to reference Karsan A (2005) The role of notch in modeling and maintaining the vasculature. Can J Physiol Pharmacol 83(1):14–23PubMedCrossRef Karsan A (2005) The role of notch in modeling and maintaining the vasculature. Can J Physiol Pharmacol 83(1):14–23PubMedCrossRef
31.
go back to reference Lovschall H, Mitsiadis TA, Poulsen K, Jensen KH, Kjeldsen AL (2007) Coexpression of Notch3 and Rgs5 in the pericyte-vascular smooth muscle cell axis in response to pulp injury. Int J Dev Biol 51(8):715–721PubMedCrossRef Lovschall H, Mitsiadis TA, Poulsen K, Jensen KH, Kjeldsen AL (2007) Coexpression of Notch3 and Rgs5 in the pericyte-vascular smooth muscle cell axis in response to pulp injury. Int J Dev Biol 51(8):715–721PubMedCrossRef
32.
go back to reference Mailhos C, Modlich U, Lewis J, Harris A, Bicknell R, Ish-Horowicz D (2001) Delta4, an endothelial specific notch ligand expressed at sites of physiological and tumor angiogenesis. Differentiation 69(2–3):135–144PubMedCrossRef Mailhos C, Modlich U, Lewis J, Harris A, Bicknell R, Ish-Horowicz D (2001) Delta4, an endothelial specific notch ligand expressed at sites of physiological and tumor angiogenesis. Differentiation 69(2–3):135–144PubMedCrossRef
33.
go back to reference Shutter JR, Scully S, Fan W, Richards WG, Kitajewski J, Deblandre GA et al (2000) Dll4, a novel Notch ligand expressed in arterial endothelium. Genes Dev 14(11):1313–1318PubMed Shutter JR, Scully S, Fan W, Richards WG, Kitajewski J, Deblandre GA et al (2000) Dll4, a novel Notch ligand expressed in arterial endothelium. Genes Dev 14(11):1313–1318PubMed
34.
go back to reference Uyttendaele H, Marazzi G, Wu G, Yan Q, Sassoon D, Kitajewski J (1996) Notch4/int-3, a mammary proto-oncogene, is an endothelial cell-specific mammalian Notch gene. Development 122(7):2251–2259PubMed Uyttendaele H, Marazzi G, Wu G, Yan Q, Sassoon D, Kitajewski J (1996) Notch4/int-3, a mammary proto-oncogene, is an endothelial cell-specific mammalian Notch gene. Development 122(7):2251–2259PubMed
35.
go back to reference Yoneya T, Tahara T, Nagao K, Yamada Y, Yamamoto T, Osawa M et al (2001) Molecular cloning of delta-4, a new mouse and human Notch ligand. J Biochem (Tokyo) 129(1):27–34 Yoneya T, Tahara T, Nagao K, Yamada Y, Yamamoto T, Osawa M et al (2001) Molecular cloning of delta-4, a new mouse and human Notch ligand. J Biochem (Tokyo) 129(1):27–34
36.
go back to reference Krebs LT, Xue Y, Norton CR, Shutter JR, Maguire M, Sundberg JP et al (2000) Notch signaling is essential for vascular morphogenesis in mice. Genes Dev 14(11):1343–1352PubMed Krebs LT, Xue Y, Norton CR, Shutter JR, Maguire M, Sundberg JP et al (2000) Notch signaling is essential for vascular morphogenesis in mice. Genes Dev 14(11):1343–1352PubMed
37.
go back to reference Limbourg FP, Takeshita K, Radtke F, Bronson RT, Chin MT, Liao JK (2005) Essential role of endothelial Notch1 in angiogenesis. Circulation 111(14):1826–1832PubMedCrossRef Limbourg FP, Takeshita K, Radtke F, Bronson RT, Chin MT, Liao JK (2005) Essential role of endothelial Notch1 in angiogenesis. Circulation 111(14):1826–1832PubMedCrossRef
38.
go back to reference Uyttendaele H, Ho J, Rossant J, Kitajewski J (2001) Vascular patterning defects associated with expression of activated Notch4 in embryonic endothelium. Proc Natl Acad Sci U S A 98(10):5643–5648PubMedCrossRef Uyttendaele H, Ho J, Rossant J, Kitajewski J (2001) Vascular patterning defects associated with expression of activated Notch4 in embryonic endothelium. Proc Natl Acad Sci U S A 98(10):5643–5648PubMedCrossRef
39.
go back to reference Hrabe de Angelis M, McIntyre J, II, Gossler A (1997) Maintenance of somite borders in mice requires the Delta homologue DII1. Nature 386(6626):717–721 Hrabe de Angelis M, McIntyre J, II, Gossler A (1997) Maintenance of somite borders in mice requires the Delta homologue DII1. Nature 386(6626):717–721
40.
go back to reference Xue Y, Gao X, Lindsell CE, Norton CR, Chang B, Hicks C et al (1999) Embryonic lethality and vascular defects in mice lacking the Notch ligand Jagged1. Hum Mol Genet 8(5):723–730PubMedCrossRef Xue Y, Gao X, Lindsell CE, Norton CR, Chang B, Hicks C et al (1999) Embryonic lethality and vascular defects in mice lacking the Notch ligand Jagged1. Hum Mol Genet 8(5):723–730PubMedCrossRef
41.
go back to reference Duarte A, Hirashima M, Benedito R, Trindade A, Diniz P, Bekman E et al (2004) Dosage-sensitive requirement for mouse Dll4 in artery development. Genes Dev 18(20):2474–2478PubMedCrossRef Duarte A, Hirashima M, Benedito R, Trindade A, Diniz P, Bekman E et al (2004) Dosage-sensitive requirement for mouse Dll4 in artery development. Genes Dev 18(20):2474–2478PubMedCrossRef
42.
go back to reference Gale NW, Dominguez MG, Noguera I, Pan L, Hughes V, Valenzuela DM et al (2004) Haploinsufficiency of delta-like 4 ligand results in embryonic lethality due to major defects in arterial and vascular development. Proc Natl Acad Sci U S A 101(45):15949–15954PubMedCrossRef Gale NW, Dominguez MG, Noguera I, Pan L, Hughes V, Valenzuela DM et al (2004) Haploinsufficiency of delta-like 4 ligand results in embryonic lethality due to major defects in arterial and vascular development. Proc Natl Acad Sci U S A 101(45):15949–15954PubMedCrossRef
43.
go back to reference Krebs LT, Shutter JR, Tanigaki K, Honjo T, Stark KL, Gridley T (2004) Haploinsufficient lethality and formation of arteriovenous malformations in Notch pathway mutants. Genes Dev Krebs LT, Shutter JR, Tanigaki K, Honjo T, Stark KL, Gridley T (2004) Haploinsufficient lethality and formation of arteriovenous malformations in Notch pathway mutants. Genes Dev
44.
go back to reference Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M et al (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380(6573):435–439PubMedCrossRef Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M et al (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380(6573):435–439PubMedCrossRef
45.
go back to reference Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O’Shea KS et al (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380(6573):439–442PubMedCrossRef Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O’Shea KS et al (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380(6573):439–442PubMedCrossRef
46.
go back to reference Oka C, Nakano T, Wakeham A, de la Pompa JL, Mori C, Sakai T et al (1995) Disruption of the mouse RBP-J kappa gene results in early embryonic death. Development 121(10):3291–3301PubMed Oka C, Nakano T, Wakeham A, de la Pompa JL, Mori C, Sakai T et al (1995) Disruption of the mouse RBP-J kappa gene results in early embryonic death. Development 121(10):3291–3301PubMed
47.
go back to reference Fischer A, Schumacher N, Maier M, Sendtner M, Gessler M (2004) The Notch target genes Hey1 and Hey2 are required for embryonic vascular development. Genes Dev 18(8):901–911PubMedCrossRef Fischer A, Schumacher N, Maier M, Sendtner M, Gessler M (2004) The Notch target genes Hey1 and Hey2 are required for embryonic vascular development. Genes Dev 18(8):901–911PubMedCrossRef
48.
go back to reference Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L (2006) VEGF receptor signalling—in control of vascular function. Nat Rev Mol Cell Biol 7(5):359–371PubMedCrossRef Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L (2006) VEGF receptor signalling—in control of vascular function. Nat Rev Mol Cell Biol 7(5):359–371PubMedCrossRef
49.
go back to reference Liu ZJ, Shirakawa T, Li Y, Soma A, Oka M, Dotto GP et al (2003) Regulation of Notch1 and Dll4 by vascular endothelial growth factor in arterial endothelial cells: implications for modulating arteriogenesis and angiogenesis. Mol Cell Biol 23(1):14–25PubMedCrossRef Liu ZJ, Shirakawa T, Li Y, Soma A, Oka M, Dotto GP et al (2003) Regulation of Notch1 and Dll4 by vascular endothelial growth factor in arterial endothelial cells: implications for modulating arteriogenesis and angiogenesis. Mol Cell Biol 23(1):14–25PubMedCrossRef
50.
go back to reference Patel NS, Li JL, Generali D, Poulsom R, Cranston DW, Harris AL (2005) Up-regulation of Delta-like 4 ligand in human tumor vasculature and the role of basal expression in endothelial cell function. Cancer Res 65(19):8690–8697PubMedCrossRef Patel NS, Li JL, Generali D, Poulsom R, Cranston DW, Harris AL (2005) Up-regulation of Delta-like 4 ligand in human tumor vasculature and the role of basal expression in endothelial cell function. Cancer Res 65(19):8690–8697PubMedCrossRef
51.
go back to reference Williams CK, Li JL, Murga M, Harris AL, Tosato G (2006) Up-regulation of the Notch ligand Delta-like 4 inhibits VEGF-induced endothelial cell function. Blood 107(3):931–939PubMedCrossRef Williams CK, Li JL, Murga M, Harris AL, Tosato G (2006) Up-regulation of the Notch ligand Delta-like 4 inhibits VEGF-induced endothelial cell function. Blood 107(3):931–939PubMedCrossRef
52.
go back to reference Holderfield MT, Henderson Anderson AM, Kokubo H, Chin MT, Johnson RL, Hughes CC (2006) HESR1/CHF2 suppresses VEGFR2 transcription independent of binding to E-boxes. Biochem Biophys Res Commun Holderfield MT, Henderson Anderson AM, Kokubo H, Chin MT, Johnson RL, Hughes CC (2006) HESR1/CHF2 suppresses VEGFR2 transcription independent of binding to E-boxes. Biochem Biophys Res Commun
53.
go back to reference Taylor KL, Henderson AM, Hughes CC (2002) Notch activation during endothelial cell network formation in vitro targets the basic HLH transcription factor HESR-1 and downregulates VEGFR-2/KDR expression. Microvasc Res 64(3):372–383PubMedCrossRef Taylor KL, Henderson AM, Hughes CC (2002) Notch activation during endothelial cell network formation in vitro targets the basic HLH transcription factor HESR-1 and downregulates VEGFR-2/KDR expression. Microvasc Res 64(3):372–383PubMedCrossRef
54.
go back to reference Liu ZJ, Xiao M, Balint K, Soma A, Pinnix CC, Capobianco AJ et al (2006) Inhibition of endothelial cell proliferation by Notch1 signaling is mediated by repressing MAPK and PI3K/Akt pathways and requires MAML1. Faseb J 20(7):1009–1011PubMedCrossRef Liu ZJ, Xiao M, Balint K, Soma A, Pinnix CC, Capobianco AJ et al (2006) Inhibition of endothelial cell proliferation by Notch1 signaling is mediated by repressing MAPK and PI3K/Akt pathways and requires MAML1. Faseb J 20(7):1009–1011PubMedCrossRef
55.
go back to reference Noseda M, McLean G, Niessen K, Chang L, Pollet I, Montpetit R et al (2004) Notch activation results in phenotypic and functional changes consistent with endothelial-to-mesenchymal transformation. Circ Res Noseda M, McLean G, Niessen K, Chang L, Pollet I, Montpetit R et al (2004) Notch activation results in phenotypic and functional changes consistent with endothelial-to-mesenchymal transformation. Circ Res
56.
go back to reference Noseda M, Niessen K, McLean G, Chang L, Karsan A (2005) Notch-dependent cell cycle arrest is associated with downregulation of minichromosome maintenance proteins. Circ Res 97(2):102–104PubMedCrossRef Noseda M, Niessen K, McLean G, Chang L, Karsan A (2005) Notch-dependent cell cycle arrest is associated with downregulation of minichromosome maintenance proteins. Circ Res 97(2):102–104PubMedCrossRef
57.
go back to reference Shawber CJ, Funahashi Y, Francisco E, Vorontchikhina M, Kitamura Y, Stowell SA et al (2007) Notch alters VEGF responsiveness in human and murine endothelial cells by direct regulation of VEGFR-3 expression. J Clin Invest 117(11):3369–3382PubMedCrossRef Shawber CJ, Funahashi Y, Francisco E, Vorontchikhina M, Kitamura Y, Stowell SA et al (2007) Notch alters VEGF responsiveness in human and murine endothelial cells by direct regulation of VEGFR-3 expression. J Clin Invest 117(11):3369–3382PubMedCrossRef
58.
go back to reference MacKenzie F, Duriez P, Wong F, Noseda M, Karsan A (2003) Notch4 inhibits endothelial apoptosis via RBP-Jkappa-dependent and -independent pathways. J Biol Chem MacKenzie F, Duriez P, Wong F, Noseda M, Karsan A (2003) Notch4 inhibits endothelial apoptosis via RBP-Jkappa-dependent and -independent pathways. J Biol Chem
59.
go back to reference Gerhardt H, Betsholtz C (2005) How do endothelial cells orientate? Exs (94):3–15 Gerhardt H, Betsholtz C (2005) How do endothelial cells orientate? Exs (94):3–15
60.
go back to reference Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A et al (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161(6):1163–1177PubMedCrossRef Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A et al (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161(6):1163–1177PubMedCrossRef
61.
go back to reference Hellstrom M, Phng LK, Hofmann JJ, Wallgard E, Coultas L, Lindblom P et al (2007) Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature Hellstrom M, Phng LK, Hofmann JJ, Wallgard E, Coultas L, Lindblom P et al (2007) Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature
62.
go back to reference Lobov IB, Renard RA, Papadopoulos N, Gale NW, Thurston G, Yancopoulos GD et al (2007) Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proc Natl Acad Sci U S A 104(9):3219–3224PubMedCrossRef Lobov IB, Renard RA, Papadopoulos N, Gale NW, Thurston G, Yancopoulos GD et al (2007) Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proc Natl Acad Sci U S A 104(9):3219–3224PubMedCrossRef
63.
go back to reference Suchting S, Freitas C, le Noble F, Benedito R, Breant C, Duarte A et al (2007) The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc Natl Acad Sci U S A Suchting S, Freitas C, le Noble F, Benedito R, Breant C, Duarte A et al (2007) The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc Natl Acad Sci U S A
64.
go back to reference Leslie JD, Ariza-McNaughton L, Bermange AL, McAdow R, Johnson SL, Lewis J (2007) Endothelial signalling by the Notch ligand Delta-like 4 restricts angiogenesis. Development 134(5):839–844PubMedCrossRef Leslie JD, Ariza-McNaughton L, Bermange AL, McAdow R, Johnson SL, Lewis J (2007) Endothelial signalling by the Notch ligand Delta-like 4 restricts angiogenesis. Development 134(5):839–844PubMedCrossRef
65.
go back to reference Siekmann AF, Lawson ND (2007) Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries. Nature 445(7129):781–784PubMedCrossRef Siekmann AF, Lawson ND (2007) Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries. Nature 445(7129):781–784PubMedCrossRef
66.
go back to reference Roca C, Adams RH (2007) Regulation of vascular morphogenesis by Notch signaling. Genes Dev 21(20):2511–2524PubMedCrossRef Roca C, Adams RH (2007) Regulation of vascular morphogenesis by Notch signaling. Genes Dev 21(20):2511–2524PubMedCrossRef
67.
go back to reference Savagner P (2001) Leaving the neighborhood: molecular mechanisms involved during epithelial-mesenchymal transition. Bioessays 23(10):912–923PubMedCrossRef Savagner P (2001) Leaving the neighborhood: molecular mechanisms involved during epithelial-mesenchymal transition. Bioessays 23(10):912–923PubMedCrossRef
68.
go back to reference Endo Y, Osumi N, Wakamatsu Y (2002) Bimodal functions of Notch-mediated signaling are involved in neural crest formation during avian ectoderm development. Development 129(4):863–873PubMed Endo Y, Osumi N, Wakamatsu Y (2002) Bimodal functions of Notch-mediated signaling are involved in neural crest formation during avian ectoderm development. Development 129(4):863–873PubMed
69.
go back to reference Leong KG, Niessen K, Kulic I, Raouf A, Eaves C, Pollet I et al (2007) Jagged1-mediated Notch activation induces epithelial-to-mesenchymal transition through slug-induced repression of E-cadherin. J Exp Med 204(12):2935–2948PubMedCrossRef Leong KG, Niessen K, Kulic I, Raouf A, Eaves C, Pollet I et al (2007) Jagged1-mediated Notch activation induces epithelial-to-mesenchymal transition through slug-induced repression of E-cadherin. J Exp Med 204(12):2935–2948PubMedCrossRef
70.
go back to reference Zavadil J, Cermak L, Soto-Nieves N, Bottinger EP (2004) Integration of TGF-beta/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition. Embo J 23(5):1155–1165PubMedCrossRef Zavadil J, Cermak L, Soto-Nieves N, Bottinger EP (2004) Integration of TGF-beta/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition. Embo J 23(5):1155–1165PubMedCrossRef
71.
go back to reference Lawson ND, Scheer N, Pham VN, Kim CH, Chitnis AB, Campos-Ortega JA et al (2001) Notch signaling is required for arterial–venous differentiation during embryonic vascular development. Development 128(19):3675–3683PubMed Lawson ND, Scheer N, Pham VN, Kim CH, Chitnis AB, Campos-Ortega JA et al (2001) Notch signaling is required for arterial–venous differentiation during embryonic vascular development. Development 128(19):3675–3683PubMed
72.
go back to reference Zhong TP, Childs S, Leu JP, Fishman MC (2001) Gridlock signalling pathway fashions the first embryonic artery. Nature 414(6860):216–220PubMedCrossRef Zhong TP, Childs S, Leu JP, Fishman MC (2001) Gridlock signalling pathway fashions the first embryonic artery. Nature 414(6860):216–220PubMedCrossRef
73.
go back to reference Diez H, Fischer A, Winkler A, Hu CJ, Hatzopoulos AK, Breier G et al (2007) Hypoxia-mediated activation of Dll4-Notch-Hey2 signaling in endothelial progenitor cells and adoption of arterial cell fate. Exp Cell Res 313(1):1–9PubMedCrossRef Diez H, Fischer A, Winkler A, Hu CJ, Hatzopoulos AK, Breier G et al (2007) Hypoxia-mediated activation of Dll4-Notch-Hey2 signaling in endothelial progenitor cells and adoption of arterial cell fate. Exp Cell Res 313(1):1–9PubMedCrossRef
74.
go back to reference Iso T, Maeno T, Oike Y, Yamazaki M, Doi H, Arai M et al (2006) Dll4-selective Notch signaling induces ephrinB2 gene expression in endothelial cells. Biochem Biophys Res Commun Iso T, Maeno T, Oike Y, Yamazaki M, Doi H, Arai M et al (2006) Dll4-selective Notch signaling induces ephrinB2 gene expression in endothelial cells. Biochem Biophys Res Commun
75.
go back to reference You LR, Lin FJ, Lee CT, DeMayo FJ, Tsai MJ, Tsai SY (2005) Suppression of Notch signalling by the COUP-TFII transcription factor regulates vein identity. Nature 435(7038):98–104PubMedCrossRef You LR, Lin FJ, Lee CT, DeMayo FJ, Tsai MJ, Tsai SY (2005) Suppression of Notch signalling by the COUP-TFII transcription factor regulates vein identity. Nature 435(7038):98–104PubMedCrossRef
76.
go back to reference Carlson TR, Yan Y, Wu X, Lam MT, Tang GL, Beverly LJ et al (2005) Endothelial expression of constitutively active Notch4 elicits reversible arteriovenous malformations in adult mice. Proc Natl Acad Sci U S A 102(28):9884–9889PubMedCrossRef Carlson TR, Yan Y, Wu X, Lam MT, Tang GL, Beverly LJ et al (2005) Endothelial expression of constitutively active Notch4 elicits reversible arteriovenous malformations in adult mice. Proc Natl Acad Sci U S A 102(28):9884–9889PubMedCrossRef
77.
go back to reference Limbourg A, Ploom M, Elligsen D, Sorensen I, Ziegelhoeffer T, Gossler A et al (2007) Notch ligand Delta-like 1 is essential for postnatal arteriogenesis. Circ Res 100(3):363–371PubMedCrossRef Limbourg A, Ploom M, Elligsen D, Sorensen I, Ziegelhoeffer T, Gossler A et al (2007) Notch ligand Delta-like 1 is essential for postnatal arteriogenesis. Circ Res 100(3):363–371PubMedCrossRef
78.
go back to reference Takeshita K, Satoh M, Ii M, Silver M, Limbourg FP, Mukai Y et al (2007) Critical role of endothelial Notch1 signaling in postnatal angiogenesis. Circ Res 100(1):70–78PubMedCrossRef Takeshita K, Satoh M, Ii M, Silver M, Limbourg FP, Mukai Y et al (2007) Critical role of endothelial Notch1 signaling in postnatal angiogenesis. Circ Res 100(1):70–78PubMedCrossRef
80.
go back to reference von Tell D, Armulik A, Betsholtz C (2006) Pericytes and vascular stability. Exp Cell Res 312(5):623–629CrossRef von Tell D, Armulik A, Betsholtz C (2006) Pericytes and vascular stability. Exp Cell Res 312(5):623–629CrossRef
81.
go back to reference Peault B, Rudnicki M, Torrente Y, Cossu G, Tremblay JP, Partridge T et al (2007) Stem and progenitor cells in skeletal muscle development, maintenance, and therapy. Mol Ther 15(5):867–877PubMedCrossRef Peault B, Rudnicki M, Torrente Y, Cossu G, Tremblay JP, Partridge T et al (2007) Stem and progenitor cells in skeletal muscle development, maintenance, and therapy. Mol Ther 15(5):867–877PubMedCrossRef
82.
go back to reference Wang T, Baron M, Trump D (2007) An overview of Notch3 function in vascular smooth muscle cells. Prog Biophys Mol Biol Wang T, Baron M, Trump D (2007) An overview of Notch3 function in vascular smooth muscle cells. Prog Biophys Mol Biol
83.
go back to reference Louvi A, Arboleda-Velasquez JF, Artavanis-Tsakonas S (2006) CADASIL: a critical look at a Notch disease. Dev Neurosci 28(1–2):5–12PubMedCrossRef Louvi A, Arboleda-Velasquez JF, Artavanis-Tsakonas S (2006) CADASIL: a critical look at a Notch disease. Dev Neurosci 28(1–2):5–12PubMedCrossRef
84.
go back to reference Domenga V, Fardoux P, Lacombe P, Monet M, Maciazek J, Krebs LT et al (2004) Notch3 is required for arterial identity and maturation of vascular smooth muscle cells. Genes Dev 18(22):2730–2735PubMedCrossRef Domenga V, Fardoux P, Lacombe P, Monet M, Maciazek J, Krebs LT et al (2004) Notch3 is required for arterial identity and maturation of vascular smooth muscle cells. Genes Dev 18(22):2730–2735PubMedCrossRef
85.
go back to reference Li JL, Sainson RC, Shi W, Leek R, Harrington LS, Preusser M et al (2007) Delta-like 4 Notch ligand regulates tumor angiogenesis, improves tumor vascular function, and promotes tumor growth in vivo. Cancer Res 67(23):11244–11253PubMedCrossRef Li JL, Sainson RC, Shi W, Leek R, Harrington LS, Preusser M et al (2007) Delta-like 4 Notch ligand regulates tumor angiogenesis, improves tumor vascular function, and promotes tumor growth in vivo. Cancer Res 67(23):11244–11253PubMedCrossRef
86.
go back to reference Scehnet JS, Jiang W, Kumar SR, Krasnoperov V, Trindade A, Benedito R et al (2007) Inhibition of Dll4 mediated signaling induces proliferation of immature vessels and results in poor tissue perfusion. Blood Scehnet JS, Jiang W, Kumar SR, Krasnoperov V, Trindade A, Benedito R et al (2007) Inhibition of Dll4 mediated signaling induces proliferation of immature vessels and results in poor tissue perfusion. Blood
87.
go back to reference Hellstrom M, Gerhardt H, Kalen M, Li X, Eriksson U, Wolburg H et al (2001) Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J Cell Biol 153(3):543–553PubMedCrossRef Hellstrom M, Gerhardt H, Kalen M, Li X, Eriksson U, Wolburg H et al (2001) Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J Cell Biol 153(3):543–553PubMedCrossRef
88.
go back to reference Foo SS, Turner CJ, Adams S, Compagni A, Aubyn D, Kogata N et al (2006) Ephrin-B2 controls cell motility and adhesion during blood-vessel-wall assembly. Cell 124(1):161–173PubMedCrossRef Foo SS, Turner CJ, Adams S, Compagni A, Aubyn D, Kogata N et al (2006) Ephrin-B2 controls cell motility and adhesion during blood-vessel-wall assembly. Cell 124(1):161–173PubMedCrossRef
89.
go back to reference Kamath BM, Spinner NB, Emerick KM, Chudley AE, Booth C, Piccoli DA et al (2004) Vascular anomalies in Alagille syndrome: a significant cause of morbidity and mortality. Circulation 109(11):1354–1358PubMedCrossRef Kamath BM, Spinner NB, Emerick KM, Chudley AE, Booth C, Piccoli DA et al (2004) Vascular anomalies in Alagille syndrome: a significant cause of morbidity and mortality. Circulation 109(11):1354–1358PubMedCrossRef
90.
go back to reference Donovan J, Kordylewska A, Jan YN, Utset MF (2002) Tetralogy of fallot and other congenital heart defects in Hey2 mutant mice. Curr Biol 12(18):1605–1610PubMedCrossRef Donovan J, Kordylewska A, Jan YN, Utset MF (2002) Tetralogy of fallot and other congenital heart defects in Hey2 mutant mice. Curr Biol 12(18):1605–1610PubMedCrossRef
91.
go back to reference Borzychowski AM, Sargent IL, Redman CW (2006) Inflammation and pre-eclampsia. Semin Fetal Neonatal Med 11(5):309–316PubMedCrossRef Borzychowski AM, Sargent IL, Redman CW (2006) Inflammation and pre-eclampsia. Semin Fetal Neonatal Med 11(5):309–316PubMedCrossRef
92.
go back to reference Cobellis L, Mastrogiacomo A, Federico E, Schettino MT, De Falco M, Manente L et al (2007) Distribution of Notch protein members in normal and preeclampsia-complicated placentas. Cell Tissue Res 330(3):527–534PubMedCrossRef Cobellis L, Mastrogiacomo A, Federico E, Schettino MT, De Falco M, Manente L et al (2007) Distribution of Notch protein members in normal and preeclampsia-complicated placentas. Cell Tissue Res 330(3):527–534PubMedCrossRef
93.
go back to reference Radtke F, Raj K (2003) The role of Notch in tumorigenesis: oncogene or tumour suppressor? Nat Rev Cancer 3(10):756–767PubMedCrossRef Radtke F, Raj K (2003) The role of Notch in tumorigenesis: oncogene or tumour suppressor? Nat Rev Cancer 3(10):756–767PubMedCrossRef
94.
go back to reference Patel NS, Dobbie MS, Rochester M, Steers G, Poulsom R, Le Monnier K et al (2006) Up-regulation of endothelial delta-like 4 expression correlates with vessel maturation in bladder cancer. Clin Cancer Res 12(16):4836–4844PubMedCrossRef Patel NS, Dobbie MS, Rochester M, Steers G, Poulsom R, Le Monnier K et al (2006) Up-regulation of endothelial delta-like 4 expression correlates with vessel maturation in bladder cancer. Clin Cancer Res 12(16):4836–4844PubMedCrossRef
95.
go back to reference Noguera-Troise I, Daly C, Papadopoulos NJ, Coetzee S, Boland P, Gale NW et al (2006) Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature 444(7122):1032–1037PubMedCrossRef Noguera-Troise I, Daly C, Papadopoulos NJ, Coetzee S, Boland P, Gale NW et al (2006) Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature 444(7122):1032–1037PubMedCrossRef
96.
go back to reference Ozawa MG, Yao VJ, Chanthery YH, Troncoso P, Uemura A, Varner AS et al (2005) Angiogenesis with pericyte abnormalities in a transgenic model of prostate carcinoma. Cancer 104(10):2104–2115PubMedCrossRef Ozawa MG, Yao VJ, Chanthery YH, Troncoso P, Uemura A, Varner AS et al (2005) Angiogenesis with pericyte abnormalities in a transgenic model of prostate carcinoma. Cancer 104(10):2104–2115PubMedCrossRef
97.
go back to reference Morikawa S, Baluk P, Kaidoh T, Haskell A, Jain RK, McDonald DM (2002) Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol 160(3):985–1000PubMed Morikawa S, Baluk P, Kaidoh T, Haskell A, Jain RK, McDonald DM (2002) Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol 160(3):985–1000PubMed
98.
go back to reference Zeng Q, Li S, Chepeha DB, Giordano TJ, Li J, Zhang H et al (2005) Crosstalk between tumor and endothelial cells promotes tumor angiogenesis by MAPK activation of Notch signaling. Cancer Cell 8(1):13–23PubMedCrossRef Zeng Q, Li S, Chepeha DB, Giordano TJ, Li J, Zhang H et al (2005) Crosstalk between tumor and endothelial cells promotes tumor angiogenesis by MAPK activation of Notch signaling. Cancer Cell 8(1):13–23PubMedCrossRef
99.
go back to reference Shih Ie M, Wang TL (2007) Notch signaling, gamma-secretase inhibitors, and cancer therapy. Cancer Res 67(5):1879–1882PubMedCrossRef Shih Ie M, Wang TL (2007) Notch signaling, gamma-secretase inhibitors, and cancer therapy. Cancer Res 67(5):1879–1882PubMedCrossRef
100.
go back to reference Hallahan AR, Pritchard JI, Hansen S, Benson M, Stoeck J, Hatton BA et al (2004) The SmoA1 mouse model reveals that notch signaling is critical for the growth and survival of sonic hedgehog-induced medulloblastomas. Cancer Res 64(21):7794–7800PubMedCrossRef Hallahan AR, Pritchard JI, Hansen S, Benson M, Stoeck J, Hatton BA et al (2004) The SmoA1 mouse model reveals that notch signaling is critical for the growth and survival of sonic hedgehog-induced medulloblastomas. Cancer Res 64(21):7794–7800PubMedCrossRef
101.
go back to reference O’Neil J, Calvo J, McKenna K, Krishnamoorthy V, Aster JC, Bassing CH et al (2006) Activating Notch1 mutations in mouse models of T-ALL. Blood 107(2):781–785PubMedCrossRef O’Neil J, Calvo J, McKenna K, Krishnamoorthy V, Aster JC, Bassing CH et al (2006) Activating Notch1 mutations in mouse models of T-ALL. Blood 107(2):781–785PubMedCrossRef
102.
go back to reference van Es JH, van Gijn ME, Riccio O, van den Born M, Vooijs M, Begthel H et al (2005) Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature 435(7044):959–963PubMedCrossRef van Es JH, van Gijn ME, Riccio O, van den Born M, Vooijs M, Begthel H et al (2005) Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature 435(7044):959–963PubMedCrossRef
103.
go back to reference Ridgway J, Zhang G, Wu Y, Stawicki S, Liang WC, Chanthery Y et al (2006) Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature 444(7122):1083–1087PubMedCrossRef Ridgway J, Zhang G, Wu Y, Stawicki S, Liang WC, Chanthery Y et al (2006) Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature 444(7122):1083–1087PubMedCrossRef
104.
go back to reference Sainson RC, Harris AL (2007) Anti-Dll4 therapy: can we block tumour growth by increasing angiogenesis? Trends Mol Med 13(9):389–395PubMedCrossRef Sainson RC, Harris AL (2007) Anti-Dll4 therapy: can we block tumour growth by increasing angiogenesis? Trends Mol Med 13(9):389–395PubMedCrossRef
105.
go back to reference Lu C, Kamat AA, Lin YG, Merritt WM, Landen CN, Kim TJ et al (2007) Dual targeting of endothelial cells and pericytes in antivascular therapy for ovarian carcinoma. Clin Cancer Res 13(14):4209–4217PubMedCrossRef Lu C, Kamat AA, Lin YG, Merritt WM, Landen CN, Kim TJ et al (2007) Dual targeting of endothelial cells and pericytes in antivascular therapy for ovarian carcinoma. Clin Cancer Res 13(14):4209–4217PubMedCrossRef
106.
go back to reference Jain RK, Duda DG, Clark JW, Loeffler JS (2006) Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nat Clin Pract Oncol 3(1):24–40PubMedCrossRef Jain RK, Duda DG, Clark JW, Loeffler JS (2006) Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nat Clin Pract Oncol 3(1):24–40PubMedCrossRef
107.
go back to reference Fung E, Tang SM, Canner JP, Morishige K, Arboleda-Velasquez JF, Cardoso AA et al (2007) Delta-like 4 induces notch signaling in macrophages: implications for inflammation. Circulation 115(23):2948–2956PubMedCrossRef Fung E, Tang SM, Canner JP, Morishige K, Arboleda-Velasquez JF, Cardoso AA et al (2007) Delta-like 4 induces notch signaling in macrophages: implications for inflammation. Circulation 115(23):2948–2956PubMedCrossRef
108.
go back to reference Knowles HJ, Harris AL (2007) Macrophages and the hypoxic tumour microenvironment. Front Biosci 12:4298–4314PubMedCrossRef Knowles HJ, Harris AL (2007) Macrophages and the hypoxic tumour microenvironment. Front Biosci 12:4298–4314PubMedCrossRef
Metadata
Title
Regulation of angiogenesis by homotypic and heterotypic notch signalling in endothelial cells and pericytes: from basic research to potential therapies
Authors
Richard C. A. Sainson
Adrian L. Harris
Publication date
01-03-2008
Publisher
Springer Netherlands
Published in
Angiogenesis / Issue 1/2008
Print ISSN: 0969-6970
Electronic ISSN: 1573-7209
DOI
https://doi.org/10.1007/s10456-008-9098-0

Other articles of this Issue 1/2008

Angiogenesis 1/2008 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.