Skip to main content
Top
Published in: European Surgery 6/2016

Open Access 01-12-2016 | original article

Experimental nerve transfer model in the rat forelimb

Authors: K. D. Bergmeister, MD, M. Aman, O. Riedl, MD, K. Manzano-Szalai, PhD, M. E. Sporer, MD, S. Salminger, MD, O. C. Aszmann, MD, PhD

Published in: European Surgery | Issue 6/2016

Login to get access

Summary

Background

Nerve transfers are a powerful tool in extremity reconstruction, but the neurophysiological effects have not been adequately investigated. As 81 % of nerve injuries and most nerve transfers occur in the upper extremity with its own neurophysiological properties, the standard rat hindlimb model may not be optimal in this paradigm. Here we present an experimental rat forelimb model to investigate nerve transfers.

Methods

In ten male Sprague-Dawley rats, the ulnar nerve was transferred to the motor branch of long head of the biceps. Sham surgery was performed in five animals (exposure/closure). After 12 weeks of regeneration, muscle force and Bertelli test were performed and evaluated.

Results

The nerve transfer successfully reinnervated the long head of the biceps in all animals, as indicated by muscle force and behavioral outcome. No aberrant reinnervation occurred from the original motor source. Muscle force was 2,68 N ± 0.35 for the nerve transfer group and 2,85 N ± 0.39 for the sham group, which was not statically different (p = 0.436). The procedure led to minor functional deficits due to the loss of ulnar nerve function; this, however, could not be quantified with any of the presented measures.

Conclusion

The above-described rat model demonstrated a constant anatomy, suitable for nerve transfers that are accessible to standard neuromuscular analyses and behavioral testing. This model allows the study of both neurophysiologic properties and cognitive motor function after nerve transfers in the upper extremity.
Literature
1.
go back to reference Fox IK, Davidge KM, Novak CB, Hoben G, Kahn LC, Juknis N, et al. Use of peripheral nerve transfers in tetraplegia: evaluation of feasibility and morbidity. Hand (N Y). 2015;10(1):60–7.CrossRef Fox IK, Davidge KM, Novak CB, Hoben G, Kahn LC, Juknis N, et al. Use of peripheral nerve transfers in tetraplegia: evaluation of feasibility and morbidity. Hand (N Y). 2015;10(1):60–7.CrossRef
2.
go back to reference Aszmann OC, Roche AD, Salminger S, Paternostro-Sluga T, Herceg M, Sturma A, et al. Bionic reconstruction to restore hand function after brachial plexus injury: a case series of three patients. Lancet. 9983;2015(385):2183–9. Aszmann OC, Roche AD, Salminger S, Paternostro-Sluga T, Herceg M, Sturma A, et al. Bionic reconstruction to restore hand function after brachial plexus injury: a case series of three patients. Lancet. 9983;2015(385):2183–9.
3.
go back to reference Souza JM, Cheesborough JE, Ko JH, Cho MS, Kuiken TA, Dumanian GA. Targeted muscle reinnervation: a novel approach to postamputation neuroma pain. Clin Orthop Relat Res. 2014;472(10):2984–90.CrossRefPubMedPubMedCentral Souza JM, Cheesborough JE, Ko JH, Cho MS, Kuiken TA, Dumanian GA. Targeted muscle reinnervation: a novel approach to postamputation neuroma pain. Clin Orthop Relat Res. 2014;472(10):2984–90.CrossRefPubMedPubMedCentral
4.
go back to reference Moore AM, Franco M, Tung TH. Motor and sensory nerve transfers in the forearm and hand. Plast Reconstr Surg. 2014;134(4):721–30.CrossRefPubMed Moore AM, Franco M, Tung TH. Motor and sensory nerve transfers in the forearm and hand. Plast Reconstr Surg. 2014;134(4):721–30.CrossRefPubMed
5.
go back to reference Stockinger T, Aszmann OC, Frey M. Clinical application of pectoral nerve transfers in the treatment of traumatic brachial plexus injuries. J Hand Surg [Am]. 2008;33(7):1100–7.CrossRef Stockinger T, Aszmann OC, Frey M. Clinical application of pectoral nerve transfers in the treatment of traumatic brachial plexus injuries. J Hand Surg [Am]. 2008;33(7):1100–7.CrossRef
6.
go back to reference Miller LA, Stubblefield KA, Lipschutz RD, Lock BA, Kuiken TA. Improved myoelectric prosthesis control using targeted reinnervation surgery: a case series. IEEE transactions on neural systems and rehabilitation engineering: a publication of the IEEE Engineering in Medicine and Biology. Society. 2008;16(1):46–50. Miller LA, Stubblefield KA, Lipschutz RD, Lock BA, Kuiken TA. Improved myoelectric prosthesis control using targeted reinnervation surgery: a case series. IEEE transactions on neural systems and rehabilitation engineering: a publication of the IEEE Engineering in Medicine and Biology. Society. 2008;16(1):46–50.
7.
go back to reference Kuiken TA, Dumanian GA, Lipschutz RD, Miller LA, Stubblefield KA. The use of targeted muscle reinnervation for improved myoelectric prosthesis control in a bilateral shoulder disarticulation amputee. Prosthet Orthot Int. 2004;28(3):245–53.PubMed Kuiken TA, Dumanian GA, Lipschutz RD, Miller LA, Stubblefield KA. The use of targeted muscle reinnervation for improved myoelectric prosthesis control in a bilateral shoulder disarticulation amputee. Prosthet Orthot Int. 2004;28(3):245–53.PubMed
8.
go back to reference Kuiken T, Miller L, Lipschutz R, Stubblefield K, Dumanian G. Prosthetic command signals following targeted hyper-reinnervation nerve transfer surgery. Conf Proc IEEE Eng Med Biol Soc. 2005;7:7652–5.PubMed Kuiken T, Miller L, Lipschutz R, Stubblefield K, Dumanian G. Prosthetic command signals following targeted hyper-reinnervation nerve transfer surgery. Conf Proc IEEE Eng Med Biol Soc. 2005;7:7652–5.PubMed
9.
go back to reference Aszmann OC, Dietl H, Frey M. [Selective nerve transfers to improve the control of myoelectrical arm prostheses]. Handchir Mikrochir Plast Chir. 2008;40(1):60–5.CrossRefPubMed Aszmann OC, Dietl H, Frey M. [Selective nerve transfers to improve the control of myoelectrical arm prostheses]. Handchir Mikrochir Plast Chir. 2008;40(1):60–5.CrossRefPubMed
10.
go back to reference Dumanian GA, Ko JH, O’Shaughnessy KD, Kim PS, Wilson CJ, Kuiken TA. Targeted reinnervation for transhumeral amputees: current surgical technique and update on results. Plast Reconstr Surg. 2009;124(3):863–9.CrossRefPubMed Dumanian GA, Ko JH, O’Shaughnessy KD, Kim PS, Wilson CJ, Kuiken TA. Targeted reinnervation for transhumeral amputees: current surgical technique and update on results. Plast Reconstr Surg. 2009;124(3):863–9.CrossRefPubMed
11.
go back to reference Kung TA, Bueno RA, Alkhalefah GK, Langhals NB, Urbanchek MG, Cederna PS. Innovations in prosthetic interfaces for the upper extremity. Plast Reconstr Surg. 2013;132(6):1515–23.CrossRefPubMed Kung TA, Bueno RA, Alkhalefah GK, Langhals NB, Urbanchek MG, Cederna PS. Innovations in prosthetic interfaces for the upper extremity. Plast Reconstr Surg. 2013;132(6):1515–23.CrossRefPubMed
12.
go back to reference Tos P, Ronchi G, Papalia I, Sallen V, Legagneux J, Geuna S, et al. Chapter 4: methods and protocols in peripheral nerve regeneration experimental research: part I-experimental models. Int Rev Neurobiol. 2009;87:47–79.CrossRefPubMed Tos P, Ronchi G, Papalia I, Sallen V, Legagneux J, Geuna S, et al. Chapter 4: methods and protocols in peripheral nerve regeneration experimental research: part I-experimental models. Int Rev Neurobiol. 2009;87:47–79.CrossRefPubMed
13.
go back to reference Wood MD, Kemp SW, Weber C, Borschel GH, Gordon T. Outcome measures of peripheral nerve regeneration. Ann Anat. 2011;193(4):321–33.CrossRefPubMed Wood MD, Kemp SW, Weber C, Borschel GH, Gordon T. Outcome measures of peripheral nerve regeneration. Ann Anat. 2011;193(4):321–33.CrossRefPubMed
15.
go back to reference Scholz T, Krichevsky A, Sumarto A, Jaffurs D, Wirth GA, Paydar K, et al. Peripheral nerve injuries: an international survey of current treatments and future perspectives. J Reconstr Microsurg. 2009;25(06):339–44.CrossRefPubMed Scholz T, Krichevsky A, Sumarto A, Jaffurs D, Wirth GA, Paydar K, et al. Peripheral nerve injuries: an international survey of current treatments and future perspectives. J Reconstr Microsurg. 2009;25(06):339–44.CrossRefPubMed
16.
go back to reference Schreiber JJ, Byun DJ, Khair MM, Rosenblatt L, Lee SK, Wolfe SW. Optimal axon counts for brachial plexus nerve transfers to restore elbow flexion. Plast Reconstr Surg. 2015;135(1):135e-41e.CrossRefPubMed Schreiber JJ, Byun DJ, Khair MM, Rosenblatt L, Lee SK, Wolfe SW. Optimal axon counts for brachial plexus nerve transfers to restore elbow flexion. Plast Reconstr Surg. 2015;135(1):135e-41e.CrossRefPubMed
17.
go back to reference Rodriguez A, Chuang DC, Chen KT, Chen RF, Lyu RK, Ko YS. Comparative study of single-, double-, and triple-nerve transfer to a common target: experimental study of rat brachial plexus. Plast Reconstr Surg. 2011;127(3):1155–62.CrossRefPubMed Rodriguez A, Chuang DC, Chen KT, Chen RF, Lyu RK, Ko YS. Comparative study of single-, double-, and triple-nerve transfer to a common target: experimental study of rat brachial plexus. Plast Reconstr Surg. 2011;127(3):1155–62.CrossRefPubMed
18.
go back to reference Aszmann OC, Rab M, Kamolz L, Frey M. The anatomy of the pectoral nerves and their significance in brachial plexus reconstruction. J Hand Surg [Am]. 2000;25(5):942–7.CrossRef Aszmann OC, Rab M, Kamolz L, Frey M. The anatomy of the pectoral nerves and their significance in brachial plexus reconstruction. J Hand Surg [Am]. 2000;25(5):942–7.CrossRef
20.
go back to reference Bertelli JA, Mira JC. Behavioral evaluating methods in the objective clinical assessment of motor function after experimental brachial plexus reconstruction in the rat. J Neurosci Methods. 1993;46(3):203–8.CrossRefPubMed Bertelli JA, Mira JC. Behavioral evaluating methods in the objective clinical assessment of motor function after experimental brachial plexus reconstruction in the rat. J Neurosci Methods. 1993;46(3):203–8.CrossRefPubMed
21.
go back to reference Kuiken TA, Li G, Lock BA, Lipschutz RD, Miller LA, Stubblefield KA, et al. Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms. JAMA. 2009;301(6):619–28.CrossRefPubMedPubMedCentral Kuiken TA, Li G, Lock BA, Lipschutz RD, Miller LA, Stubblefield KA, et al. Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms. JAMA. 2009;301(6):619–28.CrossRefPubMedPubMedCentral
22.
go back to reference Teboul F, Kakkar R, Ameur N, Beaulieu JY, Oberlin C. Transfer of fascicles from the ulnar nerve to the nerve to the biceps in the treatment of upper brachial plexus palsy. J Bone Joint Surg Am. 2004;86-a(7):1485–90.CrossRefPubMed Teboul F, Kakkar R, Ameur N, Beaulieu JY, Oberlin C. Transfer of fascicles from the ulnar nerve to the nerve to the biceps in the treatment of upper brachial plexus palsy. J Bone Joint Surg Am. 2004;86-a(7):1485–90.CrossRefPubMed
23.
24.
go back to reference Oberlin C, Ameur NE, Teboul F, Beaulieu JY, Vacher C. Restoration of elbow flexion in brachial plexus injury by transfer of ulnar nerve fascicles to the nerve to the biceps muscle. Tech Hand Up Extrem Surg. 2002;6(2):86–90.CrossRefPubMed Oberlin C, Ameur NE, Teboul F, Beaulieu JY, Vacher C. Restoration of elbow flexion in brachial plexus injury by transfer of ulnar nerve fascicles to the nerve to the biceps muscle. Tech Hand Up Extrem Surg. 2002;6(2):86–90.CrossRefPubMed
25.
go back to reference Tosolini AP, Morris R. Spatial characterization of the motor neuron columns supplying the rat forelimb. Neuroscience. 2012;200:19–30.CrossRefPubMed Tosolini AP, Morris R. Spatial characterization of the motor neuron columns supplying the rat forelimb. Neuroscience. 2012;200:19–30.CrossRefPubMed
26.
go back to reference Whishaw IQ, Pellis SM, Gorny BP. Skilled reaching in rats and humans: evidence for parallel development or homology. Behav Brain Res. 1992;47(1):59–70.CrossRefPubMed Whishaw IQ, Pellis SM, Gorny BP. Skilled reaching in rats and humans: evidence for parallel development or homology. Behav Brain Res. 1992;47(1):59–70.CrossRefPubMed
27.
go back to reference Papalia I, Tos P, D’Alcontres FS, Battiston B, Geuna S. On the use of the grasping test in the rat median nerve model: a re-appraisal of its efficacy for quantitative assessment of motor function recovery. J Neurosci Methods. 2003;127(1):43–7.CrossRefPubMed Papalia I, Tos P, D’Alcontres FS, Battiston B, Geuna S. On the use of the grasping test in the rat median nerve model: a re-appraisal of its efficacy for quantitative assessment of motor function recovery. J Neurosci Methods. 2003;127(1):43–7.CrossRefPubMed
28.
go back to reference Bertelli JA, Taleb M, Saadi A, Mira JC, Pecot-Dechavassine M. The rat brachial plexus and its terminal branches: an experimental model for the study of peripheral nerve regeneration. Microsurgery. 1995;16(2):77–85.CrossRefPubMed Bertelli JA, Taleb M, Saadi A, Mira JC, Pecot-Dechavassine M. The rat brachial plexus and its terminal branches: an experimental model for the study of peripheral nerve regeneration. Microsurgery. 1995;16(2):77–85.CrossRefPubMed
29.
go back to reference Goheen-Robillard B, Myckatyn TM, Mackinnon SE, Hunter DA. End-to-side neurorrhaphy and lateral axonal sprouting in a long graft rat model. Laryngoscope. 2002;112(5):899–905.CrossRefPubMed Goheen-Robillard B, Myckatyn TM, Mackinnon SE, Hunter DA. End-to-side neurorrhaphy and lateral axonal sprouting in a long graft rat model. Laryngoscope. 2002;112(5):899–905.CrossRefPubMed
30.
go back to reference Dubovy P, Raska O, Klusakova I, Stejskal L, Celakovsky P, Haninec P. Ciliary neurotrophic factor promotes motor reinnervation of the musculocutaneous nerve in an experimental model of end-to-side neurorrhaphy. BMC Neurosci. 2011;12:58.CrossRefPubMedPubMedCentral Dubovy P, Raska O, Klusakova I, Stejskal L, Celakovsky P, Haninec P. Ciliary neurotrophic factor promotes motor reinnervation of the musculocutaneous nerve in an experimental model of end-to-side neurorrhaphy. BMC Neurosci. 2011;12:58.CrossRefPubMedPubMedCentral
31.
go back to reference Haninec P, Kaiser R, Bobek V, Dubovy P. Enhancement of musculocutaneous nerve reinnervation after vascular endothelial growth factor (VEGF) gene therapy. BMC Neurosci. 2012;13:57.CrossRefPubMedPubMedCentral Haninec P, Kaiser R, Bobek V, Dubovy P. Enhancement of musculocutaneous nerve reinnervation after vascular endothelial growth factor (VEGF) gene therapy. BMC Neurosci. 2012;13:57.CrossRefPubMedPubMedCentral
32.
go back to reference Jackson CM. Anatomy of the rat. By Eunice Chace Greene. With Foreword by Henry H. Donaldson. Transactions of the American Philosophical Society, Philadelphia, New Series, Volume XXVII. 1935, 370 pp., 339 figures. Anat Rec. 1936;65(1):127–9.CrossRef Jackson CM. Anatomy of the rat. By Eunice Chace Greene. With Foreword by Henry H. Donaldson. Transactions of the American Philosophical Society, Philadelphia, New Series, Volume XXVII. 1935, 370 pp., 339 figures. Anat Rec. 1936;65(1):127–9.CrossRef
33.
go back to reference Papalia I, Tos P, Scevola A, Raimondo S, Geuna S. The ulnar test: a method for the quantitative functional assessment of posttraumatic ulnar nerve recovery in the rat. J Neurosci Methods. 2006;154(1–2):198–203.CrossRefPubMed Papalia I, Tos P, Scevola A, Raimondo S, Geuna S. The ulnar test: a method for the quantitative functional assessment of posttraumatic ulnar nerve recovery in the rat. J Neurosci Methods. 2006;154(1–2):198–203.CrossRefPubMed
Metadata
Title
Experimental nerve transfer model in the rat forelimb
Authors
K. D. Bergmeister, MD
M. Aman
O. Riedl, MD
K. Manzano-Szalai, PhD
M. E. Sporer, MD
S. Salminger, MD
O. C. Aszmann, MD, PhD
Publication date
01-12-2016
Publisher
Springer Vienna
Published in
European Surgery / Issue 6/2016
Print ISSN: 1682-8631
Electronic ISSN: 1682-4016
DOI
https://doi.org/10.1007/s10353-016-0386-4

Other articles of this Issue 6/2016

European Surgery 6/2016 Go to the issue