Skip to main content
Top
Published in: Magnetic Resonance Materials in Physics, Biology and Medicine 2/2019

01-04-2019 | Research Article

A framework for constraining image SNR loss due to MR raw data compression

Authors: Matthew C. Restivo, Adrienne E. Campbell-Washburn, Peter Kellman, Hui Xue, Rajiv Ramasawmy, Michael S. Hansen

Published in: Magnetic Resonance Materials in Physics, Biology and Medicine | Issue 2/2019

Login to get access

Abstract

Introduction

Computationally intensive image reconstruction algorithms can be used online during MRI exams by streaming data to remote high-performance computers. However, data acquisition rates often exceed the bandwidth of the available network resources creating a bottleneck. Data compression is, therefore, desired to ensure fast data transmission.

Methods

The added noise variance due to compression was determined through statistical analysis for two compression libraries (one custom and one generic) that were implemented in this framework. Limiting the compression error variance relative to the measured thermal noise allowed for image signal-to-noise ratio loss to be explicitly constrained.

Results

Achievable compression ratios are dependent on image SNR, user-defined SNR loss tolerance, and acquisition type. However, a 1% reduction in SNR yields approximately four to ninefold compression ratios across MRI acquisition strategies. For free-breathing cine data reconstructed in the cloud, the streaming bandwidth was reduced from 37 to 6.1 MB/s, alleviating the network transmission bottleneck.

Conclusion

Our framework enabled data compression for online reconstructions and allowed SNR loss to be constrained based on a user-defined SNR tolerance. This practical tool will enable real-time data streaming and greater than fourfold faster cloud upload times.
Literature
1.
go back to reference Yang AC, Kretzler M, Sudarski S, Gulani V, Seiberlich N (2016) Sparse reconstruction techniques in magnetic resonance imaging: methods, applications, and challenges to clinical adoption. Invest Radiol 51(6):349–364CrossRefPubMedPubMedCentral Yang AC, Kretzler M, Sudarski S, Gulani V, Seiberlich N (2016) Sparse reconstruction techniques in magnetic resonance imaging: methods, applications, and challenges to clinical adoption. Invest Radiol 51(6):349–364CrossRefPubMedPubMedCentral
2.
go back to reference Uecker M, Lai P, Murphy MJ, Virtue P, Elad M, Pauly JM, Vasanawala SS, Lustig M (2014) ESPIRiT—an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA. Magn Reson Med 71(3):990–1001CrossRefPubMedPubMedCentral Uecker M, Lai P, Murphy MJ, Virtue P, Elad M, Pauly JM, Vasanawala SS, Lustig M (2014) ESPIRiT—an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA. Magn Reson Med 71(3):990–1001CrossRefPubMedPubMedCentral
3.
go back to reference Hansen MS, Sorensen TS (2013) Gadgetron: an open source framework for medical image reconstruction. Magn Reson Med 69(6):1768–1776CrossRefPubMed Hansen MS, Sorensen TS (2013) Gadgetron: an open source framework for medical image reconstruction. Magn Reson Med 69(6):1768–1776CrossRefPubMed
4.
go back to reference Xue H, Inati S, Sorensen TS, Kellman P, Hansen MS (2015) Distributed MRI reconstruction using Gadgetron-based cloud computing. Magn Reson Med 73(3):1015–1025CrossRefPubMed Xue H, Inati S, Sorensen TS, Kellman P, Hansen MS (2015) Distributed MRI reconstruction using Gadgetron-based cloud computing. Magn Reson Med 73(3):1015–1025CrossRefPubMed
5.
go back to reference Lindstrom P (2014) Fixed-rate compressed floating-point arrays. IEEE Trans Vis Comput Gr 20(12):2674–2683CrossRef Lindstrom P (2014) Fixed-rate compressed floating-point arrays. IEEE Trans Vis Comput Gr 20(12):2674–2683CrossRef
6.
go back to reference Hübbe N, Wegener A, Kunkel JM, Ling Y, Ludwig T (2013) Evaluating lossy compression on climate data. In: Proceedings—supercomputing—28th international supercomputing conference, ISC 2013, Leipzig, Germany, pp 343–356 Hübbe N, Wegener A, Kunkel JM, Ling Y, Ludwig T (2013) Evaluating lossy compression on climate data. In: Proceedings—supercomputing—28th international supercomputing conference, ISC 2013, Leipzig, Germany, pp 343–356
7.
go back to reference Hansen MS, Kellman P (2015) Image reconstruction: an overview for clinicians. J Magn Reson Imaging 41(3):573–585CrossRefPubMed Hansen MS, Kellman P (2015) Image reconstruction: an overview for clinicians. J Magn Reson Imaging 41(3):573–585CrossRefPubMed
8.
go back to reference Pruessmann KP, Weiger M, Börnert P, Boesiger P (2001) Advances in sensitivity encoding with arbitrary k-space trajectories. Magn Reson Med 46(4):638–651CrossRefPubMed Pruessmann KP, Weiger M, Börnert P, Boesiger P (2001) Advances in sensitivity encoding with arbitrary k-space trajectories. Magn Reson Med 46(4):638–651CrossRefPubMed
10.
go back to reference Inati SJ, Naegele JD, Zwart NR, Roopchansingh V, Lizak MJ, Hansen DC, Atkinson D, Kellman P, Xue H, Campbell-Washburn AE, Sørensen TS (2017) ISMRM Raw data format: a proposed standard for MRI raw datasets. Magn Reson Med 77(1):411–421CrossRefPubMed Inati SJ, Naegele JD, Zwart NR, Roopchansingh V, Lizak MJ, Hansen DC, Atkinson D, Kellman P, Xue H, Campbell-Washburn AE, Sørensen TS (2017) ISMRM Raw data format: a proposed standard for MRI raw datasets. Magn Reson Med 77(1):411–421CrossRefPubMed
11.
12.
go back to reference Xue H, Kellman P, LaRocca G, Arai AE, Hansen MS (2013) High spatial and temporal resolution retrospective cine cardiovascular magnetic resonance from shortened free breathing real-time acquisitions. J Cardiovasc Magn Reson 15(1):102CrossRefPubMedPubMedCentral Xue H, Kellman P, LaRocca G, Arai AE, Hansen MS (2013) High spatial and temporal resolution retrospective cine cardiovascular magnetic resonance from shortened free breathing real-time acquisitions. J Cardiovasc Magn Reson 15(1):102CrossRefPubMedPubMedCentral
13.
go back to reference Cross R, Olivieri L, O’Brien K, Kellman P, Xue H, Hansen M (2016) Improved workflow for quantification of left ventricular volumes and mass using free-breathing motion corrected cine imaging. J Cardiovasc Magn Reson 18:10CrossRefPubMedPubMedCentral Cross R, Olivieri L, O’Brien K, Kellman P, Xue H, Hansen M (2016) Improved workflow for quantification of left ventricular volumes and mass using free-breathing motion corrected cine imaging. J Cardiovasc Magn Reson 18:10CrossRefPubMedPubMedCentral
14.
go back to reference Yilmaz P, Wallexan K, Aben J, Moelker A (2018) Evaluation of a semi-automatic right ventricle segmentation method on short-axis MR images. J Digit Imaging 31:670–679CrossRefPubMedPubMedCentral Yilmaz P, Wallexan K, Aben J, Moelker A (2018) Evaluation of a semi-automatic right ventricle segmentation method on short-axis MR images. J Digit Imaging 31:670–679CrossRefPubMedPubMedCentral
15.
16.
go back to reference Zhu B, Liu J, Cauley S, Rosen B, Rosen M (2018) Image reconstruction by domain-transform manifold learning. Nature 555:487–492CrossRefPubMed Zhu B, Liu J, Cauley S, Rosen B, Rosen M (2018) Image reconstruction by domain-transform manifold learning. Nature 555:487–492CrossRefPubMed
17.
go back to reference Wang G, Ye JC, Mueller K, Fessler J (2018) Image reconstruction is a new frontier of machine learning. IEEE Trans Med Imaging 37(6):1289–10296CrossRefPubMed Wang G, Ye JC, Mueller K, Fessler J (2018) Image reconstruction is a new frontier of machine learning. IEEE Trans Med Imaging 37(6):1289–10296CrossRefPubMed
18.
go back to reference Hammernik K, Klatzer T, Kobler E, Recht MP, Sodickson DK, Pock T, Knoll F (2018) Learning a variational network for reconstruction of accelerated MRI data. Magn Reson Med 79(6):3055–3071CrossRefPubMed Hammernik K, Klatzer T, Kobler E, Recht MP, Sodickson DK, Pock T, Knoll F (2018) Learning a variational network for reconstruction of accelerated MRI data. Magn Reson Med 79(6):3055–3071CrossRefPubMed
Metadata
Title
A framework for constraining image SNR loss due to MR raw data compression
Authors
Matthew C. Restivo
Adrienne E. Campbell-Washburn
Peter Kellman
Hui Xue
Rajiv Ramasawmy
Michael S. Hansen
Publication date
01-04-2019
Publisher
Springer International Publishing
Published in
Magnetic Resonance Materials in Physics, Biology and Medicine / Issue 2/2019
Print ISSN: 0968-5243
Electronic ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-018-0709-5

Other articles of this Issue 2/2019

Magnetic Resonance Materials in Physics, Biology and Medicine 2/2019 Go to the issue