Skip to main content
Top
Published in: Magnetic Resonance Materials in Physics, Biology and Medicine 5/2018

01-10-2018 | Research Article

Design of a sustainable prepolarizing magnetic resonance imaging system for infant hydrocephalus

Authors: Johnes Obungoloch, Joshua R. Harper, Steven Consevage, Igor M. Savukov, Thomas Neuberger, Srinivas Tadigadapa, Steven J. Schiff

Published in: Magnetic Resonance Materials in Physics, Biology and Medicine | Issue 5/2018

Login to get access

Abstract

Objectives

The need for affordable and appropriate medical technologies for developing countries continues to rise as challenges such as inadequate energy supply, limited technical expertise, and poor infrastructure persist. Low-field magnetic resonance imaging (LF MRI) is a technology that can be tailored to meet specific imaging needs within such countries. Its low power requirements and the possibility of operating in minimally shielded or unshielded environments make it especially attractive. Although the technology has been widely demonstrated over several decades, it is yet to be shown that it can be diagnostic and improve patient outcomes in clinical applications. We here demonstrate the robustness of prepolarizing MRI (PMRI) technology for assembly and deployment in developing countries for the specific application to infant hydrocephalus. Hydrocephalus treatment planning and management requires only modest spatial resolution, such that the brain can be distinguished from fluid—tissue contrast detail within the brain parenchyma is not essential.

Materials and Methods

We constructed an internally shielded PMRI system based on the Lee-Whiting coil system with a 22-cm diameter of spherical volume.

Results

In an unshielded room, projection phantom images were acquired at 113 kHz with in-plane resolution of 3 mm × 3 mm, by introducing gradient fields of sufficient magnitude to dominate the 5000 ppm inhomogeneity of the readout field.

Discussion

The low cost, straightforward assembly, deployment potential, and maintenance requirements demonstrate the suitability of our PMRI system for developing countries. Further improvement in image spatial resolution and contrast of LF MRI will broaden its potential clinical utility beyond hydrocephalus.
Literature
1.
go back to reference Kahle KT, Kulkarni AV, Limbrick DD Jr, Warf BC (2016) Hydrocephalus in children. Lancet 387(10020):788–799CrossRefPubMed Kahle KT, Kulkarni AV, Limbrick DD Jr, Warf BC (2016) Hydrocephalus in children. Lancet 387(10020):788–799CrossRefPubMed
2.
go back to reference Warf BC (2005) Hydrocephalus in Uganda: the predominance of infectious origin and primary management with endoscopic third ventriculostomy. J Neurosurg 102(1 Suppl):1–15PubMed Warf BC (2005) Hydrocephalus in Uganda: the predominance of infectious origin and primary management with endoscopic third ventriculostomy. J Neurosurg 102(1 Suppl):1–15PubMed
3.
go back to reference Warf BC, Alkire BC, Bhai S, Hughes C, Schiff SJ, Vincent JR, Meara JG (2011) Costs and benefits of neurosurgical intervention for infant hydrocephalus in sub-Saharan Africa. J Neurosurg Pediatr 8(5):509–521CrossRefPubMed Warf BC, Alkire BC, Bhai S, Hughes C, Schiff SJ, Vincent JR, Meara JG (2011) Costs and benefits of neurosurgical intervention for infant hydrocephalus in sub-Saharan Africa. J Neurosurg Pediatr 8(5):509–521CrossRefPubMed
4.
go back to reference Kulkarni AV, Schiff SJ, Mbabazi-Kabachelor E, Mugamba J, Ssenyonga P, Donnelly R, Levenbach J, Monga V, Peterson M, MacDonald M, Cherukuri V, Warf BC (2017) Endoscopic treatment versus shunting for infant hydrocephalus in Uganda. N Engl J Med 377(25):2456–2464CrossRefPubMedPubMedCentral Kulkarni AV, Schiff SJ, Mbabazi-Kabachelor E, Mugamba J, Ssenyonga P, Donnelly R, Levenbach J, Monga V, Peterson M, MacDonald M, Cherukuri V, Warf BC (2017) Endoscopic treatment versus shunting for infant hydrocephalus in Uganda. N Engl J Med 377(25):2456–2464CrossRefPubMedPubMedCentral
5.
go back to reference Rooney WD, Johnson G, Li X, Cohen ER, Kim SG, Ugurbil K, Springer CS Jr (2007) Magnetic field and tissue dependencies of human brain longitudinal 1H2O relaxation in vivo. Magn Reson Med 57:308–318CrossRefPubMed Rooney WD, Johnson G, Li X, Cohen ER, Kim SG, Ugurbil K, Springer CS Jr (2007) Magnetic field and tissue dependencies of human brain longitudinal 1H2O relaxation in vivo. Magn Reson Med 57:308–318CrossRefPubMed
6.
go back to reference Klein H-M (2016) clinical low field strength magnetic resonance imaging: a practical guide to accessible MRI. Springer, New YorkCrossRef Klein H-M (2016) clinical low field strength magnetic resonance imaging: a practical guide to accessible MRI. Springer, New YorkCrossRef
7.
go back to reference Muhogora WE et al (2010) Paediatric CT examinations in 19 developing countries: frequency and radiation dose. Radiat Prot Dosim 140(1):49–58CrossRef Muhogora WE et al (2010) Paediatric CT examinations in 19 developing countries: frequency and radiation dose. Radiat Prot Dosim 140(1):49–58CrossRef
8.
go back to reference Brenner DJ, Hall EJ (2007) Computed tomography—an increasing source of radiation exposure. N Engl J Med 357(22):2277–2284CrossRefPubMed Brenner DJ, Hall EJ (2007) Computed tomography—an increasing source of radiation exposure. N Engl J Med 357(22):2277–2284CrossRefPubMed
9.
go back to reference Sepponen RE, Sipponen JT, Sivula A (1985) Low field (0.02 T) nuclear magnetic resonance imaging of the brain. J Comput Assist Tomogr 9(2):237–241CrossRefPubMed Sepponen RE, Sipponen JT, Sivula A (1985) Low field (0.02 T) nuclear magnetic resonance imaging of the brain. J Comput Assist Tomogr 9(2):237–241CrossRefPubMed
10.
go back to reference Nascimento GCD, Engelsberg M, Souza RED (1992) Digital NMR imaging system for ultralow magnetic fields. Meas Sci Technol 3(4):370–374CrossRef Nascimento GCD, Engelsberg M, Souza RED (1992) Digital NMR imaging system for ultralow magnetic fields. Meas Sci Technol 3(4):370–374CrossRef
11.
12.
go back to reference Matter NI, Scott GC, Grafendorfer T, Macovski A, Conolly SM (2006) Rapid polarizing field cycling in magnetic resonance imaging. IEEE Trans Med Imaging 25(1):84–93CrossRefPubMed Matter NI, Scott GC, Grafendorfer T, Macovski A, Conolly SM (2006) Rapid polarizing field cycling in magnetic resonance imaging. IEEE Trans Med Imaging 25(1):84–93CrossRefPubMed
14.
go back to reference Savukov MI, Karaulanov T (2013) Magnetic-resonance imaging of the human brain with an atomic magnetometer. Appl Phys Lett 103:1–4CrossRef Savukov MI, Karaulanov T (2013) Magnetic-resonance imaging of the human brain with an atomic magnetometer. Appl Phys Lett 103:1–4CrossRef
15.
go back to reference Lother S, Schiff SJ, Neuberger T, Jakob PM, Fidler F (2016) Design of a mobile, homogeneous, and efficient electromagnet with a large field of view for neonatal low-field MRI. Magn Reson Mater Phy 29:1–8CrossRef Lother S, Schiff SJ, Neuberger T, Jakob PM, Fidler F (2016) Design of a mobile, homogeneous, and efficient electromagnet with a large field of view for neonatal low-field MRI. Magn Reson Mater Phy 29:1–8CrossRef
16.
go back to reference Sarracanie M, LaPierre CD, Salameh N, Waddington DEJ, Witzel T, Rosen MS (2015) Low-cost high-performance MRI Sci Rep 5:15177PubMed Sarracanie M, LaPierre CD, Salameh N, Waddington DEJ, Witzel T, Rosen MS (2015) Low-cost high-performance MRI Sci Rep 5:15177PubMed
17.
go back to reference Halbach K (1980) Design of permanent multipole magnets with oriented rare earth cobalt material. Nucl Instrum Methods 169:1–10CrossRef Halbach K (1980) Design of permanent multipole magnets with oriented rare earth cobalt material. Nucl Instrum Methods 169:1–10CrossRef
18.
go back to reference Kimura T, Geya Y, Terada Y, Kose K, Haishi T, Gemma H, Sekozawa Y (2011) Development of a mobile magnetic resonance imaging system for outdoor tree measurements. Rev Sci Instrum 82(5):053704CrossRefPubMed Kimura T, Geya Y, Terada Y, Kose K, Haishi T, Gemma H, Sekozawa Y (2011) Development of a mobile magnetic resonance imaging system for outdoor tree measurements. Rev Sci Instrum 82(5):053704CrossRefPubMed
19.
go back to reference Kose K, Haishi T (2011) High resolution NMR imaging using a high field yokeless permanent magnet. Magn Reson Med Sci 10:159–167CrossRefPubMed Kose K, Haishi T (2011) High resolution NMR imaging using a high field yokeless permanent magnet. Magn Reson Med Sci 10:159–167CrossRefPubMed
20.
go back to reference Cooley CZ, Stockmann JP, Armstrong BD, Sarracanie M, Lev MH, Rosen MS, Wald LL (2015) Two-dimensional imaging in a lightweight portable MRI scanner without gradient coils. Magn Reson Med 73(2):872–883CrossRefPubMed Cooley CZ, Stockmann JP, Armstrong BD, Sarracanie M, Lev MH, Rosen MS, Wald LL (2015) Two-dimensional imaging in a lightweight portable MRI scanner without gradient coils. Magn Reson Med 73(2):872–883CrossRefPubMed
21.
go back to reference Blümler P, Casanova F (2016) Hardware developments: Halbach magnet arrays. In: Johns ML, Fridjonsson EO, Vogt SJ, Haber A, Price W (eds) Mobile NMR and MRI: developments and applications. The Royal Society of Chemistry, Cambridge, pp 133–157 Blümler P, Casanova F (2016) Hardware developments: Halbach magnet arrays. In: Johns ML, Fridjonsson EO, Vogt SJ, Haber A, Price W (eds) Mobile NMR and MRI: developments and applications. The Royal Society of Chemistry, Cambridge, pp 133–157
22.
go back to reference Morgan P, Conolly S, Scott G, Macovski A (1996) A readout magnet for prepolarized MRI. Magn Reson Med 36(4):527–536CrossRefPubMed Morgan P, Conolly S, Scott G, Macovski A (1996) A readout magnet for prepolarized MRI. Magn Reson Med 36(4):527–536CrossRefPubMed
23.
go back to reference Kirschvink JL (1992) Uniform magnetic-fields and double-wrapped coil systems—improved techniques for the design of bioelectromagnetic experiments. Bioelectromagnetics 13(5):401–411CrossRefPubMed Kirschvink JL (1992) Uniform magnetic-fields and double-wrapped coil systems—improved techniques for the design of bioelectromagnetic experiments. Bioelectromagnetics 13(5):401–411CrossRefPubMed
24.
go back to reference Merritt R, Purcell C, Stroink G (1983) Uniform magnetic field produced by three, four, and five square coils. Rev Sci Instrum 54(7):879–882CrossRef Merritt R, Purcell C, Stroink G (1983) Uniform magnetic field produced by three, four, and five square coils. Rev Sci Instrum 54(7):879–882CrossRef
25.
go back to reference Rubens SM (1945) Cube-surface coil for producing a uniform magnetic field. Rev Sci Instrum 16(9):243–245CrossRef Rubens SM (1945) Cube-surface coil for producing a uniform magnetic field. Rev Sci Instrum 16(9):243–245CrossRef
26.
go back to reference Gottardi G, Mesirca P, Agostini C, Remondin D, Bersani F (2003) A Four coil exposure system (tetracoil) producing a highly uniform magnetic field. Bioelectromagnetics 24(2):125–133CrossRefPubMed Gottardi G, Mesirca P, Agostini C, Remondin D, Bersani F (2003) A Four coil exposure system (tetracoil) producing a highly uniform magnetic field. Bioelectromagnetics 24(2):125–133CrossRefPubMed
28.
go back to reference Hidalgo TS (2010) Theory of gradient coil design methods for magnetic resonance imaging. Concepts Magn Reson Part A 36A(4):223–242CrossRef Hidalgo TS (2010) Theory of gradient coil design methods for magnetic resonance imaging. Concepts Magn Reson Part A 36A(4):223–242CrossRef
29.
go back to reference Golay MJE (1958) Field homogenizing coils for nuclear spin resonance instrumentation. Rev Sci Instrum 29(4):313–315CrossRef Golay MJE (1958) Field homogenizing coils for nuclear spin resonance instrumentation. Rev Sci Instrum 29(4):313–315CrossRef
30.
go back to reference Hoult DI (1978) The NMR receiver: a description and analysis of design. Prog Nucl Magn Reson Spectrosc 12(1):41–77CrossRef Hoult DI (1978) The NMR receiver: a description and analysis of design. Prog Nucl Magn Reson Spectrosc 12(1):41–77CrossRef
31.
go back to reference Henry OW (2009) Electromagnetic compatibility engineering. John Wiley & Sons, New York Henry OW (2009) Electromagnetic compatibility engineering. John Wiley & Sons, New York
33.
go back to reference Kedzia P, Czechowski T, Baranowski M, Jurga J, Szcześniak E (2013) Analysis of uniformity of magnetic field generated by the two-pair coil system. Appl Magn Reson 44(5):605–618CrossRefPubMedPubMedCentral Kedzia P, Czechowski T, Baranowski M, Jurga J, Szcześniak E (2013) Analysis of uniformity of magnetic field generated by the two-pair coil system. Appl Magn Reson 44(5):605–618CrossRefPubMedPubMedCentral
35.
go back to reference Ginsberg DM, Melchner MJ (1970) Optimum geometry of saddle shaped coils for generating a uniform magnetic field. Rev Sci Instrum 41(1):122–123CrossRef Ginsberg DM, Melchner MJ (1970) Optimum geometry of saddle shaped coils for generating a uniform magnetic field. Rev Sci Instrum 41(1):122–123CrossRef
36.
go back to reference Samila A (2015) Simulation of magnetic field topology in a saddle-shaped coil of nuclear quadrupole resonance spectrometer. Prog Electromagn Res Lett 56:67–73CrossRef Samila A (2015) Simulation of magnetic field topology in a saddle-shaped coil of nuclear quadrupole resonance spectrometer. Prog Electromagn Res Lett 56:67–73CrossRef
37.
go back to reference Hinshaw WS, Bottomley PA, Holland GN (1977) Radiographic thin-section image of the human wrist by nuclear magnetic resonance. Nature 270(5639):722–723CrossRefPubMed Hinshaw WS, Bottomley PA, Holland GN (1977) Radiographic thin-section image of the human wrist by nuclear magnetic resonance. Nature 270(5639):722–723CrossRefPubMed
38.
go back to reference Rashid SA, Amiruddin BS, Chew TH (2008) Magnetic field simulation of Golay coil. J Fundam Sci 4:353–361 Rashid SA, Amiruddin BS, Chew TH (2008) Magnetic field simulation of Golay coil. J Fundam Sci 4:353–361
Metadata
Title
Design of a sustainable prepolarizing magnetic resonance imaging system for infant hydrocephalus
Authors
Johnes Obungoloch
Joshua R. Harper
Steven Consevage
Igor M. Savukov
Thomas Neuberger
Srinivas Tadigadapa
Steven J. Schiff
Publication date
01-10-2018
Publisher
Springer International Publishing
Published in
Magnetic Resonance Materials in Physics, Biology and Medicine / Issue 5/2018
Print ISSN: 0968-5243
Electronic ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-018-0683-y

Other articles of this Issue 5/2018

Magnetic Resonance Materials in Physics, Biology and Medicine 5/2018 Go to the issue