Skip to main content
Top
Published in: Magnetic Resonance Materials in Physics, Biology and Medicine 1/2018

Open Access 01-02-2018 | Research Article

Influence of the cardiac cycle on pCASL: cardiac triggering of the end-of-labeling

Authors: Jasper Verbree, Matthias J. P. van Osch

Published in: Magnetic Resonance Materials in Physics, Biology and Medicine | Issue 1/2018

Login to get access

Abstract

Objective

In arterial spin labeling (ASL), the cardiac cycle might adversely influence signal-stability by varying the amount of label created, labeling efficiency and/or transport times. Due to the long labeling duration in pseudo-Continuous ASL (pCASL), the blood labeled last contributes most to the ASLsignal. The present study investigated, using numerical simulations and in vivo experiments, the effect of the cardiac cycle on pCASL, thereby focusing on the end-of-labeling.

Materials and methods

In the in vivo experiments the end-of-labeling was timed to a specific cardiac phase while a long labeling duration of >7 s was used to isolate the influence of the lastly labeled spins on ASL-signal stability.

Results

Simulations showed dependence of the ASL-signal on the cardiac phase of the end-of-labeling, and that the variation in signal was more pronounced at lower heart rates. The ASL-signal variation was small (~4%), but could be effectively reduced by simulated end-of-labeling triggering. In vivo, no difference in mean CBF (p = 0.58) nor in CBF temporal-STD (p = 0.44) could be detected between triggered and non-triggered acquisitions.

Conclusion

Influence of the cardiac cycle on pCASL-signal stability is small and triggering the start-of-labeling and end-of-labeling can be considered not to have practical implications to improve stability.
Literature
1.
go back to reference Alsop DC, Detre JA, Golay X, Gunther M, Hendrikse J, Hernandez-Garcia L, Lu H, MacIntosh BJ, Parkes LM, Smits M, van Osch MJ, Wang DJ, Wong EC, Zaharchuk G (2015) Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med 73(1):102–116CrossRefPubMed Alsop DC, Detre JA, Golay X, Gunther M, Hendrikse J, Hernandez-Garcia L, Lu H, MacIntosh BJ, Parkes LM, Smits M, van Osch MJ, Wang DJ, Wong EC, Zaharchuk G (2015) Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med 73(1):102–116CrossRefPubMed
2.
go back to reference Heijtel DF, Mutsaerts HJ, Bakker E, Schober P, Stevens MF, Petersen ET, van Berckel BN, Majoie CB, Booij J, van Osch MJP, Vanbavel E, Boellaard R, Lammertsma AA, Nederveen AJ (2014) Accuracy and precision of pseudo-continuous arterial spin labeling perfusion during baseline and hypercapnia: a head-to-head comparison with (1)(5)O H(2)O positron emission tomography. Neuroimage 92:182–192CrossRefPubMed Heijtel DF, Mutsaerts HJ, Bakker E, Schober P, Stevens MF, Petersen ET, van Berckel BN, Majoie CB, Booij J, van Osch MJP, Vanbavel E, Boellaard R, Lammertsma AA, Nederveen AJ (2014) Accuracy and precision of pseudo-continuous arterial spin labeling perfusion during baseline and hypercapnia: a head-to-head comparison with (1)(5)O H(2)O positron emission tomography. Neuroimage 92:182–192CrossRefPubMed
3.
go back to reference Aslan S, Xu F, Wang PL, Uh J, Yezhuvath US, van Osch M, Lu H (2010) Estimation of labeling efficiency in pseudocontinuous arterial spin labeling. Magn Reson Med 63(3):765–771CrossRefPubMedPubMedCentral Aslan S, Xu F, Wang PL, Uh J, Yezhuvath US, van Osch M, Lu H (2010) Estimation of labeling efficiency in pseudocontinuous arterial spin labeling. Magn Reson Med 63(3):765–771CrossRefPubMedPubMedCentral
4.
go back to reference Wu WC, Mazaheri Y, Wong EC (2007) The effects of flow dispersion and cardiac pulsation in arterial spin labeling. IEEE Trans Med Imaging 26(1):84–92CrossRefPubMed Wu WC, Mazaheri Y, Wong EC (2007) The effects of flow dispersion and cardiac pulsation in arterial spin labeling. IEEE Trans Med Imaging 26(1):84–92CrossRefPubMed
5.
go back to reference Fushimi Y, Okada T, Yamamoto A, Kanagaki M, Fujimoto K, Togashi K (2013) Timing dependence of peripheral pulse-wave-triggered pulsed arterial spin labeling. NMR Biomed 26(11):1527–1533CrossRefPubMed Fushimi Y, Okada T, Yamamoto A, Kanagaki M, Fujimoto K, Togashi K (2013) Timing dependence of peripheral pulse-wave-triggered pulsed arterial spin labeling. NMR Biomed 26(11):1527–1533CrossRefPubMed
6.
go back to reference Wu WC, Edlow BL, Elliot MA, Wang J, Detre JA (2009) Physiological modulations in arterial spin labeling perfusion magnetic resonance imaging. IEEE Trans Med Imaging 28(5):703–709CrossRefPubMed Wu WC, Edlow BL, Elliot MA, Wang J, Detre JA (2009) Physiological modulations in arterial spin labeling perfusion magnetic resonance imaging. IEEE Trans Med Imaging 28(5):703–709CrossRefPubMed
7.
go back to reference Haacke EM, Brown RW, Thompson MR, Venkatesan R (1999) Magnetic resonance imaging: physical principles and sequence design. Wiley, New York Haacke EM, Brown RW, Thompson MR, Venkatesan R (1999) Magnetic resonance imaging: physical principles and sequence design. Wiley, New York
8.
go back to reference Hales PW, Kirkham FJ, Clark CA (2016) A general model to calculate the spin-lattice (T1) relaxation time of blood, accounting for haematocrit, oxygen saturation and magnetic field strength. J Cereb Blood Flow Metab 36(2):370–374CrossRefPubMed Hales PW, Kirkham FJ, Clark CA (2016) A general model to calculate the spin-lattice (T1) relaxation time of blood, accounting for haematocrit, oxygen saturation and magnetic field strength. J Cereb Blood Flow Metab 36(2):370–374CrossRefPubMed
9.
go back to reference Wright PJ, Mougin OE, Totman JJ, Peters AM, Brookes MJ, Coxon R, Morris PE, Clemence M, Francis ST, Bowtell RW, Gowland PA (2008) Water proton T1 measurements in brain tissue at 7, 3, and 1.5 T using IR-EPI, IR-TSE, and MPRAGE: results and optimization. MAGMA 21(1–2):121–130CrossRefPubMed Wright PJ, Mougin OE, Totman JJ, Peters AM, Brookes MJ, Coxon R, Morris PE, Clemence M, Francis ST, Bowtell RW, Gowland PA (2008) Water proton T1 measurements in brain tissue at 7, 3, and 1.5 T using IR-EPI, IR-TSE, and MPRAGE: results and optimization. MAGMA 21(1–2):121–130CrossRefPubMed
10.
go back to reference Gevers S, Nederveen AJ, Fijnvandraat K, van den Berg SM, van Ooij P, Heijtel DF, Heijboer H, Nederkoorn PJ, Engelen M, van Osch MJ, Majoie CB (2012) Arterial spin labeling measurement of cerebral perfusion in children with sickle cell disease. J Magn Reson Imaging 35(4):779–787CrossRefPubMed Gevers S, Nederveen AJ, Fijnvandraat K, van den Berg SM, van Ooij P, Heijtel DF, Heijboer H, Nederkoorn PJ, Engelen M, van Osch MJ, Majoie CB (2012) Arterial spin labeling measurement of cerebral perfusion in children with sickle cell disease. J Magn Reson Imaging 35(4):779–787CrossRefPubMed
11.
go back to reference Fisher NI (1995) Statistical analysis of circular data. Cambridge University Press, Cambridge Fisher NI (1995) Statistical analysis of circular data. Cambridge University Press, Cambridge
12.
go back to reference Herscovitch P, Raichle ME (1985) What is the correct value for the brain–blood partition coefficient for water? J Cereb Blood Flow Metab 5(1):65–69CrossRefPubMed Herscovitch P, Raichle ME (1985) What is the correct value for the brain–blood partition coefficient for water? J Cereb Blood Flow Metab 5(1):65–69CrossRefPubMed
13.
go back to reference Dai W, Garcia D, de Bazelaire C, Alsop DC (2008) Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields. Magn Reson Med 60(6):1488–1497CrossRefPubMedPubMedCentral Dai W, Garcia D, de Bazelaire C, Alsop DC (2008) Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields. Magn Reson Med 60(6):1488–1497CrossRefPubMedPubMedCentral
14.
go back to reference Parkes LM, Tofts PS (2002) Improved accuracy of human cerebral blood perfusion measurements using arterial spin labeling: accounting for capillary water permeability. Magn Reson Med 48(1):27–41CrossRefPubMed Parkes LM, Tofts PS (2002) Improved accuracy of human cerebral blood perfusion measurements using arterial spin labeling: accounting for capillary water permeability. Magn Reson Med 48(1):27–41CrossRefPubMed
15.
go back to reference Gallichan D, Jezzard P (2008) Modeling the effects of dispersion and pulsatility of blood flow in pulsed arterial spin labeling. Magn Reson Med 60(1):53–63CrossRefPubMed Gallichan D, Jezzard P (2008) Modeling the effects of dispersion and pulsatility of blood flow in pulsed arterial spin labeling. Magn Reson Med 60(1):53–63CrossRefPubMed
16.
go back to reference Kazan SM, Chappell MA, Payne SJ (2010) Modelling the effects of cardiac pulsations in arterial spin labeling. Phys Med Biol 55(3):799–816CrossRefPubMed Kazan SM, Chappell MA, Payne SJ (2010) Modelling the effects of cardiac pulsations in arterial spin labeling. Phys Med Biol 55(3):799–816CrossRefPubMed
17.
go back to reference Kazan SM, Chappell MA, Payne SJ (2009) Modeling the effects of flow dispersion in arterial spin labeling. IEEE Trans Biomed Eng 56(6):1635–1643CrossRefPubMed Kazan SM, Chappell MA, Payne SJ (2009) Modeling the effects of flow dispersion in arterial spin labeling. IEEE Trans Biomed Eng 56(6):1635–1643CrossRefPubMed
18.
go back to reference Restom K, Behzadi Y, Liu TT (2006) Physiological noise reduction for arterial spin labeling functional MRI. Neuroimage 31(3):1104–1115CrossRefPubMed Restom K, Behzadi Y, Liu TT (2006) Physiological noise reduction for arterial spin labeling functional MRI. Neuroimage 31(3):1104–1115CrossRefPubMed
Metadata
Title
Influence of the cardiac cycle on pCASL: cardiac triggering of the end-of-labeling
Authors
Jasper Verbree
Matthias J. P. van Osch
Publication date
01-02-2018
Publisher
Springer Berlin Heidelberg
Published in
Magnetic Resonance Materials in Physics, Biology and Medicine / Issue 1/2018
Print ISSN: 0968-5243
Electronic ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-017-0611-6

Other articles of this Issue 1/2018

Magnetic Resonance Materials in Physics, Biology and Medicine 1/2018 Go to the issue