Skip to main content
Top
Published in: Magnetic Resonance Materials in Physics, Biology and Medicine 1/2018

01-02-2018 | Research Article

Motion-compensated data decomposition algorithm to accelerate dynamic cardiac MRI

Authors: Azar Tolouee, Javad Alirezaie, Paul Babyn

Published in: Magnetic Resonance Materials in Physics, Biology and Medicine | Issue 1/2018

Login to get access

Abstract

Objectives

In dynamic cardiac magnetic resonance imaging (MRI), the spatiotemporal resolution is often limited by low imaging speed. Compressed sensing (CS) theory can be applied to improve imaging speed and spatiotemporal resolution. The combination of compressed sensing and low-rank matrix completion represents an attractive means to further increase imaging speed. By extending prior work, a Motion-Compensated Data Decomposition (MCDD) algorithm is proposed to improve the performance of CS for accelerated dynamic cardiac MRI.

Materials and methods

The process of MCDD can be described as follows: first, we decompose the dynamic images into a low-rank (L) and a sparse component (S). The L component includes periodic motion in the background, since it is highly correlated among frames, and the S component corresponds to respiratory motion. A motion-estimation/motion-compensation (ME-MC) algorithm is then applied to the low-rank component to reconstruct a cardiac motion compensated dynamic cardiac MRI.

Results

With validations on the numerical phantom and in vivo cardiac MRI data, we demonstrate the utility of the proposed scheme in significantly improving compressed sensing reconstructions by minimizing motion artifacts. The proposed method achieves higher PSNR and lower MSE and HFEN for medium to high acceleration factors.

Conclusion

The proposed method is observed to yield reconstructions with minimal spatiotemporal blurring and motion artifacts in comparison to the existing state-of-the-art methods.
Literature
1.
go back to reference Sodickson DK, Griswold MA, Jakob PM, Edelman RR, Manning WJ (1999) Signal-to-noise ratio and signal-to-noise efficiency in SMASH imaging. Magn Reson Med 4(1):1009–1022CrossRef Sodickson DK, Griswold MA, Jakob PM, Edelman RR, Manning WJ (1999) Signal-to-noise ratio and signal-to-noise efficiency in SMASH imaging. Magn Reson Med 4(1):1009–1022CrossRef
2.
go back to reference Plein S, Bloomer TN, Ridgway JP, Jones TR, Bainbridge GJ, Sivananthan MU (2001) Steady-state free precession magnetic resonance imaging of the heart: comparison with segmented k-space gradient-echo imaging. J Magn Reson Imaging 14(3):230–236CrossRefPubMed Plein S, Bloomer TN, Ridgway JP, Jones TR, Bainbridge GJ, Sivananthan MU (2001) Steady-state free precession magnetic resonance imaging of the heart: comparison with segmented k-space gradient-echo imaging. J Magn Reson Imaging 14(3):230–236CrossRefPubMed
3.
go back to reference Lustig M, Santos JM, Donoho DL, Pauly JM (2006) k-t SPARSE: high frame rate dynamic MRI exploiting spatio-temporal sparsity. In: Proceedings of the 13th annual meeting of international society for magnetic resonance in medicine (ISMRM), USA, p 2420 Lustig M, Santos JM, Donoho DL, Pauly JM (2006) k-t SPARSE: high frame rate dynamic MRI exploiting spatio-temporal sparsity. In: Proceedings of the 13th annual meeting of international society for magnetic resonance in medicine (ISMRM), USA, p 2420
4.
go back to reference Jung H, Sung K, Nayak KS, Kim EY, Ye JC (2009) k-t FOCUSS: a general compressed sensing framework for high resolution dynamic MRI. Magn Reson Med 61(1):103–116CrossRefPubMed Jung H, Sung K, Nayak KS, Kim EY, Ye JC (2009) k-t FOCUSS: a general compressed sensing framework for high resolution dynamic MRI. Magn Reson Med 61(1):103–116CrossRefPubMed
5.
go back to reference Jung H, Park J, Yoo J, Ye JC (2010) Radial k-t FOCUSS for high-resolution cardiac cine MRI. Magn Reson Med 63:68–78PubMed Jung H, Park J, Yoo J, Ye JC (2010) Radial k-t FOCUSS for high-resolution cardiac cine MRI. Magn Reson Med 63:68–78PubMed
6.
go back to reference Tsao J, Boesigerp Pruessmann KP (2003) k-t BLAST and k-t SENSE: dynamic MRI with high frame rate exploiting spatiotemporal correlations. Magn Reson Med 50:1031–1042CrossRefPubMed Tsao J, Boesigerp Pruessmann KP (2003) k-t BLAST and k-t SENSE: dynamic MRI with high frame rate exploiting spatiotemporal correlations. Magn Reson Med 50:1031–1042CrossRefPubMed
7.
go back to reference Usman M, Prieto C, Schaeffter T, Batchelor P (2011) k-t group sparse: a method for accelerating dynamic MRI. Magn Reson Med 66(4):1163–1176CrossRefPubMed Usman M, Prieto C, Schaeffter T, Batchelor P (2011) k-t group sparse: a method for accelerating dynamic MRI. Magn Reson Med 66(4):1163–1176CrossRefPubMed
8.
go back to reference Ravishankar S, Bresler Y (2011) MR image reconstruction from highly undersampled k-space data by dictionarylearning. IEEE Trans Med Imaging 30(5):1028–1041CrossRefPubMed Ravishankar S, Bresler Y (2011) MR image reconstruction from highly undersampled k-space data by dictionarylearning. IEEE Trans Med Imaging 30(5):1028–1041CrossRefPubMed
9.
go back to reference Feng L, Otazo R, Jung H, Jensen JH, Ye JC, Sodickson DK, Kim D (2011) Accelerated cardiac T2 mapping using breath-hold multiecho fast spin-echo pulse sequence with k-t FOCUSS. Magn Reson Med 65(6):1661–1669CrossRefPubMedPubMedCentral Feng L, Otazo R, Jung H, Jensen JH, Ye JC, Sodickson DK, Kim D (2011) Accelerated cardiac T2 mapping using breath-hold multiecho fast spin-echo pulse sequence with k-t FOCUSS. Magn Reson Med 65(6):1661–1669CrossRefPubMedPubMedCentral
10.
go back to reference Candes E, Recht B (2009) Exact matrix completion via convex optimization. Found Comput Math 9:717–772CrossRef Candes E, Recht B (2009) Exact matrix completion via convex optimization. Found Comput Math 9:717–772CrossRef
11.
go back to reference Cai JF, Candes E, Shen Z (2010) A singular value thresholding algorithm for matrix completion. SIAM J Optim 20(4):1956–1982CrossRef Cai JF, Candes E, Shen Z (2010) A singular value thresholding algorithm for matrix completion. SIAM J Optim 20(4):1956–1982CrossRef
12.
go back to reference Liang ZP (2007) Spatiotemporal imaging with partially separable functions. In: Proceedings of IEEE international symposium biomedical imaging, pp 988–991 Liang ZP (2007) Spatiotemporal imaging with partially separable functions. In: Proceedings of IEEE international symposium biomedical imaging, pp 988–991
13.
go back to reference Haldar J, Liang ZP (2010) Spatiotemporal imaging with partially separable functions: a matrix recovery approach. In: Proceedings of IEEE international symposium biomedical imaging, pp 716–719 Haldar J, Liang ZP (2010) Spatiotemporal imaging with partially separable functions: a matrix recovery approach. In: Proceedings of IEEE international symposium biomedical imaging, pp 716–719
14.
go back to reference Lustig M, Elad M, Pauly J (2010) Calibrationless parallel imaging reconstruction by structured low-rank matrix completion. In: Proceedings of the 18th annual meeting of international society for magnetic resonance in medicine (ISMRM), p 2870 Lustig M, Elad M, Pauly J (2010) Calibrationless parallel imaging reconstruction by structured low-rank matrix completion. In: Proceedings of the 18th annual meeting of international society for magnetic resonance in medicine (ISMRM), p 2870
15.
go back to reference Lingala S, Hu Y, Dibella E, Jacob M (2011) Accelerated dynamic MRI exploiting sparsity and low-rank structure: k-t SLR. IEEE Trans Med Imaging 30(5):1042–1054CrossRefPubMedPubMedCentral Lingala S, Hu Y, Dibella E, Jacob M (2011) Accelerated dynamic MRI exploiting sparsity and low-rank structure: k-t SLR. IEEE Trans Med Imaging 30(5):1042–1054CrossRefPubMedPubMedCentral
16.
go back to reference Zhao B, Haldar JP, Christodoulou AG, Liang ZP (2012) Image reconstruction from highly undersampled (k, t)-space data with joint partial separability and sparsity constraints. IEEE Trans Med Imaging 31(9):1809–1820CrossRefPubMedPubMedCentral Zhao B, Haldar JP, Christodoulou AG, Liang ZP (2012) Image reconstruction from highly undersampled (k, t)-space data with joint partial separability and sparsity constraints. IEEE Trans Med Imaging 31(9):1809–1820CrossRefPubMedPubMedCentral
17.
go back to reference Candes E, Li X, Ma Y, Wright J (2011) Robust principal component analysis. J ACM 58(3):1–37CrossRef Candes E, Li X, Ma Y, Wright J (2011) Robust principal component analysis. J ACM 58(3):1–37CrossRef
18.
go back to reference Chandrasekaran V, Sanghavi S, Parrilo P, Willsky A (2011) Rank-sparsity incoherence for matrix decomposition. SIAM J Optim 21(2):572–596CrossRef Chandrasekaran V, Sanghavi S, Parrilo P, Willsky A (2011) Rank-sparsity incoherence for matrix decomposition. SIAM J Optim 21(2):572–596CrossRef
19.
go back to reference Gao H, Rapacchi S, Wang D, Moriarty J, Meehan C, Sayre J, Laub G, Finn P, Hu P (2012) Compressed sensing using prior rank, intensity and sparsity model (PRISM): applications in cardiac cine MRI. In: Proceedings of the 20th annual meeting of international society for magnetic resonance in medicine (ISMRM), p 2242 Gao H, Rapacchi S, Wang D, Moriarty J, Meehan C, Sayre J, Laub G, Finn P, Hu P (2012) Compressed sensing using prior rank, intensity and sparsity model (PRISM): applications in cardiac cine MRI. In: Proceedings of the 20th annual meeting of international society for magnetic resonance in medicine (ISMRM), p 2242
20.
go back to reference Otazo R, Candes E, Sodickson DK (2015) Low-rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components. Magn Reson Med 73:1125–1136CrossRefPubMed Otazo R, Candes E, Sodickson DK (2015) Low-rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components. Magn Reson Med 73:1125–1136CrossRefPubMed
21.
go back to reference Jung H, Ye JC (2010) Motion estimated and compensated compressed sensing dynamic magnetic resonance imaging: what we can learn from video compression techniques. Int J Imaging Syst Technol 20(2):81–98CrossRef Jung H, Ye JC (2010) Motion estimated and compensated compressed sensing dynamic magnetic resonance imaging: what we can learn from video compression techniques. Int J Imaging Syst Technol 20(2):81–98CrossRef
22.
go back to reference Asif MS, Hamilton L, Brummer M, Romberg J (2013) Motion-adaptive spatio-temporal regularization for accelerated dynamic MRI. Magn Reson Med 70:800–812CrossRefPubMed Asif MS, Hamilton L, Brummer M, Romberg J (2013) Motion-adaptive spatio-temporal regularization for accelerated dynamic MRI. Magn Reson Med 70:800–812CrossRefPubMed
23.
go back to reference Usman M, Atkinson D, Odille F, Kolbitsch C, Vaillant G, Schaeffter T, Batchelor PG, Prieto C (2013) Motion corrected compressed sensing for freebreathing dynamic cardiac MRI. Magn Reson Med 70:504–516CrossRefPubMed Usman M, Atkinson D, Odille F, Kolbitsch C, Vaillant G, Schaeffter T, Batchelor PG, Prieto C (2013) Motion corrected compressed sensing for freebreathing dynamic cardiac MRI. Magn Reson Med 70:504–516CrossRefPubMed
24.
go back to reference Royuela-del-Val J, Cordero-Grande L, Simmross-Wattenberg F, Martín-Fernández M, Alberola-López C (2016) Nonrigid groupwise registration for motion estimation and compensation in compressed sensing reconstruction of breath-hold cardiac cine MRI. Magn Reson Med 75:1525–1536CrossRefPubMed Royuela-del-Val J, Cordero-Grande L, Simmross-Wattenberg F, Martín-Fernández M, Alberola-López C (2016) Nonrigid groupwise registration for motion estimation and compensation in compressed sensing reconstruction of breath-hold cardiac cine MRI. Magn Reson Med 75:1525–1536CrossRefPubMed
25.
go back to reference Sharif B, Bresler Y (2007) Physiologically improved NCAT phantom (PINCAT) enables in silico study of the effects of beat-to-beat variability on cardiac MR. In: Proceedings of international society for magnetic resonance in medicine (ISMRM), p 3418 Sharif B, Bresler Y (2007) Physiologically improved NCAT phantom (PINCAT) enables in silico study of the effects of beat-to-beat variability on cardiac MR. In: Proceedings of international society for magnetic resonance in medicine (ISMRM), p 3418
26.
go back to reference Lingala SG, DiBella E, Jacob M (2015) Deformation corrected compressed sensing (DC-CS): a novel framework for accelerated dynamic MRI. IEEE Trans Med Imaging 34(1):72–85CrossRefPubMed Lingala SG, DiBella E, Jacob M (2015) Deformation corrected compressed sensing (DC-CS): a novel framework for accelerated dynamic MRI. IEEE Trans Med Imaging 34(1):72–85CrossRefPubMed
28.
go back to reference Dowling J, Bourgeat P, Raffelt D, Fripp J, Greer PB, Patterson J, Denham J, Gupta S, Tang C, Stanwell P, Ourselin S, Salvado O (2009) Non-rigid correction of interleaving artefacts in pelvic MRI. In: Proceedings of SPIE medical imaging 2009: image processing, vol 7259 Dowling J, Bourgeat P, Raffelt D, Fripp J, Greer PB, Patterson J, Denham J, Gupta S, Tang C, Stanwell P, Ourselin S, Salvado O (2009) Non-rigid correction of interleaving artefacts in pelvic MRI. In: Proceedings of SPIE medical imaging 2009: image processing, vol 7259
Metadata
Title
Motion-compensated data decomposition algorithm to accelerate dynamic cardiac MRI
Authors
Azar Tolouee
Javad Alirezaie
Paul Babyn
Publication date
01-02-2018
Publisher
Springer Berlin Heidelberg
Published in
Magnetic Resonance Materials in Physics, Biology and Medicine / Issue 1/2018
Print ISSN: 0968-5243
Electronic ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-017-0628-x

Other articles of this Issue 1/2018

Magnetic Resonance Materials in Physics, Biology and Medicine 1/2018 Go to the issue