Skip to main content
Top
Published in: Magnetic Resonance Materials in Physics, Biology and Medicine 2/2016

01-04-2016 | Review Article

Segmentation of human brain using structural MRI

Author: Gunther Helms

Published in: Magnetic Resonance Materials in Physics, Biology and Medicine | Issue 2/2016

Login to get access

Abstract

Segmentation of human brain using structural MRI is a key step of processing in imaging neuroscience. The methods have undergone a rapid development in the past two decades and are now widely available. This non-technical review aims at providing an overview and basic understanding of the most common software. Starting with the basis of structural MRI contrast in brain and imaging protocols, the concepts of voxel-based and surface-based segmentation are discussed. Special emphasis is given to the typical contrast features and morphological constraints of cortical and sub-cortical grey matter. In addition to the use for voxel-based morphometry, basic applications in quantitative MRI, cortical thickness estimations, and atrophy measurements as well as assignment of cortical regions and deep brain nuclei are briefly discussed. Finally, some fields for clinical applications are given.
Literature
1.
go back to reference Lim KO, Pfefferbaum A (1989) Segmentation of MR brain images into cerebrospinal fluid spaces, white and gray matter. J Comput Assist Tomogr 13:588–593CrossRefPubMed Lim KO, Pfefferbaum A (1989) Segmentation of MR brain images into cerebrospinal fluid spaces, white and gray matter. J Comput Assist Tomogr 13:588–593CrossRefPubMed
3.
go back to reference Lucas B, Bogovic J, Carass A, Bazin P-L, Prince J, Pham D, Landman B (2010) The Java image science toolkit (JIST) for rapid prototyping and publishing of neuroimaging software. Neuroinformatics 18:5–17CrossRef Lucas B, Bogovic J, Carass A, Bazin P-L, Prince J, Pham D, Landman B (2010) The Java image science toolkit (JIST) for rapid prototyping and publishing of neuroimaging software. Neuroinformatics 18:5–17CrossRef
4.
go back to reference Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin J-C, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, Buatti J, Aylward SR, Miller JV, Pieper S, Kikinis R (2012) 3D Slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging 30(9):1323–1341CrossRefPubMedPubMedCentral Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin J-C, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, Buatti J, Aylward SR, Miller JV, Pieper S, Kikinis R (2012) 3D Slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging 30(9):1323–1341CrossRefPubMedPubMedCentral
5.
go back to reference Warfield SK, Zou KH, Wells WM (2004) Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Trans Med Imaging 23(7):903–921CrossRefPubMedPubMedCentral Warfield SK, Zou KH, Wells WM (2004) Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Trans Med Imaging 23(7):903–921CrossRefPubMedPubMedCentral
6.
go back to reference Koenig SH, Brown RD 3rd, Spiller M, Lundbom N (1990) Relaxometry of brain: why white matter appears bright in MRI. Magn Reson Med 14(3):482–495CrossRefPubMed Koenig SH, Brown RD 3rd, Spiller M, Lundbom N (1990) Relaxometry of brain: why white matter appears bright in MRI. Magn Reson Med 14(3):482–495CrossRefPubMed
7.
go back to reference Kamman RL, Go KG, Brouwer W, Berendsen HJ (1988) Nuclear magnetic resonance relaxation in experimental brain edema: effects of water concentration, protein concentration, and temperature. Magn Reson Med 6(3):265–274CrossRefPubMed Kamman RL, Go KG, Brouwer W, Berendsen HJ (1988) Nuclear magnetic resonance relaxation in experimental brain edema: effects of water concentration, protein concentration, and temperature. Magn Reson Med 6(3):265–274CrossRefPubMed
8.
go back to reference Gelman N, Gorell JM, Barker PB, Savage RM, Spickler EM, Windham JP, Knight RA (1999) MR imaging of human brain at 3.0 T: preliminary report on transverse relaxation rates and relation to estimated iron content. Radiology 210(3):759–767CrossRefPubMed Gelman N, Gorell JM, Barker PB, Savage RM, Spickler EM, Windham JP, Knight RA (1999) MR imaging of human brain at 3.0 T: preliminary report on transverse relaxation rates and relation to estimated iron content. Radiology 210(3):759–767CrossRefPubMed
9.
go back to reference Gelman N, Ewing JR, Gorell JM, Spickler EM, Solomon EG (2001) Interregional variation of longitudinal relaxation rates in human brain at 3.0 T: relation to estimated iron and water contents. Magn Reson Med 45(1):71–79CrossRefPubMed Gelman N, Ewing JR, Gorell JM, Spickler EM, Solomon EG (2001) Interregional variation of longitudinal relaxation rates in human brain at 3.0 T: relation to estimated iron and water contents. Magn Reson Med 45(1):71–79CrossRefPubMed
10.
go back to reference Hallgren B, Sourander P (1958) The effect of age on the non-haemin iron in the human brain. J Neurochem 3(1):41–51CrossRefPubMed Hallgren B, Sourander P (1958) The effect of age on the non-haemin iron in the human brain. J Neurochem 3(1):41–51CrossRefPubMed
11.
go back to reference Helms G, Kallenberg K, Dechent P (2006) A contrast-driven approach to intracranial segmentation using a combination of T2- and T1-weighted 3D MRI datasets. J Magn Reson Imaging 24(4):790–795CrossRefPubMed Helms G, Kallenberg K, Dechent P (2006) A contrast-driven approach to intracranial segmentation using a combination of T2- and T1-weighted 3D MRI datasets. J Magn Reson Imaging 24(4):790–795CrossRefPubMed
12.
go back to reference Deichmann R, Good CD, Josephs O, Ashburner J, Turner R (2000) Optimization of 3-D MP-RAGE sequences for structural brain imaging. Neuroimage 12:112–127CrossRefPubMed Deichmann R, Good CD, Josephs O, Ashburner J, Turner R (2000) Optimization of 3-D MP-RAGE sequences for structural brain imaging. Neuroimage 12:112–127CrossRefPubMed
13.
go back to reference Deichmann R, Schwarzbauer C, Turner R (2004) Optimisation of the 3D MDEFT sequence for anatomical brain imaging: technical implications at 1.5 and 3 T. NeuroImage 21:757–767CrossRefPubMed Deichmann R, Schwarzbauer C, Turner R (2004) Optimisation of the 3D MDEFT sequence for anatomical brain imaging: technical implications at 1.5 and 3 T. NeuroImage 21:757–767CrossRefPubMed
14.
go back to reference Jack CJ, Bernstein M, Fox N, Thompson P, Alexander G, Harvey D, Borowski B, Britson P, Whitwell J, Ward C, Dale A, Felmlee J, Gunter J, Hill D, Killiany R, Schuff N, Fox-Bosetti S, Lin C, Studholme C, DeCarli C, Krueger G, Ward H, Metzger G, Scott K, Mallozzi R, Blezek D, Levy J, Debbins J, Fleisher A, Albert M, Green R, Bartzokis G, Glover G, Mugler J, Weiner M (2008) The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J Magn Reson Imaging 27(4):685–691CrossRefPubMedPubMedCentral Jack CJ, Bernstein M, Fox N, Thompson P, Alexander G, Harvey D, Borowski B, Britson P, Whitwell J, Ward C, Dale A, Felmlee J, Gunter J, Hill D, Killiany R, Schuff N, Fox-Bosetti S, Lin C, Studholme C, DeCarli C, Krueger G, Ward H, Metzger G, Scott K, Mallozzi R, Blezek D, Levy J, Debbins J, Fleisher A, Albert M, Green R, Bartzokis G, Glover G, Mugler J, Weiner M (2008) The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J Magn Reson Imaging 27(4):685–691CrossRefPubMedPubMedCentral
15.
go back to reference Alfano B, Brunetti A, Covelli EM, Quarantelli M, Panico MR, Ciarmiello A, Salvatore M (1997) Unsupervised, automated segmentation of the normal brain using a multispectral relaxometric magnetic resonance approach. Magn Reson Med 37(1):84–93CrossRefPubMed Alfano B, Brunetti A, Covelli EM, Quarantelli M, Panico MR, Ciarmiello A, Salvatore M (1997) Unsupervised, automated segmentation of the normal brain using a multispectral relaxometric magnetic resonance approach. Magn Reson Med 37(1):84–93CrossRefPubMed
16.
go back to reference Sled JG, Zijdenbos AP, Evans AC (1998) A non-parametric method for automatic correction of intensity non-uniformity in MRI. IEEE Trans Med Imag 17:87–97CrossRef Sled JG, Zijdenbos AP, Evans AC (1998) A non-parametric method for automatic correction of intensity non-uniformity in MRI. IEEE Trans Med Imag 17:87–97CrossRef
17.
go back to reference Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, Gee JC (2010) N4ITK: improved N3 bias correction. IEEE Trans Med Imag 29(6):1310–1320CrossRef Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, Gee JC (2010) N4ITK: improved N3 bias correction. IEEE Trans Med Imag 29(6):1310–1320CrossRef
18.
go back to reference Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation–maximization algorithm. IEEE Trans Med Imaging 20(1):45–57CrossRefPubMed Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation–maximization algorithm. IEEE Trans Med Imaging 20(1):45–57CrossRefPubMed
20.
go back to reference Iglesias JE, Liu CY, Thompson PM, Tu Z (2011) Robust brain extraction across datasets and comparison with publicly available methods. IEEE Trans Med Imaging 30:1617–1634CrossRefPubMed Iglesias JE, Liu CY, Thompson PM, Tu Z (2011) Robust brain extraction across datasets and comparison with publicly available methods. IEEE Trans Med Imaging 30:1617–1634CrossRefPubMed
21.
go back to reference Ségonne F, Dale AM, Busa E, Glessner M, Salat D, Hahn HK, Fischl B (2004) A hybrid approach to the skull stripping problem in MRI. Neuroimage 22(3):1060–1075CrossRefPubMed Ségonne F, Dale AM, Busa E, Glessner M, Salat D, Hahn HK, Fischl B (2004) A hybrid approach to the skull stripping problem in MRI. Neuroimage 22(3):1060–1075CrossRefPubMed
22.
go back to reference Carass A, Cuzzocreo J, Wheeler MB, Bazin PL, Resnick SM, Prince JL (2011) Simple paradigm for extra-cerebral tissue removal: algorithm and analysis. Neuroimage 56(4):1982–1992CrossRefPubMedPubMedCentral Carass A, Cuzzocreo J, Wheeler MB, Bazin PL, Resnick SM, Prince JL (2011) Simple paradigm for extra-cerebral tissue removal: algorithm and analysis. Neuroimage 56(4):1982–1992CrossRefPubMedPubMedCentral
23.
go back to reference Mikheev A, Nevsky G, Govindan S, Grossman R, Rusinek HJ (2008) Fully automatic segmentation of the brain from T1-weighted MRI using Bridge Burner algorithm. J Magn Reson Imaging 27(6):1235–1241CrossRefPubMed Mikheev A, Nevsky G, Govindan S, Grossman R, Rusinek HJ (2008) Fully automatic segmentation of the brain from T1-weighted MRI using Bridge Burner algorithm. J Magn Reson Imaging 27(6):1235–1241CrossRefPubMed
24.
go back to reference Woolrich MW, Jbabdi S, Patenaude B, Chappell M, Makni S, Behrens T, Beckmann C, Jenkinson M, Smith SM (2009) Bayesian analysis of neuroimaging data in FSL. Neuroimage 45:S173–S186CrossRefPubMed Woolrich MW, Jbabdi S, Patenaude B, Chappell M, Makni S, Behrens T, Beckmann C, Jenkinson M, Smith SM (2009) Bayesian analysis of neuroimaging data in FSL. Neuroimage 45:S173–S186CrossRefPubMed
25.
go back to reference Ashburner J, Friston K (1997) Multimodal image coregistration and partitioning—a unified framework. Neuroimage 6(3):209–217CrossRefPubMed Ashburner J, Friston K (1997) Multimodal image coregistration and partitioning—a unified framework. Neuroimage 6(3):209–217CrossRefPubMed
27.
go back to reference Evans AC, Kamber M, Collins DL, Macdonald D (1994) An MRI-based probabilistic atlas of neuroanatomy. In: Shorvon S, Fish D, Andermann F, Bydder GM, Stefan H (eds) Magnetic resonance scanning and epilepsy, NATO ASI series A, life sciences, vol 264. Plenum, New York, pp 263–274CrossRef Evans AC, Kamber M, Collins DL, Macdonald D (1994) An MRI-based probabilistic atlas of neuroanatomy. In: Shorvon S, Fish D, Andermann F, Bydder GM, Stefan H (eds) Magnetic resonance scanning and epilepsy, NATO ASI series A, life sciences, vol 264. Plenum, New York, pp 263–274CrossRef
28.
go back to reference van Leemput K, Maes F, Vandermeulen D, Suetens P (1999) Automated model-based tissue classification of MR images of the brain. IEEE Trans Med Imaging 18(10):897–908CrossRefPubMed van Leemput K, Maes F, Vandermeulen D, Suetens P (1999) Automated model-based tissue classification of MR images of the brain. IEEE Trans Med Imaging 18(10):897–908CrossRefPubMed
29.
go back to reference Draganski B, Gaser C, Busch V, Schuierer G, Bogdahn U, May A (2004) Neuroplasticity: changes in grey matter induced by training. Nature 427(6972):311–312CrossRefPubMed Draganski B, Gaser C, Busch V, Schuierer G, Bogdahn U, May A (2004) Neuroplasticity: changes in grey matter induced by training. Nature 427(6972):311–312CrossRefPubMed
30.
go back to reference Focke NK, Helms G, Kaspar S, Diederich C, Tóth V, Dechent P, Mohr A, Paulus W (2011) Multi-site voxel-based morphometry—not quite there yet. Neuroimage 56(3):1164–1170CrossRefPubMed Focke NK, Helms G, Kaspar S, Diederich C, Tóth V, Dechent P, Mohr A, Paulus W (2011) Multi-site voxel-based morphometry—not quite there yet. Neuroimage 56(3):1164–1170CrossRefPubMed
31.
go back to reference Lambert C, Lutti A, Helms G, Frackowiak R, Ashburner J (2013) Multiparametric brainstem segmentation using a modified multivariate mixture of gaussians. Neuroimage Clin 16(2):684–694CrossRef Lambert C, Lutti A, Helms G, Frackowiak R, Ashburner J (2013) Multiparametric brainstem segmentation using a modified multivariate mixture of gaussians. Neuroimage Clin 16(2):684–694CrossRef
32.
34.
go back to reference Brownstein KR, Tarr CE (1977) Spin-lattice relaxation in a system governed by diffusion. J Magn Reson 26:17–24 Brownstein KR, Tarr CE (1977) Spin-lattice relaxation in a system governed by diffusion. J Magn Reson 26:17–24
35.
go back to reference Fischl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci USA 97(20):11050–11055CrossRefPubMedPubMedCentral Fischl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci USA 97(20):11050–11055CrossRefPubMedPubMedCentral
36.
go back to reference Kim JS, Singh V, Lee JK, Lerch J, Ad-Dab’bagh Y, MacDonald D, Lee JM, Kim SI, Evans AC (2005) Automated 3-D extraction and evaluation of the inner and outer cortical surfaces using a Laplacian map and partial volume effect classification. Neuroimage 27(1):210–221CrossRefPubMed Kim JS, Singh V, Lee JK, Lerch J, Ad-Dab’bagh Y, MacDonald D, Lee JM, Kim SI, Evans AC (2005) Automated 3-D extraction and evaluation of the inner and outer cortical surfaces using a Laplacian map and partial volume effect classification. Neuroimage 27(1):210–221CrossRefPubMed
37.
go back to reference Han X, Pham D, Tosun D, Rettmann M, Xu C, Prince J (2004) CRUISE: cortical reconstruction using implicit surface evolution. Neuroimage 23:997–1012CrossRefPubMed Han X, Pham D, Tosun D, Rettmann M, Xu C, Prince J (2004) CRUISE: cortical reconstruction using implicit surface evolution. Neuroimage 23:997–1012CrossRefPubMed
38.
go back to reference Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis I. Segmentation and surface reconstruction. Neuroimage 9:179–194CrossRefPubMed Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis I. Segmentation and surface reconstruction. Neuroimage 9:179–194CrossRefPubMed
39.
go back to reference Kriegeskorte N, Goebel R (2001) An efficient algorithm for topologically correct segmentation of the cortical sheet in anatomical MR volumes. NeuroImage 14:329–346CrossRefPubMed Kriegeskorte N, Goebel R (2001) An efficient algorithm for topologically correct segmentation of the cortical sheet in anatomical MR volumes. NeuroImage 14:329–346CrossRefPubMed
40.
41.
go back to reference Hutton C, Draganski B, Ashburner J, Weiskopf N (2009) A comparison between voxel-based cortical thickness and voxel-based morphometry in normal aging. Neuroimage 48(2):371–380CrossRefPubMedPubMedCentral Hutton C, Draganski B, Ashburner J, Weiskopf N (2009) A comparison between voxel-based cortical thickness and voxel-based morphometry in normal aging. Neuroimage 48(2):371–380CrossRefPubMedPubMedCentral
42.
go back to reference Salat DH, Buckner RL, Snyder AZ, Greve DN, Desikan RSR, Busa E, Morris JC, Dale AM, Fischl B (2004) Thinning of the cerebral cortex in aging. Cereb Cortex 14(7):721–730CrossRefPubMed Salat DH, Buckner RL, Snyder AZ, Greve DN, Desikan RSR, Busa E, Morris JC, Dale AM, Fischl B (2004) Thinning of the cerebral cortex in aging. Cereb Cortex 14(7):721–730CrossRefPubMed
43.
go back to reference Vachet C, Hazlett HC, Niethammer M, Oguz I, Cates J, Whitaker R, Piven J, Styner M (2011) Group-wise automatic mesh-based analysis of cortical thickness. In: Presented at the medical imaging 2011: image processing 7962(1):796227 Vachet C, Hazlett HC, Niethammer M, Oguz I, Cates J, Whitaker R, Piven J, Styner M (2011) Group-wise automatic mesh-based analysis of cortical thickness. In: Presented at the medical imaging 2011: image processing 7962(1):796227
44.
46.
go back to reference Wu G, Wang Q, Zhang D, Nie F, Huang H, Shen D (2014) A generative probability model of joint label fusion for multi-atlas based brain segmentation. Med Image Anal 18(6):881–890CrossRefPubMedPubMedCentral Wu G, Wang Q, Zhang D, Nie F, Huang H, Shen D (2014) A generative probability model of joint label fusion for multi-atlas based brain segmentation. Med Image Anal 18(6):881–890CrossRefPubMedPubMedCentral
47.
go back to reference Iglesias JE, Sabuncu MR (2015) Multi-atlas segmentation of biomedical images: a survey. Med Imag Anal 24(1):205–219CrossRef Iglesias JE, Sabuncu MR (2015) Multi-atlas segmentation of biomedical images: a survey. Med Imag Anal 24(1):205–219CrossRef
49.
go back to reference Yushkevich PA, Pluta J, Wang H, Ding SL, Xie L, Gertje E, Mancuso L, Kliot D, Das SR, Wolk DA (2014) Automated volumetry and regional thickness analysis of hippocampal subfields and medial temporal cortical structures in mild cognitive impairment. Hum Brain Mapp 36(1):258–287CrossRefPubMedPubMedCentral Yushkevich PA, Pluta J, Wang H, Ding SL, Xie L, Gertje E, Mancuso L, Kliot D, Das SR, Wolk DA (2014) Automated volumetry and regional thickness analysis of hippocampal subfields and medial temporal cortical structures in mild cognitive impairment. Hum Brain Mapp 36(1):258–287CrossRefPubMedPubMedCentral
50.
go back to reference Yang Z, Y C, Bogovic JA, Carass A, Jedynak BM, Ying SH, Prince JL (2015) Automated cerebellar lobule segmentation with application to cerebellar structural analysis in cerebellar disease. Neuroimage doi:10.1016/j.neuroimage.2015.09.032. [Epub ahead of print] Yang Z, Y C, Bogovic JA, Carass A, Jedynak BM, Ying SH, Prince JL (2015) Automated cerebellar lobule segmentation with application to cerebellar structural analysis in cerebellar disease. Neuroimage doi:10.​1016/​j.​neuroimage.​2015.​09.​032. [Epub ahead of print]
51.
go back to reference Bogovic JA, Bazin PL, Ying SH, Prince JL (2013) Automated segmentation of the cerebellar lobules using boundary specific classification and evolution. Inf Process Med Imaging 23:62–73CrossRefPubMedPubMedCentral Bogovic JA, Bazin PL, Ying SH, Prince JL (2013) Automated segmentation of the cerebellar lobules using boundary specific classification and evolution. Inf Process Med Imaging 23:62–73CrossRefPubMedPubMedCentral
52.
go back to reference Vachet C, Yvernault B, Bhatt K, Smith RG, Gerig G, Hazlett HC, Styner M (2012) Automatic corpus callosum segmentation using a deformable active Fourier contour model. Proc SPIE Int Soc Opt Eng 8317:831707. doi:10.1117/12.911504 PubMedCentral Vachet C, Yvernault B, Bhatt K, Smith RG, Gerig G, Hazlett HC, Styner M (2012) Automatic corpus callosum segmentation using a deformable active Fourier contour model. Proc SPIE Int Soc Opt Eng 8317:831707. doi:10.​1117/​12.​911504 PubMedCentral
53.
go back to reference Helms G, Draganski B, Frackowiak R, Ashburner J, Weiskopf N (2009) Reliable segmentation of deep brain grey matter structures using magnetization transfer (MT) parameter maps. Neuroimage 47:194–198CrossRefPubMedPubMedCentral Helms G, Draganski B, Frackowiak R, Ashburner J, Weiskopf N (2009) Reliable segmentation of deep brain grey matter structures using magnetization transfer (MT) parameter maps. Neuroimage 47:194–198CrossRefPubMedPubMedCentral
54.
go back to reference Deoni SC, Rutt BK, Parrent AG, Peters TM (2007) Segmentation of thalamic nuclei using a modified k-means clustering algorithm and high-resolution quantitative magnetic resonance imaging at 1.5 T. Neuroimage 34:117–126CrossRefPubMed Deoni SC, Rutt BK, Parrent AG, Peters TM (2007) Segmentation of thalamic nuclei using a modified k-means clustering algorithm and high-resolution quantitative magnetic resonance imaging at 1.5 T. Neuroimage 34:117–126CrossRefPubMed
55.
56.
go back to reference Krauth A, Blanc R, Poveda A, Jeanmonod D, Morel A, Székely G (2010) A mean three-dimensional atlas of the human thalamus: generation from multiple histological data. Neuroimage 49(3):2053–2062CrossRefPubMed Krauth A, Blanc R, Poveda A, Jeanmonod D, Morel A, Székely G (2010) A mean three-dimensional atlas of the human thalamus: generation from multiple histological data. Neuroimage 49(3):2053–2062CrossRefPubMed
57.
go back to reference Hoult DI (2000) The principle of reciprocity in signal strength calculations—a mathematical guide. Concepts Magn Reson 14(4):173–187CrossRef Hoult DI (2000) The principle of reciprocity in signal strength calculations—a mathematical guide. Concepts Magn Reson 14(4):173–187CrossRef
58.
go back to reference Volz S, Nöth U, Deichmann R (2012) Correction of systematic errors in quantitative proton density mapping. Magn Reson Med 68(1):74–85CrossRefPubMed Volz S, Nöth U, Deichmann R (2012) Correction of systematic errors in quantitative proton density mapping. Magn Reson Med 68(1):74–85CrossRefPubMed
59.
go back to reference Weiskopf N, Lutti A, Helms G, Novak M, Ashburner J, Hutton C (2011) Unified segmentation based correction of R1 brain maps for RF transmit field inhomogeneities (UNICORT). Neuroimage 54(3):2116–2124CrossRefPubMedPubMedCentral Weiskopf N, Lutti A, Helms G, Novak M, Ashburner J, Hutton C (2011) Unified segmentation based correction of R1 brain maps for RF transmit field inhomogeneities (UNICORT). Neuroimage 54(3):2116–2124CrossRefPubMedPubMedCentral
60.
go back to reference Shin W, Geng X, Gu H, Zhan W, Zou Q, Yang Y (2010) Automated brain tissue segmentation based on fractional signal mapping from inversion recovery look-locker acquisition. Neuroimage 52:1347–1354CrossRefPubMedPubMedCentral Shin W, Geng X, Gu H, Zhan W, Zou Q, Yang Y (2010) Automated brain tissue segmentation based on fractional signal mapping from inversion recovery look-locker acquisition. Neuroimage 52:1347–1354CrossRefPubMedPubMedCentral
61.
go back to reference Ahlgren A, Wirestam R, Ståhlberg F, Knutsson L (2014) Automatic brain segmentation using fractional signal modeling of a multiple flip angle, spoiled gradient-recalled echo acquisition. Magn Reson Mater Phy 27:551–565CrossRef Ahlgren A, Wirestam R, Ståhlberg F, Knutsson L (2014) Automatic brain segmentation using fractional signal modeling of a multiple flip angle, spoiled gradient-recalled echo acquisition. Magn Reson Mater Phy 27:551–565CrossRef
62.
go back to reference Draganski B, Ashburner J, Hutton C, Kherif F, Frackowiak RS, Helms G, Weiskopf N (2011) Regional specificity of MRI contrast parameter changes in normal ageing revealed by voxel-based quantification (VBQ). Neuroimage 55(4):1423–1434CrossRefPubMedPubMedCentral Draganski B, Ashburner J, Hutton C, Kherif F, Frackowiak RS, Helms G, Weiskopf N (2011) Regional specificity of MRI contrast parameter changes in normal ageing revealed by voxel-based quantification (VBQ). Neuroimage 55(4):1423–1434CrossRefPubMedPubMedCentral
63.
go back to reference Càmara E, Bodammer N, Rodríguez-Fornells A, Tempelmann C (2007) Age-related water diffusion changes in human brain: a voxel-based approach. Neuroimage 34:1588–1599CrossRefPubMed Càmara E, Bodammer N, Rodríguez-Fornells A, Tempelmann C (2007) Age-related water diffusion changes in human brain: a voxel-based approach. Neuroimage 34:1588–1599CrossRefPubMed
64.
go back to reference Dick F, Tierney AT, Lutti A, Josephs O, Sereno MI, Weiskopf N (2012) In vivo functional and myeloarchitectonic mapping of human primary auditory areas. J Neurosci 32(46):16095–16105CrossRefPubMedPubMedCentral Dick F, Tierney AT, Lutti A, Josephs O, Sereno MI, Weiskopf N (2012) In vivo functional and myeloarchitectonic mapping of human primary auditory areas. J Neurosci 32(46):16095–16105CrossRefPubMedPubMedCentral
65.
go back to reference Miller DH, Barkhof F, Frank JA, Parker GJM, Thompson AJ (2002) Measurement of atrophy in multiple sclerosis: pathological basis, methodological aspects and clinical relevance. Brain 125:1676–1692CrossRefPubMed Miller DH, Barkhof F, Frank JA, Parker GJM, Thompson AJ (2002) Measurement of atrophy in multiple sclerosis: pathological basis, methodological aspects and clinical relevance. Brain 125:1676–1692CrossRefPubMed
66.
go back to reference Smith SM, Zhang Y, Jenkinson M, Chen J, Matthews PM, Federico A, De Stefano N (2002) Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. Neuroimage 17:479–489CrossRefPubMed Smith SM, Zhang Y, Jenkinson M, Chen J, Matthews PM, Federico A, De Stefano N (2002) Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. Neuroimage 17:479–489CrossRefPubMed
67.
go back to reference Durand-Dubief F, Belaroussi B, Armspach JP, Dufour M, Roggerone S, Vukusic S, Hannoun S, Sappey-Marinier D, Confavreux C, Cotton F (2012) Reliability of longitudinal brain volume loss measurements between 2 sites in patients with multiple sclerosis: comparison of 7 quantification techniques. AJNR Am J Neuroradiol 33(10):1918–1924CrossRefPubMed Durand-Dubief F, Belaroussi B, Armspach JP, Dufour M, Roggerone S, Vukusic S, Hannoun S, Sappey-Marinier D, Confavreux C, Cotton F (2012) Reliability of longitudinal brain volume loss measurements between 2 sites in patients with multiple sclerosis: comparison of 7 quantification techniques. AJNR Am J Neuroradiol 33(10):1918–1924CrossRefPubMed
68.
go back to reference Bernasconi A, Bernasconi N, Bernhardt BC, Schrader D (2011) Advances in MRI for ‘cryptogenic’ epilepsies. Nat Rev Neurol 7(2):99–108CrossRefPubMed Bernasconi A, Bernasconi N, Bernhardt BC, Schrader D (2011) Advances in MRI for ‘cryptogenic’ epilepsies. Nat Rev Neurol 7(2):99–108CrossRefPubMed
69.
go back to reference Martin P, Bender B, Focke NK (2015) Post-processing of structural MRI for individualized diagnostics. Quant Imaging Med Surg 5(2):188–203PubMedPubMedCentral Martin P, Bender B, Focke NK (2015) Post-processing of structural MRI for individualized diagnostics. Quant Imaging Med Surg 5(2):188–203PubMedPubMedCentral
70.
go back to reference Teipel SJ, Grothe M, Lista S, Toschi N, Garaci FG, Hampel H (2013) Relevance of magnetic resonance imaging for early detection and diagnosis of Alzheimer disease. Med Clin North Am 97(3):399–424CrossRefPubMed Teipel SJ, Grothe M, Lista S, Toschi N, Garaci FG, Hampel H (2013) Relevance of magnetic resonance imaging for early detection and diagnosis of Alzheimer disease. Med Clin North Am 97(3):399–424CrossRefPubMed
71.
go back to reference Braskie MN, Thompson PM (2014) A focus on structural brain imaging in the Alzheimer’s disease neuroimaging initiativ. Biol Psychiatry 75(7):527–533CrossRefPubMedPubMedCentral Braskie MN, Thompson PM (2014) A focus on structural brain imaging in the Alzheimer’s disease neuroimaging initiativ. Biol Psychiatry 75(7):527–533CrossRefPubMedPubMedCentral
72.
go back to reference Jack CR Jr, Barkhof F, Bernstein MA, Cantillon M, Cole PE, DeCarli C, Dubois B, Duchesne S, Fox NC, Frisoni GB, Hampel H, Hill DLG, Johnson K, Mangin J-F, Scheltens P, Schwarz AJ, Sperling R, Suhy J, Thompson PM, Weiner M, Foster NL (2011) Steps to standardization and validation of hippocampal volumetry as a biomarker in clinical trials and diagnostic criteria for Alzheimer’s disease. Alzheimers Dement 7(4):474–485CrossRefPubMedPubMedCentral Jack CR Jr, Barkhof F, Bernstein MA, Cantillon M, Cole PE, DeCarli C, Dubois B, Duchesne S, Fox NC, Frisoni GB, Hampel H, Hill DLG, Johnson K, Mangin J-F, Scheltens P, Schwarz AJ, Sperling R, Suhy J, Thompson PM, Weiner M, Foster NL (2011) Steps to standardization and validation of hippocampal volumetry as a biomarker in clinical trials and diagnostic criteria for Alzheimer’s disease. Alzheimers Dement 7(4):474–485CrossRefPubMedPubMedCentral
73.
go back to reference Horn A, Kühn AA (2014) Lead-DBS: a toolbox for deep brain stimulation electrode localizations and visualizations. Neuroimage 107:127–135CrossRefPubMed Horn A, Kühn AA (2014) Lead-DBS: a toolbox for deep brain stimulation electrode localizations and visualizations. Neuroimage 107:127–135CrossRefPubMed
74.
go back to reference Shiee N, Bazin P-L, Ozturk A, Reich DS, Calabresi PA, Pham DL (2010) A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions. Neuroimage 49:1524–1535CrossRefPubMedPubMedCentral Shiee N, Bazin P-L, Ozturk A, Reich DS, Calabresi PA, Pham DL (2010) A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions. Neuroimage 49:1524–1535CrossRefPubMedPubMedCentral
75.
go back to reference Prastawa M, Gerig G (2008) Brain Lesion Segmentation through physical model estimation. Int Symp Vis Comput (ISVC) Lect Notes Comput Sci (LNCS) 5358:562–571CrossRef Prastawa M, Gerig G (2008) Brain Lesion Segmentation through physical model estimation. Int Symp Vis Comput (ISVC) Lect Notes Comput Sci (LNCS) 5358:562–571CrossRef
76.
go back to reference Lao Z, Shen D, Liu D, Jawad AF, Melhem ER, Launer LJ, Bryan NR, Davatzikos C (2008) Computer-assisted segmentation of white matter lesions in 3D MR images using pattern recognition. Acad Radiol 15(3):300–313CrossRefPubMedPubMedCentral Lao Z, Shen D, Liu D, Jawad AF, Melhem ER, Launer LJ, Bryan NR, Davatzikos C (2008) Computer-assisted segmentation of white matter lesions in 3D MR images using pattern recognition. Acad Radiol 15(3):300–313CrossRefPubMedPubMedCentral
77.
go back to reference Ithapu V, Singh V, Lindner C, Austin BP, Hinrichs C, Carlsson CM, Bendlin BB, Johnson SC (2014) Extracting and summarizing white matter hyperintensities using supervised segmentation methods in Alzheimer’s disease risk and aging studies. Hum Brain Mapp. doi:10.1002/hbm.22472 PubMedPubMedCentral Ithapu V, Singh V, Lindner C, Austin BP, Hinrichs C, Carlsson CM, Bendlin BB, Johnson SC (2014) Extracting and summarizing white matter hyperintensities using supervised segmentation methods in Alzheimer’s disease risk and aging studies. Hum Brain Mapp. doi:10.​1002/​hbm.​22472 PubMedPubMedCentral
78.
go back to reference García-Lorenzo D, Francis S, Narayanan S, Arnold DL, Collins DL (2013) Review of automatic segmentation methods of multiple sclerosis white matter lesions on conventional magnetic resonance imaging. Med Image Anal 17(1):1–18CrossRefPubMed García-Lorenzo D, Francis S, Narayanan S, Arnold DL, Collins DL (2013) Review of automatic segmentation methods of multiple sclerosis white matter lesions on conventional magnetic resonance imaging. Med Image Anal 17(1):1–18CrossRefPubMed
79.
go back to reference Moon N, Bullitt E, van Leemput K, Gerig G (2002) Automatic brain and tumor segmentation. In: Proceedings of MICCAI ‘02, Springer LNCS 2488, 09/2002 Moon N, Bullitt E, van Leemput K, Gerig G (2002) Automatic brain and tumor segmentation. In: Proceedings of MICCAI ‘02, Springer LNCS 2488, 09/2002
80.
go back to reference Bauer S, Wiest R, Nolte LP, Reyes M (2013) A survey of MRI-based medical image analysis for brain tumor studies. Phys Med Biol 58(13):R97–R129CrossRefPubMed Bauer S, Wiest R, Nolte LP, Reyes M (2013) A survey of MRI-based medical image analysis for brain tumor studies. Phys Med Biol 58(13):R97–R129CrossRefPubMed
81.
go back to reference Wang L, Shi F, Yap P-T, Lin W, Gilmore JH, Shen D (2013) Longitudinally guided level sets for consistent tissue segmentation of neonates. Hum Brain Mapp 34:956–972CrossRefPubMed Wang L, Shi F, Yap P-T, Lin W, Gilmore JH, Shen D (2013) Longitudinally guided level sets for consistent tissue segmentation of neonates. Hum Brain Mapp 34:956–972CrossRefPubMed
82.
go back to reference Wang B, Prastawa M, Irimia A, Chambers MC, Sadeghi N, Vespa PM, van Horn JD, Gerig G (2013) Analyzing imaging biomarkers for traumatic brain injury using 4D modeling of longitudinal MRI. Proc IEEE Int Symp Biomed Imaging 2013:1392–1395PubMedPubMedCentral Wang B, Prastawa M, Irimia A, Chambers MC, Sadeghi N, Vespa PM, van Horn JD, Gerig G (2013) Analyzing imaging biomarkers for traumatic brain injury using 4D modeling of longitudinal MRI. Proc IEEE Int Symp Biomed Imaging 2013:1392–1395PubMedPubMedCentral
Metadata
Title
Segmentation of human brain using structural MRI
Author
Gunther Helms
Publication date
01-04-2016
Publisher
Springer Berlin Heidelberg
Published in
Magnetic Resonance Materials in Physics, Biology and Medicine / Issue 2/2016
Print ISSN: 0968-5243
Electronic ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-015-0518-z

Other articles of this Issue 2/2016

Magnetic Resonance Materials in Physics, Biology and Medicine 2/2016 Go to the issue